Commit Graph

45 Commits

Author SHA1 Message Date
Nikita Shulga
5f40a8a9a3 [BE] Fix '_WIN32' is not defined warning (#162516)
Summary: As indeed it is not defined neither on  Linux nor on MacOS platforms

Test Plan:
CI

Rollback Plan:

Differential Revision: D82044853

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162516
Approved by: https://github.com/Skylion007
2025-09-10 04:21:38 +00:00
Nikita Shulga
847d7f21af [CUDA-13] Implement workaround for cudaErrorNotSupported (#162412)
See https://github.com/pytorch/pytorch/issues/162333#issuecomment-3267929585
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162412
Approved by: https://github.com/eqy, https://github.com/atalman
2025-09-09 04:12:10 +00:00
Richard Barnes
68a4b4b2e3 [codemod] Fix unreachable-break issue in caffe2/c10/cuda/CUDAFunctions.cpp +2 (#160257)
Summary:
LLVM has a warning `-Wunreachable-code-break` which identifies `break` statements that cannot be reached. These compromise readability, are misleading, and may identify bugs. This diff removes such statements.

For questions/comments, contact r-barnes.

 - If you approve of this diff, please use the "Accept & Ship" button :-)

Test Plan:
Sandcastle

Rollback Plan:

Differential Revision: D79835614

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160257
Approved by: https://github.com/Skylion007
2025-08-11 16:09:24 +00:00
Aidyn-A
4a26bb8a12 [C10][CUDA] Eagerly create context on torch.cuda.set_device(device) call (#155900)
Fixes #155668

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155900
Approved by: https://github.com/ngimel
2025-06-17 18:59:44 +00:00
PyTorch MergeBot
365ce465f3 Revert "[C10][CUDA] Eagerly create context on torch.cuda.set_device(device) call (#155900)"
This reverts commit 8142a02860.

Reverted https://github.com/pytorch/pytorch/pull/155900 on behalf of https://github.com/clee2000 due to causing some sort of hang? in test_distributed_spawn [GH job link](https://github.com/pytorch/pytorch/actions/runs/15678895788/job/44168117193) [HUD commit link](8142a02860) note to self: bad TD ([comment](https://github.com/pytorch/pytorch/pull/155900#issuecomment-2977365699))
2025-06-16 16:59:25 +00:00
Aidyn-A
8142a02860 [C10][CUDA] Eagerly create context on torch.cuda.set_device(device) call (#155900)
Fixes #155668

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155900
Approved by: https://github.com/ngimel
2025-06-16 10:55:47 +00:00
cyy
8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00
cyy
d0070ca07e [18/N] Fix extra warnings brought by clang-tidy-17 (#144014)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144014
Approved by: https://github.com/Skylion007, https://github.com/albanD
2025-01-08 17:21:55 +00:00
cyy
3907f36808 Turn some variables and functions into static (#136847)
Re-check some files and mark variables and functions into static and fix other warnings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136847
Approved by: https://github.com/ezyang
2024-10-29 17:01:56 +00:00
Edward Z. Yang
03f9136870 Add wait counter on cuda::device_synchronize (#138883)
The wait counter is typically only minute precision, but if there is a collective in the queue it will show up. We think this explains up to eight minutes of delay in some compile traces we're looking at, but the counter would definitively prove it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D64944970](https://our.internmc.facebook.com/intern/diff/D64944970)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138883
Approved by: https://github.com/eqy
2024-10-25 18:13:57 +00:00
Richard Barnes
fddabc6e0b C10_UNUSED to [[maybe_unused]] (#6357) (#138364)
Summary: Pull Request resolved: https://github.com/pytorch/executorch/pull/6357

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138364
Approved by: https://github.com/Skylion007, https://github.com/eqy
2024-10-19 13:17:43 +00:00
Richard Barnes
8dd575faf6 [BE] Modernize C10_UNUSED (#138102)
[`[[maybe_unused]]`](https://en.cppreference.com/w/cpp/language/attributes/maybe_unused) is part of C++17 standard

Test Plan: Sandcastle

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138102
Approved by: https://github.com/Skylion007, https://github.com/albanD, https://github.com/malfet, https://github.com/eqy
2024-10-18 16:33:01 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
Yu, Guangye
eb7adc3ae0 Refactor gpu trace to be device-agnostic (#121794)
# Motivation
Refactor gpu trace to be device-agnostic. gpu trace is usually used in runtime components, including Device, Stream, Event, Guard, and Allocator. It should be device-agnostic and can be shared among each device backend.

# Solution
move `_cuda_trace.py` to `_gpu_trace.py`, which makes each device backend owns their callback, respectively.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121794
Approved by: https://github.com/jgong5, https://github.com/albanD, https://github.com/EikanWang, https://github.com/gujinghui
2024-03-30 13:04:38 +00:00
PyTorch MergeBot
968c4c4154 Revert "Refactor gpu trace to be device-agnostic (#121794)"
This reverts commit 74deacbf31.

Reverted https://github.com/pytorch/pytorch/pull/121794 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks ROCm jobs in trunk 74deacbf31, please help take a look and reland the change ([comment](https://github.com/pytorch/pytorch/pull/121794#issuecomment-2013674083))
2024-03-21 20:33:17 +00:00
Yu, Guangye
74deacbf31 Refactor gpu trace to be device-agnostic (#121794)
# Motivation
Refactor gpu trace to be device-agnostic. gpu trace is usually used in runtime components, including Device, Stream, Event, Guard, and Allocator. It should be device-agnostic and can be shared among each device backend.

# Solution
move `_cuda_trace.py` to `_gpu_trace.py`, which makes each device backend owns their callback, respectively.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121794
Approved by: https://github.com/jgong5, https://github.com/albanD, https://github.com/EikanWang, https://github.com/gujinghui
2024-03-21 01:52:58 +00:00
PyTorch MergeBot
f9ed1c432d Revert "Refactor gpu trace to be device-agnostic (#121794)"
This reverts commit 0ff1109e26.

Reverted https://github.com/pytorch/pytorch/pull/121794 on behalf of https://github.com/jeanschmidt due to Reverting to see if rocm trunk errors are related ([comment](https://github.com/pytorch/pytorch/pull/121794#issuecomment-2007519408))
2024-03-19 15:40:26 +00:00
Yu, Guangye
0ff1109e26 Refactor gpu trace to be device-agnostic (#121794)
# Motivation
Refactor gpu trace to be device-agnostic. gpu trace is usually used in runtime components, including Device, Stream, Event, Guard, and Allocator. It should be device-agnostic and can be shared among each device backend.

# Solution
move `_cuda_trace.py` to `_gpu_trace.py`, which makes each device backend owns their callback, respectively.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121794
Approved by: https://github.com/jgong5, https://github.com/albanD, https://github.com/EikanWang, https://github.com/gujinghui
2024-03-19 06:02:28 +00:00
PyTorch MergeBot
a9d9077f12 Revert "Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)"
This reverts commit 7c556428c7.

Reverted https://github.com/pytorch/pytorch/pull/119639 on behalf of https://github.com/kit1980 due to breaking internal builds, see D54286923 ([comment](https://github.com/pytorch/pytorch/pull/119639#issuecomment-1969634480))
2024-02-28 18:57:09 +00:00
Tobias Ringwald
7c556428c7 Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)
Fixes #115331.

This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:

- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`

[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/huydhn
2024-02-27 07:05:48 +00:00
PyTorch MergeBot
fff9d98e58 Revert "Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)"
This reverts commit e0268821dd.

Reverted https://github.com/pytorch/pytorch/pull/119639 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I think the Window failures are legit as they are failing now in trunk, i.e. 450339ab2d ([comment](https://github.com/pytorch/pytorch/pull/119639#issuecomment-1958428416))
2024-02-22 00:12:54 +00:00
Tobias Ringwald
e0268821dd Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)
Fixes #115331.

This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:

- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`

[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD
2024-02-21 21:10:49 +00:00
cyy
560c92c324 [DeviceIndex] Use DeviceIndex instead of int in CUDA wrappers (#119142)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119142
Approved by: https://github.com/ezyang
2024-02-08 23:00:56 +00:00
PyTorch MergeBot
9c7391ea36 Revert " [1/N] Apply clang-tidy to c10 cuda files (#111137)"
This reverts commit 43b023694e.

Reverted https://github.com/pytorch/pytorch/pull/111137 on behalf of https://github.com/malfet due to Was reverted internally due to the failures in torch.cuda.memory_stats(device=0) (presumably) ([comment](https://github.com/pytorch/pytorch/pull/111137#issuecomment-1769274103))
2023-10-18 20:32:53 +00:00
cyy
43b023694e [1/N] Apply clang-tidy to c10 cuda files (#111137)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111137
Approved by: https://github.com/zou3519, https://github.com/Skylion007
2023-10-17 04:52:50 +00:00
cyy
d9fb7166d6 [BE] use DeviceIndex instead of int64_t for related device interfaces (#103068)
This PR unifies the device interfaces in aten/*cpp and torch/csrc/*cpp to use  **c10::DeviceIndex**.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103068
Approved by: https://github.com/malfet
2023-08-25 20:16:14 +00:00
cyy
87cbfe957a increase clang-tidy coverage to more c10 source files (#102902)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102902
Approved by: https://github.com/Skylion007
2023-06-04 06:33:01 +00:00
Aidyn-A
69eef5a4be [CUDA12] set_device change (#94864)
This PR adds workaround for CUDA 12 [`cudaSetDevice` change](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g159587909ffa0791bbe4b40187a4c6bb) which will always create primary context on target device. So operations like this:
```Python
import torch
x = torch.randn(1, device="cuda:1")
```
would always create primary context on on device `cuda:1` because it is creating a tensor on it and on device `cuda:0` because the destructor of CUDA Device guard calls `cudaSetDevice(0)`.
After this PR the CUDA Device guard will not call `cudaSetDevice(0)` if primary context does not exist on `cuda:0`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94864
Approved by: https://github.com/malfet, https://github.com/atalman, https://github.com/ezyang
2023-04-10 17:31:12 +00:00
PyTorch MergeBot
279ca5f9db Revert "[CUDA12] set_device change (#94864)"
This reverts commit c18be2b2ec.

Reverted https://github.com/pytorch/pytorch/pull/94864 on behalf of https://github.com/ezyang due to avoid affecting cuda 11
2023-04-05 14:53:00 +00:00
Aidyn-A
c18be2b2ec [CUDA12] set_device change (#94864)
This PR adds workaround for CUDA 12 [`cudaSetDevice` change](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g159587909ffa0791bbe4b40187a4c6bb) which will always create primary context on target device. So operations like this:
```Python
import torch
x = torch.randn(1, device="cuda:1")
```
would always create primary context on on device `cuda:1` because it is creating a tensor on it and on device `cuda:0` because the destructor of CUDA Device guard calls `cudaSetDevice(0)`.
After this PR the CUDA Device guard will not call `cudaSetDevice(0)` if primary context does not exist on `cuda:0`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94864
Approved by: https://github.com/malfet, https://github.com/atalman, https://github.com/ezyang
2023-04-05 14:34:00 +00:00
Nikita Shulga
24ce3a7c34 Move hasPrimaryContext to c10::cuda (#96800)
This method has to be accessible from `c10` to enable CUDA-12 integration.
Implemented by providing private `c10::cuda:_internal::setHasPrimaryContext` that passes the pointer to the implementation (in `torch_cuda`) back to c10.
Use global class constructor/destructor to guarantee RAII.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96800
Approved by: https://github.com/ngimel
2023-03-17 04:50:35 +00:00
Mateusz Sypniewski
67d6f7160c Add synchronize hooks (#84427)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84427
Approved by: https://github.com/ngimel, https://github.com/lw
2022-09-09 13:56:59 +00:00
Richard Barnes
2793cf85ec Check all CUDA API calls for errors in caffe2/c10/ (#74918)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/74918

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D35194795

fbshipit-source-id: 8490e5497c37bab0055925ed520c2fd0c37a554c
(cherry picked from commit 52697ab670e2f53c580cfd4ca82c5468ed3bb06c)
2022-03-30 17:13:02 +00:00
Natalia Gimelshein
d783617216 enable warnings on cuda synchronization (#62092)
Summary:
This creates `torch.cuda.set_warn_on_synchronization()` function that would warn or error when synchronizing operation is performed. We could wrap it in a context manager for ease of use, but it would be a lie, because it sets global, and not thread-local state. Since it's intended for debugging, maybe that's ok though.
As all `torch.cuda.*` functions, it's going through CPython, not pybind, so the argument is converted to long before being passed to c10 function. I'll make python argument a python enum class, but without pybind it'll still have to go thourgh long conversion.

For a test script
```
import torch
torch.cuda.set_warn_on_synchronization(1)
x=torch.randn(10, device="cuda")
x.nonzero()
y=torch.randn((), device="cuda")

if y:
    print("something")
torch.multinomial(x.abs(), 10, replacement=False)
torch.randperm(20000, device="cuda")
ind = torch.randint(10, (3,), device="cuda")
mask = torch.randint(2, (10,), device="cuda", dtype=torch.bool)
val = torch.randn((), device="cuda")
x[mask]=1.
x[mask] = val
torch.cuda.synchronize()
```
the output is
```
/../playground/sync_warn_test.py:4: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  x.nonzero()
/../playground/sync_warn_test.py:7: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  if y:
something
/../playground/sync_warn_test.py:9: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  torch.multinomial(x.abs(), 10, replacement=False)
/../playground/sync_warn_test.py:15: UserWarning: called a synchronizing operation (Triggered internally at  ../c10/cuda/CUDAFunctions.cpp:145.)
  x[mask] = val
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62092

Reviewed By: mruberry

Differential Revision: D29968792

Pulled By: ngimel

fbshipit-source-id: cc6f817212c164727ed99ecf6ab050dc29631b9e
2021-07-30 09:13:01 -07:00
Natalia Gimelshein
6284d2a82b wrap cudaStreamSynchronize calls (#61889)
Summary:
This is a first step towards creating context manager that errors out on synchronizing calls.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61889

Reviewed By: albanD

Differential Revision: D29805280

Pulled By: ngimel

fbshipit-source-id: b66400fbe0941b7daa51e6b30abe27b9cccd4e8a
2021-07-21 19:30:52 -07:00
Nikita Shulga
d125694d0b Move CUDA async warning to suffix (#59467)
Summary:
After the change async error warnings look as follows:
```
$ python -c "import torch;torch.eye(3,3,device='cuda:777')"
Traceback (most recent call last):
  File "<string>", line 1, in <module>
RuntimeError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59467

Reviewed By: ngimel

Differential Revision: D28904360

Pulled By: malfet

fbshipit-source-id: 2a8fa5affed5b4ffcaa602c8ab2669061cde7db0
2021-06-04 17:26:28 -07:00
Atul Jangra
3948ce2fd9 [Caffe2] Introduce c10::CudaError for CUDA Exceptions (#57609)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57609

Throw c10::CudaError for CUDA Exceptions for better classification of errors

Test Plan: Test locally by running some workflows

Reviewed By: dzhulgakov

Differential Revision: D28209356

fbshipit-source-id: 19a5fc8548433238dc224ea81a5f63a945fc5cc3
2021-05-06 14:28:45 -07:00
Scott Wolchok
44cc873fba [PyTorch] Autoformat c10 (#56830)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830

Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.

Test Plan: CI

Reviewed By: zertosh

Differential Revision: D27979080

fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
2021-04-30 21:23:28 -07:00
Nikita Shulga
a1bfa5eed7 Do not print warning if CUDA driver not found (#51806)
Summary:
It frequently happens when PyTorch compiled with CUDA support is installed on machine that does not have NVIDIA GPUs.

Fixes https://github.com/pytorch/pytorch/issues/47038

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51806

Reviewed By: ezyang

Differential Revision: D26285827

Pulled By: malfet

fbshipit-source-id: 9fd5e690d0135a2b219c1afa803fb69de9729f5e
2021-02-09 06:45:35 -08:00
Scott Wolchok
4c9eb57914 [PyTorch] Narrow Device to 2 bytes by narrowing DeviceType and DeviceIndex (#47023)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47023

DeviceType pretty clearly only needs 1 byte. DeviceIndex only needs 1 byte given that machines don't have anywhere near 255 GPUs in them as far as I know.
ghstack-source-id: 116901430

Test Plan: Existing tests, added assertion to catch if my assumption about DeviceIndex is incorrect

Reviewed By: dzhulgakov

Differential Revision: D24605460

fbshipit-source-id: 7c9a89027fcf8eebd623b7cdbf6302162c981cd2
2020-11-18 19:39:40 -08:00
Dmytro Dzhulgakov
06d978a9ad [c10/cuda] Reorganize device_count() and robustly surface ASAN warnings (#42249)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42249

Main change is to bring Caffe2's superior error messages for cuda initialization into c10 and use them in all code paths.

Basic logic:

| Case | Call to device_count() | init_cuda, e.g. allocating tensor |
| -- | -- | -- |
| all good | non-zero | just works |
| no gpus | 0, no warning | throw exception with good message |
| driver issues | 0, produce warning | throw exception with good message |
| out of memory with ASAN | 0, produce warning| throw exception with ASAN message |

Previously, the error thrown from init_cuda was very generic and the ASAN warning (if any) was buried in the logs.

Other clean up changes:
* cache device_count() always in a static variable
* move all asan macros in c10

Test Plan:
Hard to unittest because of build modes. Verified manually that the behavior from the table above holds by running the following script in different modes (ASAN/no-ASAN, CUDA_VISIBLE_DEVICES=):

```
print('before import')
import torch
print('after import')
print('devices: ', torch.cuda.device_count())
x = torch.tensor([1,2,3])
print('tensor creation')
x = x.cuda()
print('moved to cuda')
```

Reviewed By: ngimel

Differential Revision: D22824329

fbshipit-source-id: 5314007313a3897fc955b02f8b21b661ae35fdf5
2020-08-05 11:39:31 -07:00
ziab
1c8217a7a6 Abstract cuda calls made from torch_python (#42251)
Summary:
* Make c10::cuda functions regular non-inlined functions
* Add driver_version() and device_synchronize() functions

With this change I don't see anymore direct calls to CUDA API when look at Modules.cpp.obj

FYI malfet

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42251

Reviewed By: malfet

Differential Revision: D22826505

Pulled By: ziab

fbshipit-source-id: 8dc2f3e209d3710e2ce78411982a10e8c727573c
2020-07-30 19:18:33 -07:00