Commit Graph

16 Commits

Author SHA1 Message Date
Heitor Schueroff de Souza
cf811d2fb3 retain undefined tensors in backward pass (#41490)
Summary:
Leave undefined tensors / None returned from custom backward functions as undefined/None instead of creating a tensor full of zeros. This change improves performance in some cases.

**This is BC-Breaking:** Custom backward functions that return None will now see it potentially being propagated all the way up to AccumulateGrad nodes. Potential impact is that .grad field of leaf tensors as well as the result of autograd.grad may be undefined/None where it used to be a tensor full of zeros. Also, autograd.grad may raise an error, if so, consider using allow_unused=True ([see doc](https://pytorch.org/docs/stable/autograd.html?highlight=autograd%20grad#torch.autograd.grad)) if it applies to your case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41490

Reviewed By: albanD

Differential Revision: D22578241

Pulled By: heitorschueroff

fbshipit-source-id: f4966f4cb520069294f8c5c1691eeea799cc0abe
2020-07-17 12:42:50 -07:00
Mike Ruberry
cb26661fe4 Throws runtime error when torch.full would infer a float dtype from a bool or integral fill value (#40364)
Summary:
BC-breaking NOTE:

In PyTorch 1.6 bool and integral fill values given to torch.full must set the dtype our out keyword arguments. In prior versions of PyTorch these fill values would return float tensors by default, but in PyTorch 1.7 they will return a bool or long tensor, respectively. The documentation for torch.full has been updated to reflect this.

PR NOTE:

This PR causes torch.full to throw a runtime error when it would have inferred a float dtype by being given a boolean or integer value. A versioned symbol for torch.full is added to preserve the behavior of already serialized Torchscript programs. Existing tests for this behavior being deprecated have been updated to reflect it now being unsupported, and a couple new tests have been added to validate the versioned symbol behavior. The documentation of torch.full has also been updated to reflect this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40364

Differential Revision: D22176640

Pulled By: mruberry

fbshipit-source-id: b20158ebbcb4f6bf269d05a688bcf4f6c853a965
2020-06-23 23:27:22 -07:00
anjali411
6e92579883 Added autograd support for C->C functions and enabled requires_grad=True for complex (#36932)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36932

Differential Revision: D21181230

Pulled By: anjali411

fbshipit-source-id: 295f2cd1e2b9918a8b2cb88cab0536b2407dc455
2020-04-24 12:30:49 -07:00
Wanchao Liang
6d4c509168 [autograd] lower MAX_DEPTH limit according to TSAN limit (#36745)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36745

As we hold a mutex for our custom C++ Node, when calling reentrant
backward from custom C++ function, we will cocurrently holding many
mutexes up to MAX_DEPTH. TSAN only allow 65 mutexes at once, otherwise
it will complain. This PR lower the limit according to TSAN.

TSAN Reference: https://github.com/google/sanitizers/issues/950

Test Plan: Imported from OSS

Differential Revision: D21072604

Pulled By: wanchaol

fbshipit-source-id: 99cd1acab41a203d834fa4947f4e6f0ffd2e70f2
2020-04-16 20:43:20 -07:00
Wanchao Liang
f909b5535e [autograd] fix allow_unused checking for C++ API (#34035)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34035

Bug for the conditon check in https://github.com/pytorch/pytorch/pull/24342, realized we don't have tests in either
python or cpp to catch this, so added testes for both python and cpp.

Thanks hczhu on capturing it!

Test Plan: Imported from OSS

Differential Revision: D20198837

Pulled By: wanchaol

fbshipit-source-id: 33846a14c0a8e7aac2e8328189d10c38a0d7e6ee
2020-03-02 17:57:15 -08:00
Will Feng
5d7f42847c Add at::Tensor::retain_grad API (#33349)
Summary:
This PR adds `at::Tensor::retain_grad`, and its implementation mirrors the Python `torch.Tensor.retain_grad` API:
c6271c63f2/torch/tensor.py (L292-L315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33349

Differential Revision: D19944524

Pulled By: yf225

fbshipit-source-id: e61d5d761996b6d1b860c04c4b4650c1a49a6a8c
2020-02-17 20:03:48 -08:00
albanD
e1c53a5c86 Fix version counter bump in cpp Function (#33068)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33068

The version counter is already tracked if we use pytorch's functions but not if the user unpack the Tensor and modifies it by hand or with a third party library.

Test Plan: Imported from OSS

Differential Revision: D19791564

Pulled By: albanD

fbshipit-source-id: a73c0f73d8fd0c0e5bf838f14bed54fa66937840
2020-02-10 07:22:29 -08:00
Will Feng
595209bddc Fix bugs in torch::tensor constructor (#28523)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28523

New features:
1. Previously, `torch::tensor({true, false, true})` throws `"tensor_cpu" not implemented for 'Bool'`. After this PR, it produces the correct bool tensor, matching the Python API behavior.
2. Tensors with zero-size dimensions are now supported, e.g. `torch::tensor({{}, {}})` produces a tensor with sizes `{2, 0}`, matching the Python API behavior.

BC-breaking bug fixes:
1. Previously, `torch::tensor({{1}, {2}})` produces a tensor of sizes `{2}`. After this PR, it produces a tensor of sizes `{2, 1}`, matching the Python API behavior.
2. Fixed semantics of `torch::tensor(1.1)`: it now returns a 0-dim tensor instead of a 1-dim tensor, matching the Python API behavior.
3. Previously, when passed a non-dtype `TensorOptions` to the `torch::tensor` constructor, it always produces a tensor of dtype `float`. After this PR, it produces tensor of different dtypes based on the dtype of the braced-init-list, matching the behavior of the no-options case.
```cpp
// Previously:
torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({{1, 2, 3}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({1., 2., 3.}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({{1., 2., 3.}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float

// Now:
torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> int
torch::tensor({{1, 2, 3}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> int
torch::tensor({1., 2., 3.}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> double
torch::tensor({{1., 2., 3.}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> double

// As comparison, currently:
torch::tensor({1, 2, 3}).dtype() -> int
torch::tensor({{1, 2, 3}}).dtype() -> int
torch::tensor({1., 2., 3.}).dtype() -> double
torch::tensor({{1., 2., 3.}}).dtype() -> double
```

Notes:
1. From now on, the behavior of `at::tensor(scalar_value)` (which produces a 1-dim tensor) would be different from `torch::tensor(scalar_value)` (which produces a 0-dim tensor). I will fix the behavior of `at::tensor(scalar_value)` in a follow-up PR.
2. From now on, the behavior of `at::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/))` (which produces a `float` tensor) would be different from `torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/))` (which produces a an `int` tensor). I will fix this behavior of `at::tensor` constructor in a follow-up PR.

Context for the changes in this PR:

The motivation comes from fixing the "`torch::tensor({{1}, {2}})` gives tensor of wrong sizes" bug - in order to fix it, I have to move the handling of `at::ArrayRef` and `std::vector` into `InitListTensor` (see below on why we need to do this) and renamed `InitListTensor` to `TensorDataContainer`. After such changes, support for bool values comes out of the box without extra effort, and support for tensors with zero-size dimensions only requires adding a default constructor for `TensorDataContainer`, so I added those two in this PR.

For the semantic change of `torch::tensor(1.1)`, it's actually more effort to preserve the original wrong behavior (i.e. we need to check the sizes of the tensor converted from `TensorDataContainer` and reshape any scalar tensor to a 1-D tensor). I think preserving the original wrong behavior doesn't give us much value, and since the above changes naturally fix the problem, we should just start using the right behavior instead.

For the "constructor with non-dtype options behavior" fix, the code looks simpler and easier to reason about with the fix, so I included it in this PR.

--------

Why we need to move the handling of `at::ArrayRef` and `std::vector` into `TensorDataContainer`:

`torch::tensor({{1}, {2}})` can match this function overload:
`torch::tensor(at::ArrayRef<int> values)`, because `{1}` and `{2}` can be treated as
a list-initialization of an `int` value. However, this will produce a Tensor with sizes `{2}`,
but we actually want a Tensor with sizes `{2, 1}`. In order to avoid matching this function overload,
we removed the function overload and moved the ability to convert `at::ArrayRef<T>`
(and similarly `std::vector<T>`) into `TensorDataContainer`, and since for braced-init-list the
`TensorDataContainer(std::initializer_list<TensorDataContainer>)` constructor is always preferred over all other constructors, it will take the `std::initializer_list` path, and all is good.

Test Plan: Imported from OSS

Differential Revision: D18234625

Pulled By: yf225

fbshipit-source-id: 0f3f6912e82e2117d2103e31b74e7e97baaa8693
2019-10-31 12:53:06 -07:00
Will Feng
e8087a3060 Change C++ API test files to only include torch/torch.h (#27067)
Summary:
One of the purposes of the C++ API tests in `test/cpp/api/` should be to check that including `torch/torch.h` is a sufficient prerequisite for using all C++ frontend features. This PR change ensures that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27067

Differential Revision: D17856815

Pulled By: yf225

fbshipit-source-id: 49c057bd807b003e4a00f6ba73131d763a0f277a
2019-10-10 09:46:29 -07:00
Brian Vaughan
88e4cee3e7 Improve handling of mixed-type tensor operations (#22273)
Summary:
Improve handling of mixed-type tensor operations.

This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).

For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.

The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst

Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.

See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273

Reviewed By: gchanan

Differential Revision: D16582230

Pulled By: nairbv

fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
2019-09-05 18:26:09 -07:00
Wanchao Liang
8756ec989e bind autograd functions into C++ (#24342)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24342

Right now the two APIs that provided in autograd package only have
python bindings and we could not call them either in C++ API or in
TorchScript. This PR make these two APIs available purely in C++ (with
preserving semantics) and can be used in C++ API and TorchScript

Differential Revision: D16923271

fbshipit-source-id: 049d6fbd94cd71ecc08b2716f74d52ac061f861e
2019-08-20 15:36:34 -07:00
mal
6b656565ab Hooks for C++ API (#24393)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24393

Ability to register hook on a variable, similar to python autograd API. register_hook will take a function as argument and create a CppFunctionPreHook similar to PyFunctionPreHook.
It will return the index of the hook which can be passed to remove_hook to disable the hook.

Test Plan: Added tests.

Differential Revision: D16861722

fbshipit-source-id: d08047f932e38c7bde04283a18b2d0311c8ad604
2019-08-16 12:44:20 -07:00
mal
81ba2df554 Allow forward functions with single output to return Variable (#23803)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23803

Custom `forward()` can return a `Variable` in case of single outputs instead of returning a `variable_list` of size 1.

Test Plan: Modified tests involving single output forward functions.

Reviewed By: ezyang

Differential Revision: D16673857

Pulled By: ezyang

fbshipit-source-id: c96d9473b48ad99e6736a68d334b333a917498b7
2019-08-09 11:10:14 -07:00
mal
692825db86 Tests for C++ custom autograd function API (#23628)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23628

More tests for autograd::Fuction based on python tests from test_autograd.py

Test Plan: Imported from OSS

Differential Revision: D16600992

fbshipit-source-id: 0cb8bfbcff315111dc4936e837ff859d0a1e251d
2019-08-02 11:37:17 -07:00
mal
ec13f18390 Allow empty Variables to be saved for backwards (#23618)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23618

For example: `save_for_backward({Variable(), x, Variable()})` should be allowed, so that this is consistent with the python API behaviour.

Test Plan: Added a test similar to the python test `test_save_none_for_backward` from test_autograd.py.

Differential Revision: D16589402

fbshipit-source-id: 847544ad8fc10772954d8629ad5a62bfdc1a66c1
2019-07-31 19:51:35 -07:00
mal
3fa2df7c9a Support custom autograd functions in C++ (#23572)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23572

### **(The stack from #23020  was moved into this PR)**

Adding API for custom autograd operations, with user defined forward and backward, [like in python](https://pytorch.org/docs/stable/notes/extending.html#extending-torch-autograd).

The custom operation should be a subclass of Function, with static forward and backward functions. `forward()` can accept any arguments similar to the Python API and `backward()` should accept a variable list as an argument.

Both `forward()` and `backward() `accept a AutogradContext* which can be used to share data between them.
Variables can be saved in the context using `save_for_backward()` and other data can be saved in the map `save` in the form of `<std::string, at::IValue>` pairs. Variables saved in forward can be accessed with `get_saved_variables()`.

Example usage:
```
class MyFunction : public Function<MyFunction> {
  public:
  static variable_list forward(AutogradContext *ctx, int n, Variable var) {
     // Save data for backward in context
     ctx->saved_data["n"] = n;
     return {var};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_output) {
     // Use data saved in forward
     auto n = ctx->saved_data["n"].toInt();
     return {grad_output[0]*n};
  }
};

```
Then, it can be used with:
```
Variable x;
MyFunction::apply(6, x);
```

Also AutogradContext has methods to mark outputs as non differentiable and mark inputs as dirty similar to the [Python API](ff23a02ac4/torch/autograd/function.py (L26)).

Test Plan: Added tests for the custom autograd function API based on test_autograd.py. Currently only the tests for the basic functionality have been added. More tests will be added later.

Differential Revision: D16583428

fbshipit-source-id: 0bd42f19ce37bcd99d3080d16195ad74d40d0413
2019-07-31 11:30:48 -07:00