Commit Graph

18 Commits

Author SHA1 Message Date
Jason Ansel
d325aaef39 [halide-backend] Use get_reduction_combine_fn for reduction ops (#130212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130212
Approved by: https://github.com/eellison
2024-07-08 17:23:32 +00:00
Jason Ansel
acd03ca2d9 [halide-backend] Support scan kernels (#129035)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129035
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #130129
2024-07-06 03:49:50 +00:00
Jason Ansel
c5110f6388 [halide-backend] Use 0D scalar inputs/outputs (#130129)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130129
Approved by: https://github.com/shunting314
2024-07-06 03:49:50 +00:00
Jason Ansel
4fc9157e90 [halide-backend] Disable split reductions for Halide (#129320)
In theory Halide doesn't need the split reduction stuff we do for Triton since it can generate multiple kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129320
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #129321
2024-07-03 05:56:40 +00:00
Jason Ansel
0abcca85b7 [halide-backend] Support manual schedules (#129321)
Currently using this for some by-hand hacking, but might need to implement our own scheduler later.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129321
Approved by: https://github.com/shunting314
2024-07-03 05:56:40 +00:00
PyTorch MergeBot
e385bf8ef8 Revert "[halide-backend] Disable split reductions for Halide (#129320)"
This reverts commit a18eb651d3.

Reverted https://github.com/pytorch/pytorch/pull/129320 on behalf of https://github.com/jeanschmidt due to This PR is breaking internal builds, please check comments on it D59204360 ([comment](https://github.com/pytorch/pytorch/pull/129320#issuecomment-2200351678))
2024-07-01 14:44:35 +00:00
PyTorch MergeBot
a83eaf1c3a Revert "[halide-backend] Support manual schedules (#129321)"
This reverts commit 9ae78a578c.

Reverted https://github.com/pytorch/pytorch/pull/129321 on behalf of https://github.com/jeanschmidt due to Reverting, as it is required to do so in order to revert #129320 ([comment](https://github.com/pytorch/pytorch/pull/129321#issuecomment-2200345664))
2024-07-01 14:42:33 +00:00
Jason Ansel
9ae78a578c [halide-backend] Support manual schedules (#129321)
Currently using this for some by-hand hacking, but might need to implement our own scheduler later.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129321
Approved by: https://github.com/shunting314
ghstack dependencies: #126417, #129025, #129026, #127506, #129036, #129320
2024-06-29 14:06:28 +00:00
Jason Ansel
a18eb651d3 [halide-backend] Disable split reductions for Halide (#129320)
In theory Halide doesn't need the split reduction stuff we do for Triton since it can generate multiple kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129320
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417, #129025, #129026, #127506, #129036
2024-06-29 14:06:28 +00:00
Jason Ansel
4cb8cb04a7 [halide-backend] Enable bfloat16 support (#129036)
Requires https://github.com/halide/Halide/pull/8255

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129036
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417, #129025, #129026, #127506
2024-06-29 14:06:25 +00:00
Jason Ansel
b93bf55b6a [halide-backend] Add GPU support (#127506)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127506
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417, #129025, #129026
2024-06-29 14:06:21 +00:00
Jason Ansel
86cadc6385 [halide-backend] Dimension-based indexing (#129026)
Prior to this the generated Halide code was a rather literal translation of the Triton code, with XBLOCK/YBLOCK/RBLOCK and 1D inputs.  Halide prefers dimensions, and this 1D index triggers a lot of bugs and perf issues.  This PR infers dimensions and changes the indexing in the generated code.

Before
```py
@hl.generator(name="kernel")
class Kernel:
    in_ptr0 = hl.InputBuffer(hl.Float(32), 1)
    out_ptr3 = hl.OutputBuffer(hl.Float(32), 2)

    def generate(g):
        in_ptr0 = g.in_ptr0
        out_ptr3 = g.out_ptr3
        xindex = hl.Var('xindex')
        rindex = hl.Var('rindex')
        r1 = rindex
        x0 = xindex
        idom = hl.RDom([hl.Range(0, 16), hl.Range(0, 32)])
        odom = hl.RDom([hl.Range(0, 16)])
        rdom = hl.RDom([hl.Range(0, 32)])
        xindex_idom = idom.x
        xindex_odom = odom.x
        rindex_idom = idom.y
        r1_idom = rindex_idom
        x0_idom = xindex_idom
        x0_odom = xindex_odom
        tmp0 = hl.Func('tmp0')
        tmp0[rindex, xindex] = in_ptr0[r1 + (32*x0)]
        tmp1 = hl.Func('tmp1')
        tmp1[xindex] = hl.maximum(rdom, tmp0[rdom, xindex])
        tmp2 = hl.Func('tmp2')
        tmp2[rindex, xindex] = tmp0[rindex, xindex] - tmp1[xindex]
        tmp3 = hl.Func('tmp3')
        tmp3[rindex, xindex] = hl.fast_exp(hl.cast(hl.Float(32), tmp2[rindex, xindex])) if tmp2.type().bits() <= 32 else hl.exp(tmp2[rindex, xindex])
        tmp4 = hl.Func('tmp4')
        tmp4[xindex] = hl.sum(rdom, tmp3[rdom, xindex])
        tmp5 = hl.Func('tmp5')
        tmp5[rindex, xindex] = tmp3[rindex, xindex] / tmp4[xindex]
        out_ptr3_i0 = hl.Var('out_ptr3_i0')
        out_ptr3_i1 = hl.Var('out_ptr3_i1')
        out_ptr3[out_ptr3_i0, out_ptr3_i1] = hl.cast(out_ptr3.type(), tmp5[out_ptr3_i0, out_ptr3_i1])

        assert g.using_autoscheduler()
        in_ptr0.set_estimates([hl.Range(0, 512)])
        out_ptr3.set_estimates([hl.Range(0, 32), hl.Range(0, 16)])
```

After
```py
@hl.generator(name="kernel")
class Kernel:
    in_ptr0 = hl.InputBuffer(hl.Float(32), 2)
    out_ptr3 = hl.OutputBuffer(hl.Float(32), 2)

    def generate(g):
        in_ptr0 = g.in_ptr0
        out_ptr3 = g.out_ptr3
        h0 = hl.Var('h0')
        h1 = hl.Var('h1')
        rdom = hl.RDom([hl.Range(0, 32)])
        hr1 = rdom[0]
        tmp0 = hl.Func('tmp0')
        tmp0[h0, h1] = in_ptr0[h0, h1,]
        tmp1 = hl.Func('tmp1')
        tmp1[h1] = hl.maximum(rdom, tmp0[hr1, h1])
        tmp2 = hl.Func('tmp2')
        tmp2[h0, h1] = tmp0[h0, h1] - tmp1[h1]
        tmp3 = hl.Func('tmp3')
        tmp3[h0, h1] = hl.fast_exp(hl.cast(hl.Float(32), tmp2[h0, h1])) if tmp2.type().bits() <= 32 else hl.exp(tmp2[h0, h1])
        tmp4 = hl.Func('tmp4')
        tmp4[h1] = hl.sum(rdom, tmp3[hr1, h1])
        tmp5 = hl.Func('tmp5')
        tmp5[h0, h1] = tmp3[h0, h1] / tmp4[h1]
        out_ptr3[h0, h1,] = hl.cast(hl.Float(32), tmp5[h0, h1])

        assert g.using_autoscheduler()
        in_ptr0.dim(0).set_min(0)
        in_ptr0.dim(0).set_stride(1)
        in_ptr0.dim(0).set_extent(32)
        in_ptr0.dim(1).set_min(0)
        in_ptr0.dim(1).set_stride(32)
        in_ptr0.dim(1).set_extent(16)
        in_ptr0.set_estimates([hl.Range(0, 32), hl.Range(0, 16)])
        out_ptr3.set_estimates([hl.Range(0, 32), hl.Range(0, 16)])
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129026
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417, #129025
2024-06-29 14:06:16 +00:00
Jason Ansel
da5f37515e [halide-backend] Generate standalone runtime (#129025)
This puts the halide runtime in a global shared object, rather than copying it to each kernel.  Having many copies of the runtime causes many issues with cuda.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129025
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417
2024-06-29 14:06:12 +00:00
Jason Ansel
e34b7e6af3 [halide-backend] Initial implementation of HalideKernel and HalideScheduling (#126417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126417
Approved by: https://github.com/shunting314, https://github.com/eellison
2024-06-29 14:06:08 +00:00
PyTorch MergeBot
1a54bb0f96 Revert "[halide-backend] Initial implementation of HalideKernel and HalideScheduling (#126417)"
This reverts commit 4f9399bd0d.

Reverted https://github.com/pytorch/pytorch/pull/126417 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/126417#issuecomment-2186999121))
2024-06-24 16:50:15 +00:00
PyTorch MergeBot
063facf352 Revert "[halide-backend] Generate standalone runtime (#129025)"
This reverts commit 10c64c3b49.

Reverted https://github.com/pytorch/pytorch/pull/129025 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/129025#issuecomment-2186995467))
2024-06-24 16:47:25 +00:00
Jason Ansel
10c64c3b49 [halide-backend] Generate standalone runtime (#129025)
This puts the halide runtime in a global shared object, rather than copying it to each kernel.  Having many copies of the runtime causes many issues with cuda.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129025
Approved by: https://github.com/shunting314, https://github.com/eellison
ghstack dependencies: #126417
2024-06-22 17:39:52 +00:00
Jason Ansel
4f9399bd0d [halide-backend] Initial implementation of HalideKernel and HalideScheduling (#126417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126417
Approved by: https://github.com/shunting314, https://github.com/eellison
2024-06-22 17:39:52 +00:00