Commit Graph

276 Commits

Author SHA1 Message Date
rzou
3ef0befdc9 Better error messages for impl_abstract_pystub (#120959)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120959
Approved by: https://github.com/drisspg
2024-03-04 15:24:36 +00:00
Animesh Jain
b7f2522692 [dynamo][compile-time] Remove unnecessary tree_map_only (#121052)
Reduces the torch.compile(backend="eager") for this code by 1-2 seconds.

~~~
def fn(x):
    for _ in range(10000):
        # x = torch.sin(x)
        x = torch.ops.aten.sin(x)
        # x = sin(x)

    return x
~~~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121052
Approved by: https://github.com/jansel
ghstack dependencies: #121053
2024-03-03 06:59:43 +00:00
Guilherme Leobas
491c2b4665 Let torch dynamo inline torch.func.grad (#118407)
When dynamo sees torch.func.grad, it tries to inline all frames related
to.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118407
Approved by: https://github.com/zou3519
2024-02-28 20:05:00 +00:00
Yanbo Liang
5a0a964444 [Dynamo] Fix guards for script_if_tracing or lru_cache fn with default args (#120390)
Fixes #120387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120390
Approved by: https://github.com/anijain2305
2024-02-26 19:40:14 +00:00
Michael Lazos
56203fc407 Add profiling for backward (#120540)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120540
Approved by: https://github.com/anijain2305
2024-02-24 16:53:28 +00:00
Thiago Crepaldi
3588e7f265 Ignore .numpy() under FakeTensorMode() (#120261)
Fixes #120259

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120261
Approved by: https://github.com/jansel
2024-02-22 22:49:20 +00:00
PyTorch MergeBot
8fa6340701 Revert "Ignore .numpy() under FakeTensorMode() (#120261)"
This reverts commit 952b37145b.

Reverted https://github.com/pytorch/pytorch/pull/120261 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems breaking trunk on Python 3.12 952b37145b ([comment](https://github.com/pytorch/pytorch/pull/120261#issuecomment-1958267417))
2024-02-21 23:09:27 +00:00
Thiago Crepaldi
952b37145b Ignore .numpy() under FakeTensorMode() (#120261)
Fixes #120259

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120261
Approved by: https://github.com/jansel
2024-02-21 22:06:29 +00:00
Yanbo Liang
d42ede8ae4 [torch.compile] Log compilation start time for timeline view (#120220)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120220
Approved by: https://github.com/angelayi
2024-02-20 21:07:40 +00:00
Shunting Zhang
becfda005e tiny improvement to the cprofile wrapper (#120100)
1. right now we double increment the profile counter. The PR avoid that so we don't end up with profile_0, profile_2, profile_4 ...
2. log the latency to run the passed in function with profiling on so we can easily skip those _compile call which returns quickly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120100
Approved by: https://github.com/eellison
2024-02-17 02:10:25 +00:00
Menglu Yu
7b1f5c874f [PT2][Optimus][Observability] Log the optimus graph transformation to the scuba (#119745)
Summary: Current everstore upload logging may cuase excessive compilation time when the model has lots of graph breaks (post: https://fb.workplace.com/groups/257735836456307/permalink/633533465543207/), we here log the transformation only when the graph changed

Test Plan:
timeout flows:
f528209775
f530084719

Differential Revision: D53692344

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119745
Approved by: https://github.com/jackiexu1992
2024-02-16 21:32:04 +00:00
laith sakka
3693d8f467 Do to convert UnsupportedFakeTensorException into RuntimeError in runNode for proper graph breaking. (#120026)
Fix: https://github.com/pytorch/pytorch/issues/119779 by properly graph breaking  a proper fix is to handle quantized tensors for full complete solution.

if when generating  a fake tensor, UnsupportedFakeTensorException is thrown, then its handled and converted into a
Unimplemented in inside wrap_fake_exception which is then translated to a graph break.

However run_node used to convert  UnsupportedFakeTensorException into a runtime error, creating runtime
errors instead of graph breaks whenever generating a fake tensor for a quantized tensor fails.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120026
Approved by: https://github.com/jansel
2024-02-16 09:21:58 +00:00
Yanbo Liang
7f5b87c953 [torch.compile] Log more compilation time breakdown (#119865)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119865
Approved by: https://github.com/ezyang
2024-02-15 02:20:07 +00:00
laith sakka
edd9ddf73f Propagate allow_non_graph_fake between get_fake_values_from_nodes and get_fake_values (#119731)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119731
Approved by: https://github.com/jansel, https://github.com/anijain2305
ghstack dependencies: #119314, #119435
2024-02-14 15:26:17 +00:00
laith sakka
ea8e4fd5ac Support FunctoolsPartialVariable::get_function, fix NamedTupleVariable::as_proxy and handle call_function in get_fake_values_from_nodes (#119435)
partially address https://github.com/pytorch/pytorch/issues/118785
This diff fixes three things:
1. add get_function to FunctoolsPartialVariable note that it will be available only if all args constant otherwise,
it would throw unimplemented in the call to asPythonConstant.

2. NamedTupleVariable takes args dispatched not as list ex: NamedTuple(a, b, c) vs NamedTuple([a, b, c]),
 hence fix that by specializing asProxy.

3. A call to create_arg from within create_proxy, changes a python NamedTuple to a function call node without
associating an example value! Updated get_fake_values_from_nodes to handle such case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119435
Approved by: https://github.com/jansel, https://github.com/anijain2305
ghstack dependencies: #119314
2024-02-13 01:44:08 +00:00
Jason Ansel
e1c1b8c2b2 [dynamo] Improve support for backwards hooks (#119525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119525
Approved by: https://github.com/yanboliang, https://github.com/anijain2305
2024-02-10 01:14:03 +00:00
PyTorch MergeBot
25a0fa6d13 Revert "[dynamo] Improve support for backwards hooks (#119525)"
This reverts commit b1f4b2a63c.

Reverted https://github.com/pytorch/pytorch/pull/119525 on behalf of https://github.com/clee2000 due to broke test_autograd.py::TestAutograd::test_post_accumulate_grad_hook_gets_cleaned_up on dynamo https://github.com/pytorch/pytorch/actions/runs/7847212828/job/21416215820 b1f4b2a63c.  The failure exists on the PR as well, but got masked by the other test.  Putting this as no signal? ([comment](https://github.com/pytorch/pytorch/pull/119525#issuecomment-1936447169))
2024-02-09 18:58:55 +00:00
Jason Ansel
b1f4b2a63c [dynamo] Improve support for backwards hooks (#119525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119525
Approved by: https://github.com/yanboliang
2024-02-09 17:02:40 +00:00
Yanbo Liang
0f478d9d61 [Dynamo][15/N] Merge allow_in_graph/inline/skip trace rules check into trace_rule.lookup (#118971)
Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function.
* ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip.
* ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check.
  *  I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups.
* Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule.

To avoid a single big PR, I left a few items as the follow-ups:
* Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```.
* We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```.
* Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions.
* The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971
Approved by: https://github.com/jansel
2024-02-07 05:15:39 +00:00
Jason Ansel
ec31d11580 [dynamo] Skip dynamo when inside a functorch context (#118901)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118901
Approved by: https://github.com/zou3519
2024-02-06 20:22:24 +00:00
Edward Z. Yang
abc09b27b9 Some minor type stub improvements (#118529)
I was just playing around with improving the typing of symbolic_shapes. The PR is not "complete" but I in particular wanted to get feedback on whether or not people liked making ValueRanges Generic; it seems that distinguishing if you have an Expr ValueRange or a SympyBoolean ValueRange is a lot of trouble for downstream. Using TypeGuard, we can perform refinements on the generic parameter inside methods, although we still have to cast back to ValueRange[T] due to https://github.com/python/mypy/issues/14425#issuecomment-1914852707

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118529
Approved by: https://github.com/Skylion007
2024-02-04 00:19:00 +00:00
PyTorch MergeBot
dbba1d4bf5 Revert "Some minor type stub improvements (#118529)"
This reverts commit c978f38bd4.

Reverted https://github.com/pytorch/pytorch/pull/118529 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/118529#issuecomment-1922362331))
2024-02-01 22:18:36 +00:00
Edward Z. Yang
c978f38bd4 Some minor type stub improvements (#118529)
I was just playing around with improving the typing of symbolic_shapes. The PR is not "complete" but I in particular wanted to get feedback on whether or not people liked making ValueRanges Generic; it seems that distinguishing if you have an Expr ValueRange or a SympyBoolean ValueRange is a lot of trouble for downstream. Using TypeGuard, we can perform refinements on the generic parameter inside methods, although we still have to cast back to ValueRange[T] due to https://github.com/python/mypy/issues/14425#issuecomment-1914852707

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118529
Approved by: https://github.com/Skylion007
2024-01-31 20:56:56 +00:00
Catherine Lee
4f5785b6b3 Enable possibly-undefined error code (#118533)
Fixes https://github.com/pytorch/pytorch/issues/118129

Suppressions automatically added with

```
import re

with open("error_file.txt", "r") as f:
    errors = f.readlines()

error_lines = {}
for error in errors:
    match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
    if match:
        file_path, line_number, error_type = match.groups()
        if file_path not in error_lines:
            error_lines[file_path] = {}
        error_lines[file_path][int(line_number)] = error_type

for file_path, lines in error_lines.items():
    with open(file_path, "r") as f:
        code = f.readlines()
    for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
        code[line_number - 1] = code[line_number - 1].rstrip() + f"  # type: ignore[{error_type}]\n"
    with open(file_path, "w") as f:
        f.writelines(code)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Co-authored-by: Catherine Lee <csl@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
2024-01-30 21:07:01 +00:00
PyTorch MergeBot
40ece2e579 Revert "Enable possibly-undefined error code (#118533)"
This reverts commit 4f13f69a45.

Reverted https://github.com/pytorch/pytorch/pull/118533 on behalf of https://github.com/clee2000 due to sorry i'm trying to figure out a codev merge conflict, if this works i'll be back to rebase and merge ([comment](https://github.com/pytorch/pytorch/pull/118533#issuecomment-1917695185))
2024-01-30 19:00:34 +00:00
Edward Z. Yang
4f13f69a45 Enable possibly-undefined error code (#118533)
Fixes https://github.com/pytorch/pytorch/issues/118129

Suppressions automatically added with

```
import re

with open("error_file.txt", "r") as f:
    errors = f.readlines()

error_lines = {}
for error in errors:
    match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
    if match:
        file_path, line_number, error_type = match.groups()
        if file_path not in error_lines:
            error_lines[file_path] = {}
        error_lines[file_path][int(line_number)] = error_type

for file_path, lines in error_lines.items():
    with open(file_path, "r") as f:
        code = f.readlines()
    for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
        code[line_number - 1] = code[line_number - 1].rstrip() + f"  # type: ignore[{error_type}]\n"
    with open(file_path, "w") as f:
        f.writelines(code)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
2024-01-30 05:08:10 +00:00
Yanbo Liang
ca1d70632d [14/N][Dynamo] Make trace_rules.lookup only handle function + callable type (#118366)
Step by step changes to unblock #118264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118366
Approved by: https://github.com/angelayi
2024-01-27 23:02:44 +00:00
rzou
5e0ef84b01 [dynamo] Refactor install_global_once, remove usages of install_global_unsafe (#118100)
We split install_global_once into two APIs:
- `install_global_by_id(prefix, value) -> name`: installs a global if it hasn't
been installed yet
- `install_global(prefix, value) -> name`: always installs the global (and
  generates a unique name for it)

Then, we refactor most callsites of `install_global_unsafe` to one of
the previous. Some callsites cannot be refactored because we create the
global name first, do a lot of stuff with it, and then install it.

This fixes more test flakiness.

Test Plan:
- Existing tests; I can't reliably repro the flakiness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118100
Approved by: https://github.com/ezyang, https://github.com/mlazos
2024-01-24 23:25:44 +00:00
Yanbo Liang
c0732c8d5e [Dynamo] Add complex to literal constant (#117819)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117819
Approved by: https://github.com/zou3519
2024-01-23 23:46:46 +00:00
rzou
e309d6fa1c Better unsupported op error message (#117770)
Previously, if someone wrote a python abstract impl but didn't import
the module it is in, then we would raise an error message suggesting
that the user needs to add an abstract impl for the operator.

In addition to this, we suggest that the user try importing the module
associated with the operator in the pystub (it's not guaranteed that
an abstract impl does exist) to avoid confusion.

Test Plan:
- new test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117770
Approved by: https://github.com/ydwu4, https://github.com/williamwen42
2024-01-23 15:05:16 +00:00
lezcano
f4df0f061c Implement set in terms of dict (#110524)
This allows to heavily simplify the implementation of set, which was
"quite unique". Now we represent a set a as a dict where all its values
are None.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110524
Approved by: https://github.com/jansel
ghstack dependencies: #112252, #117630
2024-01-18 09:36:41 +00:00
Simon Fan
88bf84f106 [benchmark] add --compile-autograd to dynamo benchmarks (#117196)
Adds `--compile-autograd` flag to benchmark suite to run accuracy and performance tests. Also adds autograd_captures and autograd_compiles to dynamo stats

e.g. accuracy_inductor.csv
```
dev,name,batch_size,accuracy,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles
cuda,BERT_pytorch,4,pass,2655,2,8,7,1,1
cuda,Background_Matting,4,pass_due_to_skip,0,0,0,0,0,0
cuda,DALLE2_pytorch,0,eager_fail_to_run,0,0,0,0,0,0
cuda,LearningToPaint,4,pass,639,2,8,7,1,1
...
```

e.g. speedup_inductor.csv
```
dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles
cuda,hf_T5,8,1.214311,136.236793,88.350570,0.751322,18.754706,24.962275,3298,2,8,8,1,1
cuda,hf_T5,8,1.226645,135.431856,52.461461,1.040973,18.754706,18.016508,795,1,7,7,0,0
...
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117196
Approved by: https://github.com/jansel
2024-01-11 20:12:58 +00:00
Edward Z. Yang
5b24877663 Improve uint{16,32,64} dlpack/numpy compatibility (#116808)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116808
Approved by: https://github.com/malfet, https://github.com/albanD
2024-01-11 17:01:54 +00:00
voznesenskym
4c0d63180a Support NNModules as dict keys (#116723)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116723
Approved by: https://github.com/lezcano
2024-01-09 03:32:47 +00:00
voznesenskym
de005b14ab [dynamo] fix more broken dict tests (#116943)
Forward fixing after #111196

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116943
Approved by: https://github.com/huydhn
2024-01-07 08:00:16 +00:00
voznesenskym
83e8a0721d Reland #111196 (take 4) "Support tensors as Dict keys" (#116934)
Fixes #ISSUE_NUMBER

See that PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116934
Approved by: https://github.com/ezyang, https://github.com/huydhn
2024-01-07 01:37:26 +00:00
PyTorch MergeBot
2dca3e99eb Revert "Support tensors as Dict keys Re-PR of #111196 (#116785)"
This reverts commit 1badad9ce9.

Reverted https://github.com/pytorch/pytorch/pull/116785 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/116785#issuecomment-1879592261))
2024-01-06 08:22:33 +00:00
voznesenskym
1badad9ce9 Support tensors as Dict keys Re-PR of #111196 (#116785)
This prepares the PR where we implement sets in terms of dicts.
To do so, rather than storing internally a dictionary that maps literals
to VariableTrackers, it stores (pretty much) a dictionary from VTs to VTs.
To do so, keys are wrapped in an opaque internal class _Hashable.
The Hashable class is opaque on purpose so that it fails hard if
if it inadvertently leaks back into user code.
We also found and fixed a number of latent bugs and inconsistencies
in the way dynamo checked what can be a dict key. More generally, we
make much clearer what are the things that need to be modified to add
a new supported key type to Dicts.

Fixes [#107595](https://www.internalfb.com/tasks?t=107595)
Fixes [#111603](https://www.internalfb.com/tasks?t=111603)

Re-PR of https://github.com/pytorch/pytorch/pull/111196 sadly due to reverts, we could not reuse @lezcano's original PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116785
Approved by: https://github.com/mlazos
2024-01-06 03:35:35 +00:00
Edward Z. Yang
0249c4a785 Add config toggle suggestions for data-dependent/dynamic output shape (#114337)
Fixes https://github.com/pytorch/pytorch/issues/114220

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114337
Approved by: https://github.com/aakhundov
2024-01-05 14:01:01 +00:00
Aaron Gokaslan
86cd6655a1 [BE]: Use exist_ok arg for os.makedirs calls (#116561)
Optimize os.makedirs calls to use exist_ok parameter when possible to avoid unnecessary checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116561
Approved by: https://github.com/malfet
2023-12-30 21:12:53 +00:00
Yanbo Liang
d59350cc1c [Dynamo] Consolidate common constant types (#116366)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116366
Approved by: https://github.com/Skylion007
2023-12-27 23:54:35 +00:00
Yanbo Liang
f657b2b1f8 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-27 18:47:05 +00:00
PyTorch MergeBot
3b709d7c1e Revert "[Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)"
This reverts commit 015bd0e0a1.

Reverted https://github.com/pytorch/pytorch/pull/116312 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/116312#issuecomment-1869825506))
2023-12-26 23:47:15 +00:00
PyTorch MergeBot
0edc348788 Revert "[Dynamo] Consolidate common constant types (#116366)"
This reverts commit 36dccc2aba.

Reverted https://github.com/pytorch/pytorch/pull/116366 on behalf of https://github.com/kit1980 due to Need to revert this because of https://github.com/pytorch/pytorch/pull/116312 ([comment](https://github.com/pytorch/pytorch/pull/116366#issuecomment-1869821625))
2023-12-26 23:36:52 +00:00
Yanbo Liang
36dccc2aba [Dynamo] Consolidate common constant types (#116366)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116366
Approved by: https://github.com/Skylion007
2023-12-24 22:58:01 +00:00
Yanbo Liang
015bd0e0a1 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-23 09:44:09 +00:00
Shunting Zhang
99f7e721fe [inductor] make inductor work with new triton compile interface (#115878)
Recent 2 triton PRs (https://github.com/openai/triton/pull/2701, https://github.com/openai/triton/pull/2756) change the interface for triton.compile, this PR added the necessary change on inductor side to work with both old and new compile API.

Also there is some simplification between compilation call in subprocess and the one in main process
- previously we pass warm_cache_only=True if the compilation happens in subprocess. But triton never use that argument in the currently used pin. So I removed that
- previously we only pass compute_capability if compilation happens in subprocess. The PR change that to always passing compute_capability to triton.compile no matter if the compilation happens in main or sub process.

Updated:
There are more interface change from triton side. E.g.
- tl.math.{min, max} now requires a propagate_nan argument
- JITFunction.run now requires a warmup argument. This affect the benchmarking phase of matmul max-autotune; on the other hand, JITFunction.run forbids stream argument now. Simply removing passing this in when benchmarking matmul triton kernel will work for both old and new version of triton.
- triton Autotuner change attribute name from 'warmup' to 'num_warmup' and from 'rep' to 'num_rep'. This cause dynamo failed to handle triton Autotuner object since dynamo TritonKernelVariable makes assumption about attribute names. It's used in some test cases that a model call triton Autotuner directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115878
Approved by: https://github.com/jansel
2023-12-22 00:09:29 +00:00
PyTorch MergeBot
db35ccf463 Revert "[innductor] make inductor work with new triton compile interface (#115878)"
This reverts commit bbded928b3.

Reverted https://github.com/pytorch/pytorch/pull/115878 on behalf of https://github.com/kit1980 due to Broke ROCm https://github.com/pytorch/pytorch/actions/runs/7282149837/job/19844618618 ([comment](https://github.com/pytorch/pytorch/pull/115878#issuecomment-1865369349))
2023-12-21 02:00:17 +00:00
Yanbo Liang
be9de33240 [Dynamo][9/N] Make SkipFilesVariable wrap functions only (#115963)
Make ```SkipFilesVariable``` only handle function type, and route skipped classes to ```UserDefinedClassVariable```. The reasons behind this are:
* We'd like to remove ```is_allowed```, so the allowed/disallowed torch classes should have a proper place to handle. We can put them in either ```SkipFilesVariable``` and ```UserDefinedClassVariable``` under the current architecture, but it's  confusing to have two places do one thing.
   - Going forward, let's make ```SkipFilesVariable``` only handle functions, and probably I'll rename it to ```SkippedFunctionVariable``` in the following PRs.
   - Let's do dispatch by value's type, all torch classes stuff would go to ```UserDefinedClassVariable``` in the next PR.
* We'd merge in_graph/skip/inline trace decision into the same API ```trace_rule.lookup```, so probably we have to limit the input to only function for better organizing ```VariableBuilder._wrap``` logics.
   - Next step, I'll merge ```skipfiles.check``` into ```trace_rules.lookup```, and do the skipfile check before wrapping them into correct variable tracker.
   - Though the ```TorchCtxManagerClassVariable``` is decided by ```trace_rules.lookup```, I'll refactor it out in the following PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115963
Approved by: https://github.com/jansel
2023-12-21 01:35:07 +00:00
Shunting Zhang
bbded928b3 [innductor] make inductor work with new triton compile interface (#115878)
Recent 2 triton PRs (https://github.com/openai/triton/pull/2701, https://github.com/openai/triton/pull/2756) change the interface for triton.compile, this PR added the necessary change on inductor side to work with both old and new compile API.

Also there is some simplification between compilation call in subprocess and the one in main process
- previously we pass warm_cache_only=True if the compilation happens in subprocess. But triton never use that argument in the currently used pin. So I removed that
- previously we only pass compute_capability if compilation happens in subprocess. The PR change that to always passing compute_capability to triton.compile no matter if the compilation happens in main or sub process.

Updated:
There are more interface change from triton side. E.g.
- tl.math.{min, max} now requires a propagate_nan argument
- JITFunction.run now requires a warmup argument. This affect the benchmarking phase of matmul max-autotune; on the other hand, JITFunction.run forbids stream argument now. Simply removing passing this in when benchmarking matmul triton kernel will work for both old and new version of triton.
- triton Autotuner change attribute name from 'warmup' to 'num_warmup' and from 'rep' to 'num_rep'. This cause dynamo failed to handle triton Autotuner object since dynamo TritonKernelVariable makes assumption about attribute names. It's used in some test cases that a model call triton Autotuner directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115878
Approved by: https://github.com/jansel
2023-12-21 00:03:38 +00:00