Since PyTorch does not have readonly tensors, compiling code with readonly numpy arrays warns about possible UB. Thus detect readonly arrays, flip them to be writeable and clone the resulting tensor.
BTW, this is a break away from numpy semantics: the resulting array is writeable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112524
Approved by: https://github.com/lezcano
(legality) It is currently impossible (and should remain impossible) - (due to dedup guards - all static tensors are unique) - to access the same **static** tensor value from a **different source**.
As for `getattr(nn.Module, tensor)` source collisions, we will never instantiate a `nn.Module getattr` source for a static tensor, due to:
- side-effect tracking (as long as we track all static tensors - see also https://github.com/pytorch/pytorch/pull/112025 for extra sanity check)
- See: c8a5bb451e/torch/_dynamo/variables/builder.py (L227)
(no worse) In any case, this field is currently unused.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111911
Approved by: https://github.com/voznesenskym
AutogradFunctionContextVariable was mutating self._saved_tensors, which is generally not allowed since VariableTracker objects should be read-only and are frequently copied via apply/clone. This was causing some test failures up the PR stack.
This moves the mutation into a separate object that is not copied.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112216
Approved by: https://github.com/voznesenskym
ghstack dependencies: #112122
Major change in this PR is to make torch context manager class a separate ```TorchCtxManagerClassVariable```, since we have dynamo implementation for these ctx managers.
I was thinking to wrap them as ```UserDefinedClassVariable``` and do dispatch at ```USCVariable.call_function```, but it seems almost the same amount of work and this way is more clear.
This is on the way of moving ```TorchVariable``` to ```TorchFunctionVariable``` which will only handle the functions who would be allowed in graph (e.g, ```torch.sin```) and constant folded (e.g, ```torch.is_floating_point```). All other torch functions would be go through skip/inline rules, and would be wrapped as ```UserFunctionVariable``` (for inlined) and ```SkipFilesVariable``` (for skipped).
The next steps:
* Wrap torch modules, classes, objects as regular ```PythonModuleVariable```, ```UserDefinedClassVariable``` and ```UserDefinedObjectVariable```.
* Generate the allow in graph torch functions list and wrap them as ```TorchFunctionVariable```.
* Finally merge ```skipfiles.check``` and ```is_allowed``` into one function ```allow_skip.check(fn)``` which would return a Enum of allow, skip and inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111622
Approved by: https://github.com/jansel
This PR implements 2 things:
1. support the device agnostic stream and runtime APIs captured by the dynamo.
2. support the stream methods(include the event) captured by the dynamo.
Here are details for 1st.
Previously the stream captured in dynamo was tightly bind to CUDA. Here we implement a global singleton container named `StreamMethodContainer` for different backends to register their associated stream methods to dynamo. When import the backend’s product, the stream operations can be registered directly by calling
```
device_stream_method = {'current_stream': method_1,
'create_stream_context': method_2,
'set_stream': method_3,
'set_stream_by_id': method_4}
torch._dynamo.stream.register_stream_method(device_name, device_stream_method)
```
Stream methods need to be passed in this API according to the precise semantics represented by the dict key in `device_stream_method`. After register, these methods can be used by dynamo to capture the stream operations in users’ script, for example, get the current stream or set the specific stream. Additionally, the wrapped stream variable and the stream context variable are changed to be the device-agnostic, the proxy functions of these variables are assigned by the associated methods in the container. All of this are illustrated in the below. Below is a illustration.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108312
Approved by: https://github.com/jansel, https://github.com/jgong5
This major change in this PR is to consolidate the skipfiles.check rules, the major thing done is merging the original ```FILE_INLINELIST``` with ```SUBMOD_INLINELIST``` into new ```MOD_INLINELIST``` and a legacy ```LEGACY_MOD_INLINELIST```.
Let's use the following example to illustrate what is the expected behavior for this force inline list:
fa995626a8/torch/_dynamo/skipfiles.py (L344-L369)
The handling logic is:
* If f2 is inlined, we will check both ```MOD_INLINELIST``` and ```LEGACY_MOD_INLINELIST``` to consultant force inline rules for f3.
* If f2 is skipped, we will check ```LEGACY_MOD_INLINELIST``` only for inline rules for f3.
The reason behind this design is: if f2 is skipped, if we always trace all recursively called functions, we will go to the very low level functions (e.g, ```super().__init__```) which caused graph breaks. We treated this as a signal that all functions that f2 recursively called should be skipped as well if f2 is skipped. This is also a feature that many PyTorch developers requested, they just want to skip all recursive functions if they mark the upper level functions as skipped.
For PyTorch developers, we should only use ```MOD_INLINELIST``` going forward. I think most of the modules in the ```LEGACY_MOD_INLINELIST``` are legacy things to workaround when we didn't have a good skip/inline API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111451
Approved by: https://github.com/ezyang
Fixes#109604
Resubmit gh-109715 + several skips and small fixes to make tests pass.
The main fix here is by @ysiraichi : previously, dynamo did not resume tracing numpy ndarrays after a graph break.
While at it, fix several small issues Yukio's fix uncovers:
- graph break gracefully on numpy dtypes which do not map to torch.dtypes (uint16 etc)
- recognize array scalars in dynamo, treat them as 0D ndarrays
- make sure that iterating over torch.ndarray generates arrays not bare tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110512
Approved by: https://github.com/lezcano
`sys.modules` is currently treated as a constant dictionary and any reference to
it will result in guards on the full contents of `sys.modules`. This instead
adds a specialized variable tracker which tries to guard only on the modules
referenced by the code. e.g.
```
sys.modules["operator"].add(x, x)
```
will generate the guard
```
___dict_contains('operator', G['sys'].modules)
```
It does this with special support for `__contains__` `__getitem__` and `.get`
which are probably the most commonly used with `sys.modules`. For anything else
we just fall back to building the dict tracker as normal.
While accessing `sys.modules` may seem unusual, it actually comes up when
inlining the `warnings.catch_warnings` context manager which internally accesses
`sys.modules["warnings"]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110990
Approved by: https://github.com/ezyang
Several improvements for skipfiles:
* Add ```FUNC_INLINELIST``` to support function level skip/inline check.
* Use ```fn.__code__``` to match function since we can't get the function object sometimes.
* Use python module string name for ```FILE_INLINELIST``` and ```SUBMODULE_INLINELIST```.
* Use filename to match file and python module, which can fundamentally resolved the circular import issues introduced by skipfiles.
* Use ```TYPE_CHECKING``` to ensure the python module string name is correct.
* Add unit tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110835
Approved by: https://github.com/ezyang
Several improvements for skipfiles:
* Add ```FUNC_INLINELIST``` to support function level skip/inline check.
* Use ```fn.__code__``` to match function since we can't get the function object sometimes.
* Use python module string name for ```FILE_INLINELIST``` and ```SUBMODULE_INLINELIST```.
* Use filename to match file and python module, which can fundamentally resolved the circular import issues introduced by skipfiles.
* Use ```TYPE_CHECKING``` to ensure the python module string name is correct.
* Add unit tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110835
Approved by: https://github.com/ezyang
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.
Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh