Commit Graph

430 Commits

Author SHA1 Message Date
PyTorch MergeBot
cedfac20c7 Revert "[SymmetricMemory] introduce multicast support, multimem_all_reduce_ and multimem_one_shot_all_reduce (#133424)"
This reverts commit 66d3eb783c.

Reverted https://github.com/pytorch/pytorch/pull/133424 on behalf of https://github.com/jeanschmidt due to Broke internal ADS builds, see D61611517 ([comment](https://github.com/pytorch/pytorch/pull/133424#issuecomment-2304676328))
2024-08-22 13:29:27 +00:00
Yifu Wang
66d3eb783c [SymmetricMemory] introduce multicast support, multimem_all_reduce_ and multimem_one_shot_all_reduce (#133424)
### Summary
- Added multicast support to SymmetricMemory. If the cuda runtime and cuda driver have multicast support, SymmetricMemory associate all peer buffers with a multicast object and exposes the multicast virtual address.
- Implemented `multimem_all_reduce_` and `multimem_one_shot_all_reduce` based on the multicast support. The two variants shows different performance characteristic for different message size. We plan to use Inductor for collective algo selection (and required symmetric memory buffer allocation).

### Benchmark

8xH100 (non-standard version with HBM2e at 650W). NVSwitch V3 with NVLS support.

![image](https://github.com/user-attachments/assets/4998a16b-c2c0-4797-9dd0-1da2303df947)

![image](https://github.com/user-attachments/assets/278ad361-52cb-4864-82c6-bb67e8d0a3fe)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133424
Approved by: https://github.com/yf225, https://github.com/weifengpy
2024-08-21 05:11:21 +00:00
Yifu Wang
11af423eca [SymmetricMemory] make buffer_ptrs_dev, signal_pad_ptrs_dev, buffer_size, and signal_pad_size accessible in python (#133680)
These allows us to experiment with creative applications with triton.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133680
Approved by: https://github.com/Chillee
2024-08-20 10:15:35 +00:00
Howard Huang
0f90ffe94a Remove ProcessGroupRoundRobin (#132888)
`_round_robin_process_groups` is deprecated and should be removed.

258f47fc0b/torch/csrc/distributed/c10d/ProcessGroupRoundRobin.cpp (L10-L12)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132888
Approved by: https://github.com/Skylion007, https://github.com/wanchaol, https://github.com/c-p-i-o, https://github.com/fduwjj
2024-08-08 01:07:40 +00:00
fduwjj
4e610924d4 [c10d] Add a new API for adding ephemeral timeout for one local rank and the timeout will reset when the first collective finishes (#130905)
We provide an API for user to add ephemeral timeout across all PGs within one rank and the timeout will reset when the first collective issued after the timeout added finishes.

Each extension only covers collectives after the issue and before the first collective finished. The diagram below shows how the timeout changes:

<img width="1174" alt="image" src="https://github.com/user-attachments/assets/354923b7-581c-40de-ae0f-1cd3da273ccc">

While this feature provides flexibility in specific scenarios, it introduces statefulness to timeout setting. Therefore, it is advisable to use this API sparingly and consider alternative approaches, such as directly setting the timeout or utilizing a barrier collective (one can set any timeout to the barrier), whenever feasible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130905
Approved by: https://github.com/ezyang
2024-08-06 03:47:58 +00:00
Tristan Rice
9027db1ab8 TCPStore: fix remote address (#131773) (#131913)
Summary:
This fixes corrupt remote address logs caused by dangling pointers to addrinfo_storage inside of addrinfo.

This relands it since it got reverted due to a fmt::format issue internally.

Original Pull Request: https://github.com/pytorch/pytorch/pull/131773
Approved by: https://github.com/kurman

Test Plan:
Enable debug logs and verify addresses are correct

```
TORCH_CPP_LOG_LEVEL=INFO TORCH_DISABLE_SHARE_RDZV_TCP_STORE=1 TORCH_DISTRIBUTED_DEBUG=DETAIL LOGLEVEL=INFO python test/distributed/test_store.py -v
buck2 test @//mode/dev-nosan //caffe2/test/distributed:store
```

Differential Revision: D60296583

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131913
Approved by: https://github.com/kurman, https://github.com/rsdcastro, https://github.com/Skylion007
2024-07-30 17:27:33 +00:00
PyTorch MergeBot
696e83a1da Revert "TCPStore: fix remote address (#131773)"
This reverts commit 9039131a89.

Reverted https://github.com/pytorch/pytorch/pull/131773 on behalf of https://github.com/clee2000 due to broke internal builds D60265883, something about formatter ([comment](https://github.com/pytorch/pytorch/pull/131773#issuecomment-2253123800))
2024-07-26 16:47:57 +00:00
Tristan Rice
9039131a89 TCPStore: fix remote address (#131773)
This fixes corrupt remote address logs caused by dangling pointers to addrinfo_storage inside of addrinfo.

Test plan:

Enable debug logs and verify addresses are correct

```
TORCH_CPP_LOG_LEVEL=INFO TORCH_DISABLE_SHARE_RDZV_TCP_STORE=1 TORCH_DISTRIBUTED_DEBUG=DETAIL LOGLEVEL=INFO python test/distributed/test_store.py -v
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131773
Approved by: https://github.com/kurman
2024-07-25 21:55:25 +00:00
Yifu Wang
a136a7d623 [Functional Collective] enable custom work registration from python (#130354)
This PR does two things:
- Allow tensor -> work registration in Python via `torch._C._distributed_c10d.register_work`. Calling `torch.ops._c10d_functional.wait_tensor` on a tensor would trigger `.wait()` on the registered work object.
- Allow user-defined work object in Python to work with functional collectives.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130354
Approved by: https://github.com/wanchaol, https://github.com/fegin, https://github.com/wconstab
2024-07-22 21:45:19 +00:00
Shuqiang Zhang
4aef5a1134 [c10] add an option to pg_config split share (#130877)
Summary:
context is: #129865
We want to give users an option to not share comms resouces so that
comm opts can overlap
Test Plan:
Augmentd UT

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130877
Approved by: https://github.com/fduwjj
2024-07-19 21:11:26 +00:00
PyTorch MergeBot
5f3d8b8788 Revert "[c10] add an option to pg_config split share (#130877)"
This reverts commit 367213a608.

Reverted https://github.com/pytorch/pytorch/pull/130877 on behalf of https://github.com/atalman due to breaks internal build ([comment](https://github.com/pytorch/pytorch/pull/130877#issuecomment-2239298810))
2024-07-19 14:24:50 +00:00
Shuqiang Zhang
367213a608 [c10] add an option to pg_config split share (#130877)
Summary:
context is: #129865
We want to give users an option to not share comms resouces so that
comm opts can overlap
Test Plan:
Augmentd UT

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130877
Approved by: https://github.com/fduwjj
2024-07-18 19:03:00 +00:00
Chirag Pandya
83c95c48f7 Flight recoder data as JSON (#129505)
Summary:
Provide a new API to retrieve flight recorder data as JSON.
The one minor difference between flight recorder as Pickle v/s JSON is
that the JSON API does not retrieve stack traces at the moment.
This ends up being far too much data.

Test Plan:
unit test

Differential Revision: [D59536460](https://our.internmc.facebook.com/intern/diff/D59536460)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129505
Approved by: https://github.com/wconstab, https://github.com/d4l3k
2024-07-10 21:50:27 +00:00
Tristan Rice
f85bda8bdd c10d/Handlers: expose running handlers from Python (#130149)
This adds a `_run_handler` method that will invoke a specific handler.

Test plan:

```
python test/distributed/elastic/test_control_plane.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130149
Approved by: https://github.com/kurman, https://github.com/c-p-i-o
2024-07-09 20:20:59 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
Yifu Wang
67416a2996 [c10d] Introduce a util for detecting DMA connectivity among devices (#129510)
This PR introduces `_detect_dma_connectivity` - a utility for detecting DMA connectivity among devices.

The "DMA connectivity" in this context is more stringent than the ability to perform memory copy without CPU involvement. We define it as the ability for a device to issue load/store instructions and perform atomic operations on memory that resides on connected devices. The ability translates to the ability to run most aten GPU operations with operands backed by remote memory. `_detect_dma_connectivity` can help PyTorch and its users to determine whether certain DMA-based optimizations are possible.

`_detect_dma_connectivity` takes a `(device_type, connection_type)` pair and returns a matrix describing the connectivity. Connectivity detectors are statically registered on a `(device_type, connection_type)` basis. This PR implements the detector for `(CUDA, "nvlink")`. Later, detectors for pairs such as `(ROCM, "infinity_fabric")` can be introduced.

Example:

```python3
>>> from torch._C._autograd import DeviceType
>>> from torch._C._distributed_c10d import _detect_dma_connectivity
>>> connectivity = _detect_dma_connectivity(DeviceType.CUDA, "nvlink")
>>> for row in connectivity.matrix:
...     print(row)
...
[0, 18, 18, 18, 18, 18, 18, 18]
[18, 0, 18, 18, 18, 18, 18, 18]
[18, 18, 0, 18, 18, 18, 18, 18]
[18, 18, 18, 0, 18, 18, 18, 18]
[18, 18, 18, 18, 0, 18, 18, 18]
[18, 18, 18, 18, 18, 0, 18, 18]
[18, 18, 18, 18, 18, 18, 0, 18]
[18, 18, 18, 18, 18, 18, 18, 0]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129510
Approved by: https://github.com/weifengpy
2024-06-27 23:02:07 +00:00
Yifu Wang
bbd47f7b2f Remove ProcessGroupCudaP2P and change async-TP to use SymmetricMemory (#128762)
This PR removes `ProcessGroupCudaP2P` and changes async-TP to use `SymmetricMemory`. The async-TP implementation is still workspace-based, but it now doesn't require a buffer size to be specified upfront.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128762
Approved by: https://github.com/wanchaol
2024-06-25 22:32:21 +00:00
Yifu Wang
217aac96d7 Introduce a prototype for SymmetricMemory (#128582)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

This PR introduces a prototype for `SymmetricMemory` (including a CUDA implementation) - a remote-memory access-based communication primitive. It allows for user-defined communication patterns/kernels and is designed to be torch.compile-friendly. It addresses the major limitations of `IntraNodeComm` and `ProcessGroupCudaP2p` and serves as a replacement for them.

### SymmetricMemory

`SymmetricMemory` represents symmetric allocations across a group of devices. The allocations represented by a `SymmetricMemory` object are accessible by all devices in the group. The class can be used for **op-level custom communication patterns** (via the get_buffer APIs and the synchronization primitives), as well as **custom communication kernels** (via the buffer and signal_pad device pointers).

### Python API Example

```python
from torch._C.distributed_c10d import _SymmetricMemory

# Set a store for rendezvousing symmetric allocations on a group of devices
# identified by group_name. The concept of groups is logical; users can
# utilize predefined groups (e.g., a group of device identified by a
# ProcessGroup) or create custom ones. Note that a SymmetricMemoryAllocator
# backends might employ a more efficient communication channel for the actual
# rendezvous process and only use the store for bootstrapping purposes.
_SymmetricMemory.set_group_info(group_name, rank, world_size, store)

# Identical to empty_strided, but allows symmetric memory access to be
# established for the allocated tensor via _SymmetricMemory.rendezvous().
# This function itself is not a collective operation.
t = _SymmetricMemory.empty_strided_p2p((64, 64), (64, 1), torch.float32, group_name)

# Users can write Python custom ops that leverages the symmetric memory access.
# Below are examples of things users can do (assuming the group's world_size is 2).

# Establishes symmetric memory access on tensors allocated via
# _SymmetricMemory.empty_strided_p2p(). rendezvous() is a one-time process,
# and the mapping between a local memory region and the associated SymmetricMemory
# object is unique. Subsequent calls to rendezvous() with the same tensor will receive
# the cached SymmetricMemory object.
#
# The function has a collective semantic and must be invoked simultaneously
# from all rendezvous participants.
symm_mem = _SymmetricMemory.rendezvous(t)

# This represents the allocation on rank 0 and is accessible from all devices.
buf = symm_mem.get_buffer(0, (64, 64), torch.float32)

if symm_mem.rank == 0:
    symm_mem.wait_signal(src_rank=1)
    assert buf.eq(42).all()
else:
    # The remote buffer can be used as a regular tensor
    buf.fill_(42)
    symm_mem.put_signal(dst_rank=0)

symm_mem.barrier()

if symm_mem.rank == 0:
    symm_mem.barrier()
    assert buf.eq(43).all()
else:
    new_val = torch.empty_like(buf)
    new_val.fill_(43)
    # Contiguous copies to/from a remote buffer utilize copy engines
    # which bypasses SMs (i.e. no need to load the data into registers)
    buf.copy_(new_val)
    symm_mem.barrier()
```

### Custom CUDA Comm Kernels

Given a tensor, users can access the associated `SymmetricMemory` which provides pointer to remote buffers/signal_pads needed for custom communication kernels.

```cpp
TORCH_API c10::intrusive_ptr<SymmetricMemory> get_symmetric_memory(
    const at::Tensor& tensor);

class TORCH_API SymmetricMemory : public c10::intrusive_ptr_target {
 public:
  ...
  virtual std::vector<void*> get_buffer_ptrs() = 0;
  virtual std::vector<void*> get_signal_pad_ptrs() = 0;
  virtual void** get_buffer_ptrs_dev() = 0;
  virtual void** get_signal_pad_ptrs_dev() = 0;
  virtual size_t get_buffer_size() = 0;
  virtual size_t get_signal_pad_size() = 0;
  virtual int get_rank() = 0;
  virtual int get_world_size() = 0;
  ...
};
```

### Limitations of IntraNodeComm and ProcessGroupCudaP2p
Both `IntraNodeComm` (used by `ProcessGroupCudaP2p`) manages a single fixed-size workspace. This approach:
- Leads to awkward UX in which the required workspace needs to be specified upfront.
- Can not avoid extra copies for some algorithms in eager mode (e.g., custom/multimem all-reduce, reduce-scatter, all-gather).
- Prevents torch.compile from eliminating all copies.

In addition, they only offer out-of-the-box communication kernels and don't expose required pointers for user-defined, custom CUDA comm kernels.

* __->__ #128582

Differential Revision: [D58849033](https://our.internmc.facebook.com/intern/diff/D58849033)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128582
Approved by: https://github.com/wanchaol
2024-06-21 08:49:11 +00:00
PyTorch MergeBot
63a724d8e1 Revert "Introduce a prototype for SymmetricMemory (#128582)"
This reverts commit 8771e3429c.

Reverted https://github.com/pytorch/pytorch/pull/128582 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/128582#issuecomment-2181656181))
2024-06-20 22:31:29 +00:00
Yifu Wang
8771e3429c Introduce a prototype for SymmetricMemory (#128582)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

This PR introduces a prototype for `SymmetricMemory` (including a CUDA implementation) - a remote-memory access-based communication primitive. It allows for user-defined communication patterns/kernels and is designed to be torch.compile-friendly. It addresses the major limitations of `IntraNodeComm` and `ProcessGroupCudaP2p` and serves as a replacement for them.

### SymmetricMemory

`SymmetricMemory` represents symmetric allocations across a group of devices. The allocations represented by a `SymmetricMemory` object are accessible by all devices in the group. The class can be used for **op-level custom communication patterns** (via the get_buffer APIs and the synchronization primitives), as well as **custom communication kernels** (via the buffer and signal_pad device pointers).

### Python API Example

```python
from torch._C.distributed_c10d import _SymmetricMemory

# Set a store for rendezvousing symmetric allocations on a group of devices
# identified by group_name. The concept of groups is logical; users can
# utilize predefined groups (e.g., a group of device identified by a
# ProcessGroup) or create custom ones. Note that a SymmetricMemoryAllocator
# backends might employ a more efficient communication channel for the actual
# rendezvous process and only use the store for bootstrapping purposes.
_SymmetricMemory.set_group_info(group_name, rank, world_size, store)

# Identical to empty_strided, but allows symmetric memory access to be
# established for the allocated tensor via _SymmetricMemory.rendezvous().
# This function itself is not a collective operation.
t = _SymmetricMemory.empty_strided_p2p((64, 64), (64, 1), torch.float32, group_name)

# Users can write Python custom ops that leverages the symmetric memory access.
# Below are examples of things users can do (assuming the group's world_size is 2).

# Establishes symmetric memory access on tensors allocated via
# _SymmetricMemory.empty_strided_p2p(). rendezvous() is a one-time process,
# and the mapping between a local memory region and the associated SymmetricMemory
# object is unique. Subsequent calls to rendezvous() with the same tensor will receive
# the cached SymmetricMemory object.
#
# The function has a collective semantic and must be invoked simultaneously
# from all rendezvous participants.
symm_mem = _SymmetricMemory.rendezvous(t)

# This represents the allocation on rank 0 and is accessible from all devices.
buf = symm_mem.get_buffer(0, (64, 64), torch.float32)

if symm_mem.rank == 0:
    symm_mem.wait_signal(src_rank=1)
    assert buf.eq(42).all()
else:
    # The remote buffer can be used as a regular tensor
    buf.fill_(42)
    symm_mem.put_signal(dst_rank=0)

symm_mem.barrier()

if symm_mem.rank == 0:
    symm_mem.barrier()
    assert buf.eq(43).all()
else:
    new_val = torch.empty_like(buf)
    new_val.fill_(43)
    # Contiguous copies to/from a remote buffer utilize copy engines
    # which bypasses SMs (i.e. no need to load the data into registers)
    buf.copy_(new_val)
    symm_mem.barrier()
```

### Custom CUDA Comm Kernels

Given a tensor, users can access the associated `SymmetricMemory` which provides pointer to remote buffers/signal_pads needed for custom communication kernels.

```cpp
TORCH_API c10::intrusive_ptr<SymmetricMemory> get_symmetric_memory(
    const at::Tensor& tensor);

class TORCH_API SymmetricMemory : public c10::intrusive_ptr_target {
 public:
  ...
  virtual std::vector<void*> get_buffer_ptrs() = 0;
  virtual std::vector<void*> get_signal_pad_ptrs() = 0;
  virtual void** get_buffer_ptrs_dev() = 0;
  virtual void** get_signal_pad_ptrs_dev() = 0;
  virtual size_t get_buffer_size() = 0;
  virtual size_t get_signal_pad_size() = 0;
  virtual int get_rank() = 0;
  virtual int get_world_size() = 0;
  ...
};
```

### Limitations of IntraNodeComm and ProcessGroupCudaP2p
Both `IntraNodeComm` (used by `ProcessGroupCudaP2p`) manages a single fixed-size workspace. This approach:
- Leads to awkward UX in which the required workspace needs to be specified upfront.
- Can not avoid extra copies for some algorithms in eager mode (e.g., custom/multimem all-reduce, reduce-scatter, all-gather).
- Prevents torch.compile from eliminating all copies.

In addition, they only offer out-of-the-box communication kernels and don't expose required pointers for user-defined, custom CUDA comm kernels.

* __->__ #128582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128582
Approved by: https://github.com/wanchaol
2024-06-19 03:38:58 +00:00
PyTorch MergeBot
77830d509f Revert "Introduce a prototype for SymmetricMemory (#128582)"
This reverts commit 7a39755da2.

Reverted https://github.com/pytorch/pytorch/pull/128582 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/128582#issuecomment-2176685232))
2024-06-18 18:11:43 +00:00
Yifu Wang
7a39755da2 Introduce a prototype for SymmetricMemory (#128582)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

This PR introduces a prototype for `SymmetricMemory` (including a CUDA implementation) - a remote-memory access-based communication primitive. It allows for user-defined communication patterns/kernels and is designed to be torch.compile-friendly. It addresses the major limitations of `IntraNodeComm` and `ProcessGroupCudaP2p` and serves as a replacement for them.

### SymmetricMemory

`SymmetricMemory` represents symmetric allocations across a group of devices. The allocations represented by a `SymmetricMemory` object are accessible by all devices in the group. The class can be used for **op-level custom communication patterns** (via the get_buffer APIs and the synchronization primitives), as well as **custom communication kernels** (via the buffer and signal_pad device pointers).

### Python API Example

```python
from torch._C.distributed_c10d import _SymmetricMemory

# Set a store for rendezvousing symmetric allocations on a group of devices
# identified by group_name. The concept of groups is logical; users can
# utilize predefined groups (e.g., a group of device identified by a
# ProcessGroup) or create custom ones. Note that a SymmetricMemoryAllocator
# backends might employ a more efficient communication channel for the actual
# rendezvous process and only use the store for bootstrapping purposes.
_SymmetricMemory.set_group_info(group_name, rank, world_size, store)

# Identical to empty_strided, but allows symmetric memory access to be
# established for the allocated tensor via _SymmetricMemory.rendezvous().
# This function itself is not a collective operation.
t = _SymmetricMemory.empty_strided_p2p((64, 64), (64, 1), torch.float32, group_name)

# Users can write Python custom ops that leverages the symmetric memory access.
# Below are examples of things users can do (assuming the group's world_size is 2).

# Establishes symmetric memory access on tensors allocated via
# _SymmetricMemory.empty_strided_p2p(). rendezvous() is a one-time process,
# and the mapping between a local memory region and the associated SymmetricMemory
# object is unique. Subsequent calls to rendezvous() with the same tensor will receive
# the cached SymmetricMemory object.
#
# The function has a collective semantic and must be invoked simultaneously
# from all rendezvous participants.
symm_mem = _SymmetricMemory.rendezvous(t)

# This represents the allocation on rank 0 and is accessible from all devices.
buf = symm_mem.get_buffer(0, (64, 64), torch.float32)

if symm_mem.rank == 0:
    symm_mem.wait_signal(src_rank=1)
    assert buf.eq(42).all()
else:
    # The remote buffer can be used as a regular tensor
    buf.fill_(42)
    symm_mem.put_signal(dst_rank=0)

symm_mem.barrier()

if symm_mem.rank == 0:
    symm_mem.barrier()
    assert buf.eq(43).all()
else:
    new_val = torch.empty_like(buf)
    new_val.fill_(43)
    # Contiguous copies to/from a remote buffer utilize copy engines
    # which bypasses SMs (i.e. no need to load the data into registers)
    buf.copy_(new_val)
    symm_mem.barrier()
```

### Custom CUDA Comm Kernels

Given a tensor, users can access the associated `SymmetricMemory` which provides pointer to remote buffers/signal_pads needed for custom communication kernels.

```cpp
TORCH_API c10::intrusive_ptr<SymmetricMemory> get_symmetric_memory(
    const at::Tensor& tensor);

class TORCH_API SymmetricMemory : public c10::intrusive_ptr_target {
 public:
  ...
  virtual std::vector<void*> get_buffer_ptrs() = 0;
  virtual std::vector<void*> get_signal_pad_ptrs() = 0;
  virtual void** get_buffer_ptrs_dev() = 0;
  virtual void** get_signal_pad_ptrs_dev() = 0;
  virtual size_t get_buffer_size() = 0;
  virtual size_t get_signal_pad_size() = 0;
  virtual int get_rank() = 0;
  virtual int get_world_size() = 0;
  ...
};
```

### Limitations of IntraNodeComm and ProcessGroupCudaP2p
Both `IntraNodeComm` (used by `ProcessGroupCudaP2p`) manages a single fixed-size workspace. This approach:
- Leads to awkward UX in which the required workspace needs to be specified upfront.
- Can not avoid extra copies for some algorithms in eager mode (e.g., custom/multimem all-reduce, reduce-scatter, all-gather).
- Prevents torch.compile from eliminating all copies.

In addition, they only offer out-of-the-box communication kernels and don't expose required pointers for user-defined, custom CUDA comm kernels.

* __->__ #128582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128582
Approved by: https://github.com/wanchaol
2024-06-15 10:20:21 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Chirag Pandya
0bf2fe522a [RFC] Provide optional switches to _dump_nccl_trace (#127651)
Summary:
Data from PyTorch distributed is mostly useful during initial stages of model development.
Provide options to reduce data sent/dumped.
`_dump_nccl_trace` takes 3 optional switches. Default as before returns everything
- `includeCollectives`: option to also include collectives: Default is True.
- `includeStacktraces`: option to include stack traces in collectives. Default is True.
- `onlyActive`: option to only send active collective work - i.e. not completed. Default is
    False (i.e. send everything)

Test Plan:
Unit tests

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127651
Approved by: https://github.com/wconstab
2024-06-09 14:00:57 +00:00
PyTorch MergeBot
02a901f1e9 Revert "[RFC] Provide optional switches to _dump_nccl_trace (#127651)"
This reverts commit 0a761f0627.

Reverted https://github.com/pytorch/pytorch/pull/127651 on behalf of https://github.com/atalman due to Breaks internal CI ([comment](https://github.com/pytorch/pytorch/pull/127651#issuecomment-2156076838))
2024-06-08 15:30:04 +00:00
Will Constable
8ca4cefc7d [C10D] Ensure gil is not released when calling toPyBytes (#128212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128212
Approved by: https://github.com/Skylion007, https://github.com/XilunWu
2024-06-07 18:24:10 +00:00
Xilun Wu
85758fa5ae [c10d][TCPStore] make TCPStore server use libuv by default (#127957)
**Summary**
This PR switches the default TCPStore server backend to a new implementation that utilizes [`libuv`](https://github.com/libuv/libuv) for significantly lower initialization time and better scalability:
<img width="714" alt="image" src="https://github.com/pytorch/pytorch/assets/12968408/18503011-da5d-4104-8ba9-abc456438b02">

We hope this improvement would benefit users from a much shorter startup time in large-scale jobs. Eventually, we hope to fully replace the old TCPStore backend implementation with the libuv one.

**What it changes**
This PR changes the underlying TCPStore server backend to `libuv` if users don't explicitly specify to use the old TCPStore server. This change is not supposed to cause any user notice except significant faster TCPStore startup for large-scale jobs.

One thing to note is, we do not support the initialization approach where user passes in a socket for libuv backend. We plan to support it as a next step but we choose to disable it before fully testing. If you are initializing TCPStore in this approach, you can see the next section to remain using the old TCPStore server.

**Fallback/Remain using the old TCPStore server**
For users who want to stay with the old TCPStore backend, there're 3 ways:

1. If user is directly instantiating TCPStore object, user can pass in argument `use_libuv=False` to use the old TCPStore server backend e.g. `store = torch.distributed.TCPStore(..., use_libuv=False)`.
2. Or, specify the TCPStore backend option in `init_method` when calling default ProcessGroup init, e.g. `torch.distributed.init_process_group(..., init_method="{YOUR_RENDEZVOUS_METHOD}://{YOUR_HOSTNAME}:{YOUR_PORT}?use_libuv=0")`
3. Or, user can set environment variable `USE_LIBUV` to `"0"` when launching.

These 3 approach are in order of precedence. That being said, if user specifies `use_libuv=0` in `init_method` and also sets environment var `USE_LIBUV="1"`, the former will take effect and the TCPStore backend instantiated will be the old one instead of the one using libuv.

**Operating Systems Compatibility**
From the CI signals, we believe the new implementation has the same behavior as the old TCPStore server on all supported platforms. If you notice any behavior discrepancy, please file an issue with `oncall: distributed` label.

**Test Plan**
`pytest test/distributed/test_store.py`
<img width="2548" alt="image" src="https://github.com/pytorch/pytorch/assets/12968408/dc0aebeb-6d5a-4daa-b98c-e56bd39aa588">
note: `TestMultiThreadedWait::test_wait` is a broken test that has been there for some time.

`test/distributed/elastic/utils/distributed_test.py`
<img width="2558" alt="image" src="https://github.com/pytorch/pytorch/assets/12968408/a6a3266d-b798-41c4-94d2-152056a034f6">

**TODO**
1. Update the doc at

- https://pytorch.org/docs/stable/distributed.html#distributed-key-value-store
- https://pytorch.org/docs/stable/distributed.html#tcp-initialization

2. Make torch elastic rendezvous to use libuv TCPStore as well. See `torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py` cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @fegin @wanchaol @fduwjj @wz337 @tianyu-l @wconstab @yf225 @chauhang @d4l3k @kurman
3. Test if libuv backend is okay with initialization with socket. Change `LibUvTCPStoreTest::test_take_over_listen_socket`.

**Test Plan**
`pytest test/distributed/test_store.py`
<img width="2548" alt="image" src="https://github.com/pytorch/pytorch/assets/12968408/dc0aebeb-6d5a-4daa-b98c-e56bd39aa588">
note: `TestMultiThreadedWait::test_wait` is a broken test that has been there for some time.

`test/distributed/elastic/utils/distributed_test.py`
<img width="2558" alt="image" src="https://github.com/pytorch/pytorch/assets/12968408/a6a3266d-b798-41c4-94d2-152056a034f6">

Differential Revision: [D58259591](https://our.internmc.facebook.com/intern/diff/D58259591)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127957
Approved by: https://github.com/kurman
ghstack dependencies: #127956
2024-06-07 16:53:01 +00:00
Chirag Pandya
0a761f0627 [RFC] Provide optional switches to _dump_nccl_trace (#127651)
Summary:
Data from PyTorch distributed is mostly useful during initial stages of model development.
Provide options to reduce data sent/dumped.
`_dump_nccl_trace` takes 3 optional switches. Default as before returns everything
- `includeCollectives`: option to also include collectives: Default is True.
- `includeStacktraces`: option to include stack traces in collectives. Default is True.
- `onlyActive`: option to only send active collective work - i.e. not completed. Default is
    False (i.e. send everything)

Test Plan:
Unit tests

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127651
Approved by: https://github.com/wconstab
2024-06-06 21:59:09 +00:00
Tristan Rice
ffaea656b5 WorkerServer: add support for binding to TCP (#127986)
This adds support for the WorkerServer binding to TCP as well as the existing unix socket support.

```py
server = _WorkerServer("", 1234)
```

Test plan:

Added unit test

```
python test/distributed/elastic/test_control_plane.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127986
Approved by: https://github.com/c-p-i-o
2024-06-05 22:56:32 +00:00
Tristan Rice
597922ba21 Reapply "distributed debug handlers (#126601)" (#127805)
This reverts commit 7646825c3e.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127805
Approved by: https://github.com/PaliC
2024-06-04 19:44:30 +00:00
PyTorch MergeBot
7646825c3e Revert "distributed debug handlers (#126601)"
This reverts commit 3d541835d5.

Reverted https://github.com/pytorch/pytorch/pull/126601 on behalf of https://github.com/PaliC due to breaking internal typechecking tests ([comment](https://github.com/pytorch/pytorch/pull/126601#issuecomment-2141076987))
2024-05-31 01:21:24 +00:00
cyy
be7be9fa16 [Distributed] [8/N] Fix clang-tidy warnings in torch/csrc/distributed/c10d (#125102)
This PR continues to clean clang-tidy warnings in torch/csrc/distributed/c10d, following https://github.com/pytorch/pytorch/pull/124987.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125102
Approved by: https://github.com/ezyang
2024-05-30 16:19:53 +00:00
Tristan Rice
3d541835d5 distributed debug handlers (#126601)
This adds debug handlers as described in:
* https://gist.github.com/d4l3k/828b7be585c7615e85b2c448b308d925 (public copy)
* https://docs.google.com/document/d/1la68szcS6wUYElUUX-P6zXgkPA8lnfzpagMTPys3aQ8/edit (internal copy)

This is only adding the C++ pieces that will be used from the main process. The Python and torchrun pieces will be added in a follow up PR.

This adds 2 handlers out of the box:

* `/handler/ping` for testing purposes
* `/handler/dump_nccl_trace_pickle` as a POC integration with Flight Recorder

Test plan:

```
python test/distributed/elastic/test_control_plane.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126601
Approved by: https://github.com/kurman, https://github.com/c-p-i-o
2024-05-30 02:21:08 +00:00
Yifu Wang
4a09117d16 Introduce ProcessGroupCudaP2P (#122163)
## Context
This stack prototypes automatic micro-pipelining of `all-gather -> matmul` and `matmul -> reduce-scatter` via Inductor. The idea originates from the paper [Overlap Communication with Dependent Computation via
Decomposition in Large Deep Learning Models](https://dl.acm.org/doi/pdf/10.1145/3567955.3567959). The implementation and some key optimizations are heavily influenced by @lw's implementation in xformers.

The stack contains several components:
- `ProcessGroupCudaP2P` - a thin wrapper around `ProcessGroupNCCL`. It in addition maintains a P2P workspace that enables SM-free, one-sided P2P communication which is needed for optimal micro-pipelining.
- `fused_all_gather_matmul` and `fused_matmul_reduce_scatter` dispatcher ops.
- Post-grad fx pass that detects `all-gather -> matmul` and `matmul -> reduce-scatter` and replaces them with the fused dispatcher ops.

To enable the prototype feature:
- Set the distributed backend to `cuda_p2p`.
- Set `torch._inductor.config._micro_pipeline_tp` to `True`.

*NOTE: the prototype sets nothing in stone w.r.t to each component's design. The purpose is to have a performant baseline with reasonable design on which each component can be further improved.*

## Benchmark
Setup:
- 8 x H100 (500W) + 3rd gen NVSwitch.
- Llama3 8B training w/ torchtitan.
- 8-way TP. Reduced the number of layers from 32 to 8 for benchmarking purpose.

Trace (baseline): https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html#!/?url=https://interncache-all.fbcdn.net/manifold/perfetto_internal_traces/tree/shared_trace/yifu_tmpjaz8zgx0
<img width="832" alt="image" src="https://github.com/pytorch/pytorch/assets/4156752/4addba77-5abc-4d2e-93ea-f68078587fe1">

Trace (w/ micro pipelining): https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html#!/?url=https://interncache-all.fbcdn.net/manifold/perfetto_internal_traces/tree/shared_trace/yifu_tmpn073b4wn
<img width="963" alt="image" src="https://github.com/pytorch/pytorch/assets/4156752/4f44e78d-8196-43ab-a1ea-27390f07e9d2">

## This PR
`ProcessGroupCudaP2P` is a thin wrapper around `ProcessGroupNCCL`. By default, it routes all collectives to the underlying `ProcessGroupNCCL`. In addition, `ProcessGroupCudaP2P` initializes a P2P workspace that allows direct GPU memory access among the members. The workspace can be used in Python to optimize intra-node communication patterns or to create custom intra-node collectives in CUDA.

`ProcessGroupCudaP2P` aims to bridge the gap where certain important patterns can be better optimized via fine-grained P2P memory access than with collectives in the latest version of NCCL. It is meant to complement NCCL rather than replacing it.
Usage:
```
    # Using ProcessGroupCudaP2P
    dist.init_process_group(backend="cuda_p2p", ...)

    # Using ProcessGroupCudaP2P while specifying ProcessGroupCudaP2P.Options
    pg_options = ProcessGroupCudaP2P.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Using ProcessGroupCudaP2P while specifying ProcessGroupNCCL.Options
    pg_options = ProcessGroupNCCL.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Using ProcessGroupCudaP2P while specifying both
    # ProcessGroupCudaP2P.Options and ProcessGroupNCCL.Options
    pg_options = ProcessGroupCudaP2P.Options()
    pg_options.nccl_options = ProcessGroupNCCL.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Down-casting the backend to access p2p buffers for cuda_p2p specific
    # optimizations
    if is_cuda_p2p_group(group):
        backend = get_cuda_p2p_backend(group)
        if required_p2p_buffer_size > backend.get_buffer_size():
            # fallback
        p2p_buffer = backend.get_p2p_buffer(...)
    else:
        # fallback
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122163
Approved by: https://github.com/wanchaol
2024-05-24 18:33:18 +00:00
PyTorch MergeBot
1b29c16e5e Revert "Introduce ProcessGroupCudaP2P (#122163)"
This reverts commit 2dd2699860.

Reverted https://github.com/pytorch/pytorch/pull/122163 on behalf of https://github.com/jithunnair-amd due to This is breaking ROCm distributed CI on trunk ([comment](https://github.com/pytorch/pytorch/pull/122163#issuecomment-2127518473))
2024-05-23 16:06:14 +00:00
Yifu Wang
2dd2699860 Introduce ProcessGroupCudaP2P (#122163)
## Context
This stack prototypes automatic micro-pipelining of `all-gather -> matmul` and `matmul -> reduce-scatter` via Inductor. The idea originates from the paper [Overlap Communication with Dependent Computation via
Decomposition in Large Deep Learning Models](https://dl.acm.org/doi/pdf/10.1145/3567955.3567959). The implementation and some key optimizations are heavily influenced by @lw's implementation in xformers.

The stack contains several components:
- `ProcessGroupCudaP2P` - a thin wrapper around `ProcessGroupNCCL`. It in addition maintains a P2P workspace that enables SM-free, one-sided P2P communication which is needed for optimal micro-pipelining.
- `fused_all_gather_matmul` and `fused_matmul_reduce_scatter` dispatcher ops.
- Post-grad fx pass that detects `all-gather -> matmul` and `matmul -> reduce-scatter` and replaces them with the fused dispatcher ops.

To enable the prototype feature:
- Set the distributed backend to `cuda_p2p`.
- Set `torch._inductor.config._micro_pipeline_tp` to `True`.

*NOTE: the prototype sets nothing in stone w.r.t to each component's design. The purpose is to have a performant baseline with reasonable design on which each component can be further improved.*

## Benchmark
Setup:
- 8 x H100 (500W) + 3rd gen NVSwitch.
- Llama3 8B training w/ torchtitan.
- 8-way TP. Reduced the number of layers from 32 to 8 for benchmarking purpose.

Trace (baseline): https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html#!/?url=https://interncache-all.fbcdn.net/manifold/perfetto_internal_traces/tree/shared_trace/yifu_tmpjaz8zgx0
<img width="832" alt="image" src="https://github.com/pytorch/pytorch/assets/4156752/4addba77-5abc-4d2e-93ea-f68078587fe1">

Trace (w/ micro pipelining): https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html#!/?url=https://interncache-all.fbcdn.net/manifold/perfetto_internal_traces/tree/shared_trace/yifu_tmpn073b4wn
<img width="963" alt="image" src="https://github.com/pytorch/pytorch/assets/4156752/4f44e78d-8196-43ab-a1ea-27390f07e9d2">

## This PR
`ProcessGroupCudaP2P` is a thin wrapper around `ProcessGroupNCCL`. By default, it routes all collectives to the underlying `ProcessGroupNCCL`. In addition, `ProcessGroupCudaP2P` initializes a P2P workspace that allows direct GPU memory access among the members. The workspace can be used in Python to optimize intra-node communication patterns or to create custom intra-node collectives in CUDA.

`ProcessGroupCudaP2P` aims to bridge the gap where certain important patterns can be better optimized via fine-grained P2P memory access than with collectives in the latest version of NCCL. It is meant to complement NCCL rather than replacing it.
Usage:
```
    # Using ProcessGroupCudaP2P
    dist.init_process_group(backend="cuda_p2p", ...)

    # Using ProcessGroupCudaP2P while specifying ProcessGroupCudaP2P.Options
    pg_options = ProcessGroupCudaP2P.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Using ProcessGroupCudaP2P while specifying ProcessGroupNCCL.Options
    pg_options = ProcessGroupNCCL.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Using ProcessGroupCudaP2P while specifying both
    # ProcessGroupCudaP2P.Options and ProcessGroupNCCL.Options
    pg_options = ProcessGroupCudaP2P.Options()
    pg_options.nccl_options = ProcessGroupNCCL.Options()
    dist.init_process_group(backend="cuda_p2p", pg_options=pg_options, ...)

    # Down-casting the backend to access p2p buffers for cuda_p2p specific
    # optimizations
    if is_cuda_p2p_group(group):
        backend = get_cuda_p2p_backend(group)
        if required_p2p_buffer_size > backend.get_buffer_size():
            # fallback
        p2p_buffer = backend.get_p2p_buffer(...)
    else:
        # fallback
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122163
Approved by: https://github.com/wanchaol
2024-05-22 09:33:05 +00:00
Tristan Rice
ac51920656 Reapply "c10d: add Collectives abstraction (#125978)" (#126695)
This reverts commit d9c3485146.

Reapplies #125978.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126695
Approved by: https://github.com/c-p-i-o
2024-05-21 18:00:09 +00:00
PyTorch MergeBot
d9c3485146 Revert "c10d: add Collectives abstraction (#125978)"
This reverts commit 4b2ae2ac33.

Reverted https://github.com/pytorch/pytorch/pull/125978 on behalf of https://github.com/DanilBaibak due to Break internal build ([comment](https://github.com/pytorch/pytorch/pull/125978#issuecomment-2119858015))
2024-05-20 07:40:41 +00:00
Tristan Rice
4b2ae2ac33 c10d: add Collectives abstraction (#125978)
This adds a new `Collectives` API for doing distributed collectives operations. This is intended to replace the [current Elastic store abstraction](https://github.com/pytorch/pytorch/blob/main/torch/distributed/elastic/utils/store.py) with more performant and debugable primitives.

Design doc: https://docs.google.com/document/d/147KcKJXEHvk1Q6tISLbJVvLejHg_1kIhBQeu-8RQxhY/edit

The standard implementation is using `StoreCollectives` but other more performant backends will be added in a follow up PR.

Test plan:

```
python test/distributed/test_collectives.py -v
```

This tests both functionality using multiple threads as well as timeout behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125978
Approved by: https://github.com/shuqiangzhang
2024-05-17 05:09:11 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
cyy
c2596fd3e0 [Distributed] [4/N] Fix clang-tidy warnings in torch/csrc/distributed/c10d (#124032)
This PR continues to fix some clang-tidy warnings in distributed/c10d code, following https://github.com/pytorch/pytorch/pull/123312.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124032
Approved by: https://github.com/Skylion007
2024-04-16 00:42:18 +00:00
Shengbao Zheng
4e9094533e [c10d/nccl-pg] allow user to pass process group description (#123472)
Summary:
We need a way to allow user set a customized description for a process group, e.g. FSDP, PP.

Here are several use cases of user specified group_desc:
- Logging: we can easily match a log line and understand what's this collective/pg is used to.
- Pytorch traces (e.g. Kineto, Execution Trace) can benefit from the PG desc since trace analysis, benchmarks will be able to easily differentiate PG purpose like FSDP, PP.
- Lower layer collectives(e.g. NCCL) debug: we will be able to expose PG desc to NCCL communicator so NCCL layer operations can be easily correlated to a PG.

Solution: Add a group_desc field to c10d

Differential Revision: D55781850

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123472
Approved by: https://github.com/kwen2501
2024-04-12 08:44:21 +00:00
Shengbao Zheng
ae6f8d923c Pass and record process_group_name when creating ProcessGroupNCCL (#123117)
Summary:
Pass python c10d group_name to c++ ProcessGroupNCCL so that the pg name will be consistent across different layers.
Also record pg_name in flight recorder entry.

Differential Revision: D55597200

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123117
Approved by: https://github.com/wconstab
2024-04-05 18:57:45 +00:00
Yifu Wang
c58b0ac7c2 IntraNodeComm primitives for allgather_matmul (#118038)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118038
Approved by: https://github.com/wanchaol
2024-04-04 00:46:08 +00:00
Yifu Wang
22cd2658b4 Disable GroupRegistry's thread isolation by default (#121457)
Today `GroupRegistry` employs thread isolation by default, i.e. every thread sees its own process group registry. This is intended to work for one-device-per-process (for python use cases) and one-device-per-thread case (for custom native runtimes).

However, there's a problem - there are python use cases that initializes/registers process groups in one thread, and runs collectives in another thread. This use case should be supported. However, since `GroupRegistry` employs thread isolation by default, collectives in different threads can't find the registered process groups.

This PR fixes the issue by:
- Make `GroupRegistry` work in non-thread isolation mode by default. This would match the behavior w/o the native process group registry.
- Introduces `set_thread_isolation_mode` so one-device-per-thread runtimes can enable thread isolation mode explicitly.

Differential Revision: [D54658515](https://our.internmc.facebook.com/intern/diff/D54658515)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121457
Approved by: https://github.com/wanchaol
2024-03-08 19:31:24 +00:00
Shengbao Zheng
60aaba4128 create function to get ProcessGroupNCCL uid (#121132)
Summary: expose ProcessGroupNCCL uid

Differential Revision: D54446056

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121132
Approved by: https://github.com/aaronenyeshi
2024-03-07 18:34:38 +00:00
Chao Zhou
a11a49af58 Add NCCL work sequence number to work info (#120596)
Summary: Expose sequence number to work info. The number can help applications identify a NCCL work more precisely.

Test Plan:
1. pytest test/distributed/test_c10d_nccl.py::WorkHookTest::test_on_completion_hook_seq
2. pytest test/distributed/test_c10d_nccl.py::WorkHookTest

Differential Revision: D54180050

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120596
Approved by: https://github.com/kwen2501
2024-02-28 07:54:37 +00:00
Yifu Wang
64efec9953 Port FakeProcessGroup to cpp (#118426)
### Summary
Native functional collective ops requires the backend to be implemented in C++. Porting `FakeProcessGroup` to cpp so that it can also work for native functional collective ops.

The existing tests involving `FakeProcessGroup` all pass. In addition, `DeviceMeshTest::test_fake_pg_device_mesh` now pass with `_USE_NATIVE_C10D_FUNCTIONAL=1`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118426
Approved by: https://github.com/wanchaol
ghstack dependencies: #113057
2024-01-30 11:40:13 +00:00
Yifu Wang
b778f44e97 Allow using native c10d_functional via _functional_collectives (#113057)
This diff introduces an env var `_USE_NATIVE_C10D_FUNCTIONAL` that tells `_functional_collective` to use native `c10d_functional` ops. The Python version and the native version will co-exist until we completely switch to the native version after more testing and verification.

NOTE: `DeviceMesh` support for native `c10d_functional` will be added in a subsequent PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113057
Approved by: https://github.com/LucasLLC, https://github.com/wconstab, https://github.com/wanchaol
2024-01-30 02:34:25 +00:00