Summary:
there're some issues for dim order creation. T194410923 has detail illustration.
One of the reason is sometimes `is_contiguous` function may generate ambiguous memory format result (some tensors might be both channels_last and contiguous at the same time), and dim order generation rely on memory format result underneath for shortcut.
To mitigate the issue, we make dim order utilizing the short cut if and only if the tensor is only belongs to single memory format. Otherwise, we will still recalculate it.
Test Plan: CI
Differential Revision: D60056793
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131366
Approved by: https://github.com/ezyang
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops
We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.
Taken over from https://github.com/pytorch/pytorch/pull/128937
joint work with @imzhuhl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops
We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.
Taken over from https://github.com/pytorch/pytorch/pull/128937
joint work with @imzhuhl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
Resolves#126888
- #126888
This PR is split from PR #126898.
- #126898
------
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`
A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```
### Application to `nn.Module`
This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node
```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.
Resolves#126888
- #126888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
# Motivation
## for `torch.amp.GradScaler`,
- `torch.cpu.amp.GradScaler(args...)` is completely equivalent to `torch. amp.GradScaler("cpu", args...)`.
- `torch.cuda.amp.GradScaler(args...)` is completely equivalent to `torch.amp.GradScaler("cuda", args...)`.
So, we intend to depreate them and **strongly recommend** developer to use `torch.amp.GradScaler`.
## for `custom_fwd` and `custom_bwd`,
this is a good solution to make the custom function run with or without effect even in an autocast-enabled region and can be shared by other backends, like CPU and XPU.
So we generalize it to be device-agnostic and put them int `torch/amp/autocast_mode.py` and re-expose to `torch.amp.custom_fwd` and `torch.amp.custom_bwd`. Meanwhile, we deprecate `torch.cuda.amp.custom_fwd` and `torch.cuda.amp.custom_bwd`.
# Additional Context
Add UT to cover the deprecated warning.
No need for more UTs to cover the functionality of `torch.amp.custom_f/bwd`, the existing UTs that previously covered the functionality of `torch.cuda.amp.custom_f/bwd` can cover them.
To facilitate the review, we separate these code changes to two PRs. The first PR cover `torch.amp.GradScaler`. The follow-up covers `custom_fwd` and `custom_bwd`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126527
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/janeyx99, https://github.com/EikanWang
Fixes#71398
Add `__reduce__` and `__setstate__` methods for `torch._C.Generator`.
`__reduce__` returns a tuple of 3 values:
1. `torch.Generator` itself.
2. A one-element tuple containing the `torch.device` to create the `Generator` with, since this cannot be changed after the object is created.
3. The state, a three-element tuple: the initial seed, the offset (or `None` if a CPU `Generator`), and the RNG state tensor.
`__setstate__` calls `manual_seed`, `set_offset` (if not `None`), and `set_state` on each respective element of the state.
Added test demonstrating successful reserialization with cpu and cuda `Generator`s.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126271
Approved by: https://github.com/ezyang
Fixes#123451 (only addresses test_torch.py cases)
This PR solves the specific task to update `test_grad_scaling_autocast` and `test_params_invalidated_with_grads_invalidated_between_unscale_and_step` in `test/test_torch.py` to use the new OptimizerInfo infrastructure.
I have combined tests that call `_grad_scaling_autocast_test` into one called `test_grad_scaling_autocast` and used `_get_optim_inputs_including_global_cliquey_kwargs` to avoid hard-coded configurations.
```
$ lintrunner test/test_cuda.py
ok No lint issues.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125538
Approved by: https://github.com/janeyx99
As per title.
This ensures that all the places where we assume the method defined in _tensor.py do exist.
BC-Breaking: This is bc-breaking as the user cannot subclass this private class anymore.
You should replace any use of _TensorBase to Tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125558
Approved by: https://github.com/ezyang
Fixes#121965
This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.
C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.
Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.
Environment:
3080 & WSL 2. `nvcc` is at 12.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/mikaylagawarecki
Fixes#121965
This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.
C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.
Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.
Environment:
3080 & WSL 2. `nvcc` is at 12.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/eqy, https://github.com/mikaylagawarecki
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.
Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0
| Repository | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7 | 251.8 | 351.1 | 274.9 |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
On par with `CUDA` implementation.
For `autocast` logic, same with `CUDA` + `Fused Adam`:
- check inf in `gradscalar.step`
- In fused kernel, if there is `inf`, do nothing. If not, unscale the grad ( also write back) and update the param.
**TestPlan**:
```
# extend CUDA only test for CPU fused adagrad
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_torch.py -k test_grad_scaling_autocast_fused
# extend fused test
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
python test_optim.py -k test_can_load_older_state_dict
# newly added test (follow 6b1f13ea2f/test/test_cuda.py (L1108))
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
```
**Benchmark**:
**5.1x** on 56 core SPR
**Parameter-size=1M**
**Nparams=10**
[test script](https://gist.github.com/zhuhaozhe/ef9a290ad3f8f4067b3373a3bdaa33e7)
```
numactl -C 0-55 -m 0 python bench_adam.py
non-fused 6.0174267292022705 s
fused 1.1787631511688232 s
```
**Note: Fused kernel accuracy**
The accuracy failure in CI shows a little higher than default tolerance
```
2024-04-02T06:09:16.2213887Z Mismatched elements: 21 / 64 (32.8%)
2024-04-02T06:09:16.2214339Z Greatest absolute difference: 1.5735626220703125e-05 at index (6, 6) (up to 1e-05 allowed)
2024-04-02T06:09:16.2214813Z Greatest relative difference: 1.0073336852656212e-05 at index (4, 1) (up to 1.3e-06 allowed)
```
I have debug it step by step and unfortunately we may not able to make the `fused kernel` exactly same with `non fused` one due to compiler optimizations.
For example, in non-fused impl
```
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
```
and in fused impl
```
exp_avg_sq_ptr[d] = scalar_t(beta2) * exp_avg_sq_ptr[d];
// std::cout << "exp_avg_sq " << exp_avg_sq_ptr[d] << std::endl;
exp_avg_sq_ptr[d] = exp_avg_sq_ptr[d] +
scalar_t(exp_avg_sq_grad_coefficient) * grad_val * grad_val;
```
If I keep `std::cout`, I can get exactly same results in UT
```
===============param
0.6796758770942688
0.6796758770942688
```
But when I comment out it, there will be a difference
```
===============param
0.6796758770942688
0.6796759366989136
```
So I will make the tolerance a little higher than default one.
Co-authored-by: Jane Xu <janeyx@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123074
Approved by: https://github.com/jgong5, https://github.com/janeyx99
This PR intends to fix the following issue when swapping two tensors
```python
>>> import torch
>>> torch.manual_seed(5)
>>> t1 = torch.randn(2)
>>> t2 = torch.randn(3)
>>> t1
tensor([-0.4868, -0.6038])
>>> t2
tensor([-0.5581, 0.6675, -0.1974])
>>> torch.utils.swap_tensors(t1, t2)
>>> t1
tensor([-0.5581, 0.6675, -0.1974])
>>> t2
tensor([-0.4868, -0.6038])
>>> t1.fill_(0.5) # t1 back to its unswapped state :o
tensor([-0.4868, -0.6038])
```
What happens here is that in `THPVariable_Wrap` (which is used when going back from C++ --> Python), we check if the TensorImpl of the tensor to be returned already has a pointer to a PyObject in its PyObject slot. If this is the case then this object is returned.
57491d2046/torch/csrc/autograd/python_variable.cpp (L271-L292)
When we run any operation that returns the same TensorImpl (e.g. inplace op, `t.to(dtype=t.dtype)`, etc.), although `t1` now has `t2`'s TensorImpl, `t2`'s TensorImpl still has a reference to `t2`, so when we do the op on `t1` and `THPVariable_Wrap` attempts to return the pointer to the TensorImpl's PyObject, we return a pointer to `t2` instead.
The TensorImpl should have the PyObjects in their PyObjectSlots swapped as well in `swap_tensors`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116955
Approved by: https://github.com/albanD