Summary:
*Context:* https://github.com/pytorch/pytorch/issues/53406 added a lint for trailing whitespace at the ends of lines. However, in order to pass FB-internal lints, that PR also had to normalize the trailing newlines in four of the files it touched. This PR adds an OSS lint to normalize trailing newlines.
The changes to the following files (made in 54847d0adb9be71be4979cead3d9d4c02160e4cd) are the only manually-written parts of this PR:
- `.github/workflows/lint.yml`
- `mypy-strict.ini`
- `tools/README.md`
- `tools/test/test_trailing_newlines.py`
- `tools/trailing_newlines.py`
I would have liked to make this just a shell one-liner like the other three similar lints, but nothing I could find quite fit the bill. Specifically, all the answers I tried from the following Stack Overflow questions were far too slow (at least a minute and a half to run on this entire repository):
- [How to detect file ends in newline?](https://stackoverflow.com/q/38746)
- [How do I find files that do not end with a newline/linefeed?](https://stackoverflow.com/q/4631068)
- [How to list all files in the Git index without newline at end of file](https://stackoverflow.com/q/27624800)
- [Linux - check if there is an empty line at the end of a file [duplicate]](https://stackoverflow.com/q/34943632)
- [git ensure newline at end of each file](https://stackoverflow.com/q/57770972)
To avoid giving false positives during the few days after this PR is merged, we should probably only merge it after https://github.com/pytorch/pytorch/issues/54967.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54737
Test Plan:
Running the shell script from the "Ensure correct trailing newlines" step in the `quick-checks` job of `.github/workflows/lint.yml` should print no output and exit in a fraction of a second with a status of 0. That was not the case prior to this PR, as shown by this failing GHA workflow run on an earlier draft of this PR:
- https://github.com/pytorch/pytorch/runs/2197446987?check_suite_focus=true
In contrast, this run (after correcting the trailing newlines in this PR) succeeded:
- https://github.com/pytorch/pytorch/pull/54737/checks?check_run_id=2197553241
To unit-test `tools/trailing_newlines.py` itself (this is run as part of our "Test tools" GitHub Actions workflow):
```
python tools/test/test_trailing_newlines.py
```
Reviewed By: malfet
Differential Revision: D27409736
Pulled By: samestep
fbshipit-source-id: 46f565227046b39f68349bbd5633105b2d2e9b19
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:
```2to3 -f future -w caffe2```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033
Reviewed By: seemethere
Differential Revision: D23808648
Pulled By: bugra
fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18494
Today we have some C2 end2end test run requiring reading model data from external filesystem (for example, Gluster and AWS). This could be a source for flaky test when the external filesystems are not reachable during the tests.
In this diff, we add try/catch logic around where we download models and open model files from external system. In case such attempts fails, we will catch the excption and let the unittest skip the current test instead of failure.
I also refactor the code a little bit by removing some duplicated logic on downloading and build the c2 model data. It has been duplicated in two classes and a few functions...
Reviewed By: yinghai
Differential Revision: D14442241
fbshipit-source-id: da8bf56c8d096efa34ca2070de5cd10a18aad70c
Summary:
According to https://docs.python.org/3/tutorial/inputoutput.html, it is good practice to use the "with" keyword when dealing with file objects. If not, you should call f.close() to close the file and immediately free up any system resources used by it. Thus, I adjust the open file function to "with open() as f".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18017
Differential Revision: D14475112
Pulled By: ezyang
fbshipit-source-id: d1c0821e39cb8a09f86d6d08b437b4a99746416c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14214
This is to pick up the residual task of T36325466 to make sure that input/output binding of c2 Onnxifi op is positional.
Reviewed By: dzhulgakov
Differential Revision: D13134470
fbshipit-source-id: d1b916dade65c79133b86507cd54ea5166fa6810
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13812
Original commit changeset: 2cf95bdc5ed8
Looks like in iOS, `uint64_t` is not the same as `size_t`. :( Fixed it here.
Reviewed By: houseroad
Differential Revision: D13017390
fbshipit-source-id: d33854ce341225aba372fb945c3704edc14f9411
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13745
We need to support types beside `int64` and `float`.
Reviewed By: bddppq, rdzhabarov
Differential Revision: D12967258
fbshipit-source-id: 688076e6f504b2bf24bba89714df87a678c5638a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12685
In this diff, we push the fake run of the net into the ONNXIFI transformer, because
1. We cannot do shape inference for every op
2. Since the net has been SSA rewritten, we cannot use shape info from outer workspace directly.
In addition, this diff adds input shape info when querying the `onnxBackendCompatibility` function.
Reviewed By: bddppq
Differential Revision: D10390164
fbshipit-source-id: 80475444da2170c814678ed0ed3298e28a1fba92
Summary:
The ONNXIFI backend will absorb the constant weight in Conv, so we should not add it as an input. This is just a test artifacts. Note that Onnxifi transformer will do the right thing when cutting the graph to absorb the weights.
rdzhabarov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10575
Reviewed By: houseroad
Differential Revision: D9357339
Pulled By: yinghai
fbshipit-source-id: a613fa3acafa687295312f5211f8e9d7f77b39cd