Commit Graph

18 Commits

Author SHA1 Message Date
Michael Suo
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
Peter Bell
fa09099ba3 Codegen: TraceType only includes operators being registered (#68691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68691

TraceType is a sharded file, so by only including specific operator
headers, we ensure that changing one (non-method) operator only needs
one shard to be re-compiled.

This also changes all the included autograd and jit headers from
including `ATen/ATen.h` to just including `ATen/core/Tensor.h`.

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D33336948

Pulled By: albanD

fbshipit-source-id: 4e40371592b9a5a7e7fcd1d8cecae11ffb873113
2022-01-02 13:09:19 -08:00
Nikita Shulga
26e32988bd Revert D32596264: Codegen: TraceType only includes operators being registered
Test Plan: revert-hammer

Differential Revision:
D32596264 (e66a8ab4f5)

Original commit changeset: 2f28b62d7b99

Original Phabricator Diff: D32596264 (e66a8ab4f5)

fbshipit-source-id: 7d18c4e77ce30dd7817a95f9c39b565cb246cd12
2021-12-17 11:20:12 -08:00
Peter Bell
e66a8ab4f5 Codegen: TraceType only includes operators being registered (#68691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68691

TraceType is a sharded file, so by only including specific operator
headers, we ensure that changing one (non-method) operator only needs
one shard to be re-compiled.

This also changes all the included autograd and jit headers from
including `ATen/ATen.h` to just including `ATen/core/Tensor.h`.

Test Plan: Imported from OSS

Reviewed By: jbschlosser, malfet

Differential Revision: D32596264

Pulled By: albanD

fbshipit-source-id: 2f28b62d7b9932f30fad7daacd8ac5bb7f63c621
2021-12-17 10:35:05 -08:00
Nikita Shulga
6a39613f35 [BE] Make torch/csrc/jit/tensorexpr/ clang-tidy clean (#55628)
Summary:
Mostly auto-generated changes using
```
 python3 tools/clang_tidy.py -c build -x torch/csrc/jit/tensorexpr/eval.cpp -s
```
With following common patterns manually fixed
- Use ` = default` instead of `{}`
- deleted methods should be public
- Use pass-by-value + std::move instead of pass-by-reference+copy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55628

Reviewed By: walterddr

Differential Revision: D27655378

Pulled By: malfet

fbshipit-source-id: 92be87a08113435d820711103ea9b0364182c71a
2021-04-08 19:44:14 -07:00
Bel H
db33afbf9f Change cmake to allow building with MLC kick-off build (#51326)
Summary:
- Allows build process to build with MLC enabled if subrepo folder mlc is in path and we can link against ML Compute on macOS BigSur
- To build with MLC enabled you will need to clone the mlc repo inside the pytorch repository.
- We need both this change and https://github.com/pytorch/pytorch/pull/50634 on pytorch/pytorch to enable the `mlc` device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51326

Reviewed By: glaringlee

Differential Revision: D26533138

Pulled By: malfet

fbshipit-source-id: 0baa06b4eb2d62dbfc0f6fc922096cb0db1cc7d1
2021-02-19 13:04:25 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
Edward Yang
9b7011c5c2 Implement multiple dispatch (#26468) (#26501)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26501

Instead of considering only the TensorTypeSet of the first argument, we collect all Tensor and TensorList arguments and union them together before computing the dispatch type id.

XLA companion patch at https://github.com/pytorch/xla/pull/1031

Billing of changes:
* ATenDispatch fallback code (i.e., what gets run if there is no entry for a function in the table) now lives out-of-line in a function `getFallbackOp`. This gave me an opportunity to write a more detailed error message, providing information about what registrations were available. There is a TODO in the fallback code, suggesting that we could automatically redispatch in the event that there is no handler for the key. But this is a bit of a design question, because it's not clear if automatic redispatch would cover up errors in the dispatch table (i.e., there *should* have been something registered at some key, but there wasn't.)
* Collection of Tensor/TensorList arguments is done using the trusty old IterArgs helper class. A minor bit of refactoring I had to do to get here was move the IterArgs functionality in torch/csrc/utils/variadic.h into ATen/core.  There's some refactoring due on that file too (it has copies of some C++ helper pieces which already live in c10--you can't actually move the whole thing because it is literally incompatible with other code in the codebase). So instead of calling `type_set()` to get the type set of the dispatch argument, now we just call `at::detail::multi_dispatch_tensor_type_set` on all of the tensor/tensor list arguments.
* The code generator is adjusted to codegen collection of arguments as needed. There is a little bit of a hack in the code generator to turn 'self' arguments into '*this'.  I think this may be duplicated with some logic somewhere else but I have to double check.

The new generated code looks like this:

```
inline Tensor & Tensor::copy_(const Tensor & src, bool non_blocking) const {
    static auto table = globalATenDispatch().getOpTable("aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)");
    return table->getOp<Tensor & (Tensor &, const Tensor &, bool)>(at::detail::multi_dispatch_tensor_type_set(*this, src))(const_cast<Tensor&>(*this), src, non_blocking);
}
```

The key difference is that previously we wrote `type_set()` as argument to getOp; now it is a call to `multi_dispatch_tensor_type_set` which collects the type ids together.

After turning on multi-dispatch, I had to refactor existing code which previously dispatched one place, but now dispatches somewhere else. The primary component affected by this is sparse.

* Binary operations (add/sub/mul/div/addmm) now dispatch to sparse kernels even if you did add(dense, sparse). So I delete all the sparse handling code from dense kernels, and bulk up the sparse error handling to handle when the first argument is dense. In the case of addmm, I can eliminate the bridge code entirely (well, not quite: more on this below). I also updated the dispatch on sparse to actually point at sparse kernels. Pay special attention to the handling of `div_` by scalar: previously this logic lived in the "dense" `div_` implementation, but there is actually not any sparse kernel we dispatch to. I solved this particular problem by making a redispatch, but another valid approach would have been to add specific dispatches for sparse div on scalar. This codepath is poorly tested because it is only exercised from C++.
* One minor annoyance is that because I now want separate dispatch for dense and sparse, I also need to replicate the `add`, `add_`, `add_out` trifecta on the sparse side. I opted for a compromise here: I wrote new a new `add_sparse` trifecta, but reused the implementation between CPU and CUDA. This means that I hav to do another dispatch once I get to `add_out`. The alternative would have been to do twice as many copies for CPU and CUDA (thereby eliminating the extra dispatch) but that seemed distinctly not worth it.
* A lot of kernels in sparse assumed that the dispatch argument must be sparse. This is no longer true with dispatch, so I converted the asserts into plain error checking. This also means that we've perturbed the error message in the case of TestSparseOneOff.test_cuda_sparse_cpu_dense_add (I just updated the saved error message)
* `addmm` is a little bit even more special: the bridge code also handled broadcasting. I replicated the broadcasting logic between CPU and CUDA implementations to avoid an extra dispatch.
* `_sparse_addmm` gave me a bit of trouble, because I had forgotten why we had `torch.sparse.addmm` in the first place. But in the end, its changes followed along with the structural changes I made in addmm. I opted for an extra dispatch here for simplicity.
* c10d has some Variable-Tensor confusion in its sparse code. I've worked around it by judiciously inserting "no variable type" guards, but a more correct fix would be to just solve the confusion entirely.

Benchmark:

Apply the following patch to the base commit and this commit:

```
 diff --git a/aten/src/ATen/native/Const.cpp b/aten/src/ATen/native/Const.cpp
new file mode 100644
index 0000000000..b66f4d3ece
 --- /dev/null
+++ b/aten/src/ATen/native/Const.cpp
@@ -0,0 +1,10 @@
+#include <ATen/ATen.h>
+
+namespace at {
+namespace native {
+
+Tensor _const5(const Tensor& self, const Tensor& second, const Tensor& third, const Tensor& fourth, const Tensor& fifth) {
+  return self;
+}
+
+}} // namespace at::native
 diff --git a/aten/src/ATen/native/native_functions.yaml b/aten/src/ATen/native/native_functions.yaml
index b494ed7950..fddae638bb 100644
 --- a/aten/src/ATen/native/native_functions.yaml
+++ b/aten/src/ATen/native/native_functions.yaml
@@ -5878,3 +5878,9 @@
   dispatch:
     CPU: im2col_backward_cpu
     CUDA: im2col_backward_cuda
+
+# For benchmarking
+- func: _const5(Tensor self, Tensor second, Tensor third, Tensor fourth, Tensor fifth) -> Tensor
+  variants: function
+  dispatch:
+    CPU: _const5
```

Comparisons with timeit:

One-argument, representative case:

Before:

```
In [6]: %timeit x.reshape(1, 1)
1.46 µs ± 1.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [7]: %timeit x.reshape(1, 1)
1.48 µs ± 29.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [8]: %timeit x.reshape(1, 1)
1.52 µs ± 61.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit x.reshape(1, 1)
1.42 µs ± 1.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit x.reshape(1, 1)
1.43 µs ± 1.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit x.reshape(1, 1)
1.42 µs ± 0.982 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Five-argument, synthetic case (we expect, with enough Tensor arguments, for there to be a slowdown, as we scale `O(n)` with number of arguments, compared to old dispatcher which is `O(1)` with number of arguments):

Before:

```
In [1]: import torch

In [2]: x = torch.zeros(1)

In [3]: %timeit torch._const5(x, x, x, x, x)
949 ns ± 1.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
954 ns ± 1.96 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
947 ns ± 0.601 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit torch._const5(x, x, x, x, x)
985 ns ± 9.11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
984 ns ± 1.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
988 ns ± 0.555 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D17499154

Pulled By: ezyang

fbshipit-source-id: 8ea237c2e935134b0f4f8d6cfd89c6a93037c02c
2019-09-20 10:12:04 -07:00
Michael Suo
5304358859 Revert D17481256: Implement multiple dispatch
Test Plan: revert-hammer

Differential Revision:
D17481256

Original commit changeset: b3206936b4ca

fbshipit-source-id: a162c42168c17e24b5eaff83a7aae48beef3d2c2
2019-09-19 14:53:40 -07:00
Edward Yang
0705f759a3 Implement multiple dispatch (#26468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26468

Instead of considering only the TensorTypeSet of the first argument, we collect all Tensor and TensorList arguments and union them together before computing the dispatch type id.

XLA companion patch at https://github.com/pytorch/xla/pull/1031

Billing of changes:
* ATenDispatch fallback code (i.e., what gets run if there is no entry for a function in the table) now lives out-of-line in a function `getFallbackOp`. This gave me an opportunity to write a more detailed error message, providing information about what registrations were available. There is a TODO in the fallback code, suggesting that we could automatically redispatch in the event that there is no handler for the key. But this is a bit of a design question, because it's not clear if automatic redispatch would cover up errors in the dispatch table (i.e., there *should* have been something registered at some key, but there wasn't.)
* Collection of Tensor/TensorList arguments is done using the trusty old IterArgs helper class. A minor bit of refactoring I had to do to get here was move the IterArgs functionality in torch/csrc/utils/variadic.h into ATen/core.  There's some refactoring due on that file too (it has copies of some C++ helper pieces which already live in c10--you can't actually move the whole thing because it is literally incompatible with other code in the codebase). So instead of calling `type_set()` to get the type set of the dispatch argument, now we just call `at::detail::multi_dispatch_tensor_type_set` on all of the tensor/tensor list arguments.
* The code generator is adjusted to codegen collection of arguments as needed. There is a little bit of a hack in the code generator to turn 'self' arguments into '*this'.  I think this may be duplicated with some logic somewhere else but I have to double check.

The new generated code looks like this:

```
inline Tensor & Tensor::copy_(const Tensor & src, bool non_blocking) const {
    static auto table = globalATenDispatch().getOpTable("aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)");
    return table->getOp<Tensor & (Tensor &, const Tensor &, bool)>(at::detail::multi_dispatch_tensor_type_set(*this, src))(const_cast<Tensor&>(*this), src, non_blocking);
}
```

The key difference is that previously we wrote `type_set()` as argument to getOp; now it is a call to `multi_dispatch_tensor_type_set` which collects the type ids together.

After turning on multi-dispatch, I had to refactor existing code which previously dispatched one place, but now dispatches somewhere else. The primary component affected by this is sparse.

* Binary operations (add/sub/mul/div/addmm) now dispatch to sparse kernels even if you did add(dense, sparse). So I delete all the sparse handling code from dense kernels, and bulk up the sparse error handling to handle when the first argument is dense. In the case of addmm, I can eliminate the bridge code entirely (well, not quite: more on this below). I also updated the dispatch on sparse to actually point at sparse kernels. Pay special attention to the handling of `div_` by scalar: previously this logic lived in the "dense" `div_` implementation, but there is actually not any sparse kernel we dispatch to. I solved this particular problem by making a redispatch, but another valid approach would have been to add specific dispatches for sparse div on scalar. This codepath is poorly tested because it is only exercised from C++.
* One minor annoyance is that because I now want separate dispatch for dense and sparse, I also need to replicate the `add`, `add_`, `add_out` trifecta on the sparse side. I opted for a compromise here: I wrote new a new `add_sparse` trifecta, but reused the implementation between CPU and CUDA. This means that I hav to do another dispatch once I get to `add_out`. The alternative would have been to do twice as many copies for CPU and CUDA (thereby eliminating the extra dispatch) but that seemed distinctly not worth it.
* A lot of kernels in sparse assumed that the dispatch argument must be sparse. This is no longer true with dispatch, so I converted the asserts into plain error checking. This also means that we've perturbed the error message in the case of TestSparseOneOff.test_cuda_sparse_cpu_dense_add (I just updated the saved error message)
* `addmm` is a little bit even more special: the bridge code also handled broadcasting. I replicated the broadcasting logic between CPU and CUDA implementations to avoid an extra dispatch.
* `_sparse_addmm` gave me a bit of trouble, because I had forgotten why we had `torch.sparse.addmm` in the first place. But in the end, its changes followed along with the structural changes I made in addmm. I opted for an extra dispatch here for simplicity.
* c10d has some Variable-Tensor confusion in its sparse code. I've worked around it by judiciously inserting "no variable type" guards, but a more correct fix would be to just solve the confusion entirely.

Benchmark:

Apply the following patch to the base commit and this commit:

```
 diff --git a/aten/src/ATen/native/Const.cpp b/aten/src/ATen/native/Const.cpp
new file mode 100644
index 0000000000..b66f4d3ece
 --- /dev/null
+++ b/aten/src/ATen/native/Const.cpp
@@ -0,0 +1,10 @@
+#include <ATen/ATen.h>
+
+namespace at {
+namespace native {
+
+Tensor _const5(const Tensor& self, const Tensor& second, const Tensor& third, const Tensor& fourth, const Tensor& fifth) {
+  return self;
+}
+
+}} // namespace at::native
 diff --git a/aten/src/ATen/native/native_functions.yaml b/aten/src/ATen/native/native_functions.yaml
index b494ed7950..fddae638bb 100644
 --- a/aten/src/ATen/native/native_functions.yaml
+++ b/aten/src/ATen/native/native_functions.yaml
@@ -5878,3 +5878,9 @@
   dispatch:
     CPU: im2col_backward_cpu
     CUDA: im2col_backward_cuda
+
+# For benchmarking
+- func: _const5(Tensor self, Tensor second, Tensor third, Tensor fourth, Tensor fifth) -> Tensor
+  variants: function
+  dispatch:
+    CPU: _const5
```

Comparisons with timeit:

One-argument, representative case:

Before:

```
In [6]: %timeit x.reshape(1, 1)
1.46 µs ± 1.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [7]: %timeit x.reshape(1, 1)
1.48 µs ± 29.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [8]: %timeit x.reshape(1, 1)
1.52 µs ± 61.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit x.reshape(1, 1)
1.42 µs ± 1.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit x.reshape(1, 1)
1.43 µs ± 1.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit x.reshape(1, 1)
1.42 µs ± 0.982 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Five-argument, synthetic case (we expect, with enough Tensor arguments, for there to be a slowdown, as we scale `O(n)` with number of arguments, compared to old dispatcher which is `O(1)` with number of arguments):

Before:

```
In [1]: import torch

In [2]: x = torch.zeros(1)

In [3]: %timeit torch._const5(x, x, x, x, x)
949 ns ± 1.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
954 ns ± 1.96 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
947 ns ± 0.601 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit torch._const5(x, x, x, x, x)
985 ns ± 9.11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
984 ns ± 1.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
988 ns ± 0.555 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bddppq

Differential Revision: D17481256

Pulled By: ezyang

fbshipit-source-id: b3206936b4ca8938d45ea90fd71422e0d80b5f96
2019-09-19 14:29:38 -07:00
Junjie Bai
07bd76988e Revert D17265918: Implement multiple dispatch
Test Plan: revert-hammer

Differential Revision:
D17265918

Original commit changeset: 221efe4e86a4

fbshipit-source-id: f0ab90fa1201080e0d62fd140faf0fcdfd56601b
2019-09-19 09:50:17 -07:00
Edward Yang
ece14ff473 Implement multiple dispatch (#25653)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25653

Instead of considering only the TensorTypeSet of the first argument, we collect all Tensor and TensorList arguments and union them together before computing the dispatch type id.

Billing of changes:
* ATenDispatch fallback code (i.e., what gets run if there is no entry for a function in the table) now lives out-of-line in a function `getFallbackOp`. This gave me an opportunity to write a more detailed error message, providing information about what registrations were available. There is a TODO in the fallback code, suggesting that we could automatically redispatch in the event that there is no handler for the key. But this is a bit of a design question, because it's not clear if automatic redispatch would cover up errors in the dispatch table (i.e., there *should* have been something registered at some key, but there wasn't.)
* Collection of Tensor/TensorList arguments is done using the trusty old IterArgs helper class. A minor bit of refactoring I had to do to get here was move the IterArgs functionality in torch/csrc/utils/variadic.h into ATen/core.  There's some refactoring due on that file too (it has copies of some C++ helper pieces which already live in c10--you can't actually move the whole thing because it is literally incompatible with other code in the codebase). So instead of calling `type_set()` to get the type set of the dispatch argument, now we just call `at::detail::multi_dispatch_tensor_type_set` on all of the tensor/tensor list arguments.
* The code generator is adjusted to codegen collection of arguments as needed. There is a little bit of a hack in the code generator to turn 'self' arguments into '*this'.  I think this may be duplicated with some logic somewhere else but I have to double check.

After turning on multi-dispatch, I had to refactor existing code which previously dispatched one place, but now dispatches somewhere else. The primary component affected by this is sparse.

* Binary operations (add/sub/mul/div/addmm) now dispatch to sparse kernels even if you did add(dense, sparse). So I delete all the sparse handling code from dense kernels, and bulk up the sparse error handling to handle when the first argument is dense. In the case of addmm, I can eliminate the bridge code entirely (well, not quite: more on this below). I also updated the dispatch on sparse to actually point at sparse kernels. Pay special attention to the handling of `div_` by scalar: previously this logic lived in the "dense" `div_` implementation, but there is actually not any sparse kernel we dispatch to. I solved this particular problem by making a redispatch, but another valid approach would have been to add specific dispatches for sparse div on scalar. This codepath is poorly tested because it is only exercised from C++.
* One minor annoyance is that because I now want separate dispatch for dense and sparse, I also need to replicate the `add`, `add_`, `add_out` trifecta on the sparse side. I opted for a compromise here: I wrote new a new `add_sparse` trifecta, but reused the implementation between CPU and CUDA. This means that I hav to do another dispatch once I get to `add_out`. The alternative would have been to do twice as many copies for CPU and CUDA (thereby eliminating the extra dispatch) but that seemed distinctly not worth it.
* A lot of kernels in sparse assumed that the dispatch argument must be sparse. This is no longer true with dispatch, so I converted the asserts into plain error checking. This also means that we've perturbed the error message in the case of TestSparseOneOff.test_cuda_sparse_cpu_dense_add (I just updated the saved error message)
* `addmm` is a little bit even more special: the bridge code also handled broadcasting. I replicated the broadcasting logic between CPU and CUDA implementations to avoid an extra dispatch.
* `_sparse_addmm` gave me a bit of trouble, because I had forgotten why we had `torch.sparse.addmm` in the first place. But in the end, its changes followed along with the structural changes I made in addmm. I opted for an extra dispatch here for simplicity.
* c10d has some Variable-Tensor confusion in its sparse code. I've worked around it by judiciously inserting "no variable type" guards, but a more correct fix would be to just solve the confusion entirely.

Benchmark:

Apply the following patch to the base commit and this commit:

```
 diff --git a/aten/src/ATen/native/Const.cpp b/aten/src/ATen/native/Const.cpp
new file mode 100644
index 0000000000..b66f4d3ece
 --- /dev/null
+++ b/aten/src/ATen/native/Const.cpp
@@ -0,0 +1,10 @@
+#include <ATen/ATen.h>
+
+namespace at {
+namespace native {
+
+Tensor _const5(const Tensor& self, const Tensor& second, const Tensor& third, const Tensor& fourth, const Tensor& fifth) {
+  return self;
+}
+
+}} // namespace at::native
 diff --git a/aten/src/ATen/native/native_functions.yaml b/aten/src/ATen/native/native_functions.yaml
index b494ed7950..fddae638bb 100644
 --- a/aten/src/ATen/native/native_functions.yaml
+++ b/aten/src/ATen/native/native_functions.yaml
@@ -5878,3 +5878,9 @@
   dispatch:
     CPU: im2col_backward_cpu
     CUDA: im2col_backward_cuda
+
+# For benchmarking
+- func: _const5(Tensor self, Tensor second, Tensor third, Tensor fourth, Tensor fifth) -> Tensor
+  variants: function
+  dispatch:
+    CPU: _const5
```

Comparisons with timeit:

One-argument, representative case:

Before:

```
In [6]: %timeit x.reshape(1, 1)
1.46 µs ± 1.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [7]: %timeit x.reshape(1, 1)
1.48 µs ± 29.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [8]: %timeit x.reshape(1, 1)
1.52 µs ± 61.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit x.reshape(1, 1)
1.42 µs ± 1.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit x.reshape(1, 1)
1.43 µs ± 1.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit x.reshape(1, 1)
1.42 µs ± 0.982 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Five-argument, synthetic case (we expect, with enough Tensor arguments, for there to be a slowdown, as we scale `O(n)` with number of arguments, compared to old dispatcher which is `O(1)` with number of arguments):

Before:

```
In [1]: import torch

In [2]: x = torch.zeros(1)

In [3]: %timeit torch._const5(x, x, x, x, x)
949 ns ± 1.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
954 ns ± 1.96 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
947 ns ± 0.601 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

After:

```
In [3]: %timeit torch._const5(x, x, x, x, x)
985 ns ± 9.11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [4]: %timeit torch._const5(x, x, x, x, x)
984 ns ± 1.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: %timeit torch._const5(x, x, x, x, x)
988 ns ± 0.555 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17265918

Pulled By: ezyang

fbshipit-source-id: 221efe4e86a40f36abc81e2ebceaa7e251c90b3d
2019-09-19 09:30:40 -07:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Peter Goldsborough
8311bbee7f Fix Windows build and test in CI (#11716)
Summary:
This PR adds Windows support for the C++ frontend. A lot of declarations were missing `TORCH_API` macros, and lots of code just did not compile on MSVC.

ebetica ezyang orionr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11716

Reviewed By: orionr

Differential Revision: D13038253

Pulled By: goldsborough

fbshipit-source-id: c8e5a45efd26117aeb99e768b56fcd5a89fcb9f8
2018-11-13 16:35:54 -08:00
Peter Goldsborough
cb0e72e00d Add registerOperator overloads that infer the schema (#10048)
Summary:
This PR adds a way to infer the JIT/script schema of a function from its signature, and then create an operator from the schema and implementation. The implementation function is wrapped into another function, which pops values from the stack into an argument tuple, then invokes the function and pushes the return value back onto the stack, sometimes unpacking the return value if it is a tuple.

Currently the method is called `createOperator`. We may want to think of a nicer way of registering ops in tandem with `RegisterOperators`. It might be very cumbersome to add a template constructor to `Operator`, so maybe we can come up with a chaining method on `RegisterOperators` like `RegisterOperators(schema, func).op(schema.func).op(schema, func)` -- it has to work at startup time (for a static variable) though. We can solve this in another PR.

zdevito apaszke smessmer dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10048

Differential Revision: D9125975

Pulled By: goldsborough

fbshipit-source-id: de9e59888757573284a43787ae5d94384bfe8f9a
2018-08-03 11:45:49 -07:00
Peter Goldsborough
b12164005f
[C++ API] Remove virtual forward and implement Sequential based on Any(Module) (#7508)
* Remove virtual forward

* Rebase
2018-05-24 12:46:51 -07:00
Peter Goldsborough
2d5fbe6e0d Improve Variable interface (#5127)
* Improve Variable interface

* Address comments from @apaszke and @colesbury

* string ::operator= is not noexcept

* Remove ir.h from tracer_state.h to improve build times

* Make Variable a struct and pack SavedVariable fields

* Implement as_variable_ref

* grad_fn_ptr() -> grad_fn_unsafe()

* Reduce hackiness of set_type hack

* Include variable.h and edge.h in tracer_state.h because it uses them

* class Variable -> struct Variable because Windows cant even

* Make Variable::output_nr uint32_t instead of int

* Add comment about tracing state

* Replaced more static_cast<Variable&> and improve docs

* Remove SavedVariable destructor and construct members in init list

* Clarify docs for Variable

* Variable::set_version -> set_version_counter
2018-02-12 23:26:26 -05:00
Edward Z. Yang
b8ab7bee26
Use variadic templates instead of initializer lists and overloads. (#4772)
Suppose you are given a list of arguments, each of which may be Tensor or
TensorList.  How can you write a function that can treat these arguments
uniformly as a list of tensors?  This patch solves the problem using
variadic templates.

Why variadic templates?  Use of variadic templates means anyone working
with this code has to understand universal references, perfect
forwarding, parameter packs and some idioms of C++ template design.
However, I argue that variadic templates are the *right* tool for
supporting the implementation of functions which must take an
arbitrarily heterogenous set of inputs.  We were able to limp by
in old code because, for the most part, tensor inputs were homogenous,
but this is no longer the case for some non-primitively differentiable
functions; and with the upcoming cuDNN RNN in ATen PR, will no longer be
the case for primitively differentiable functions too.

There are two parts to the PR.

First, we add torch/csrc/utils/variadic.h, which defines a mix-in
IterArgs that takes any class which supports operator(), and augments
with a new variadic function apply() which calls operator() on each
argument passed to it.  In an original draft of the patch, I wrote the
recursion for each parameter pack from scratch for each function;
however, it turns out there are no fewer than seven instances where we
need this idiom, and the mix-in reduces the lines of code, and also
helps centralize the most important (and easy to forget) boilerplate
for perfect forwarding.

To verify that IterArgs is compiled away into an unrolled form per
call site, I inspected the assembly on some synthetic examples.

Next, we modify the following functions to make use of IterArgs:

  - compute_requires_grad
  - Function::flags (Variable and Tensor variants)
  - flatten
  - isTracing
  - count_tensors / count_variables

Finally, the tuple packer is rewritten to be variadic, although we
cannot make use of IterArgs (since we are given a tuple).  It might
make sense to refactor the code into a generic piece which invokes
a function with the arguments specified by a tuple, and then an
appropriate IterArgs, but we leave this for future work.

One thing to note: we cannot write a function with overloads for both
Tensor and Variable, because both ArrayRef<Variable> and Tensor have
implicit conversions from Variable, making such an overload ambiguous.
It may be interesting to remove the implicit conversion from ArrayRef.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-01-26 15:56:39 -05:00