Fixes#135439
This PR adds support for the `is_inference` method on torch tensors which successfully compiles the following example fn without graph breaks:
```python
def fn_simple(x):
if x.is_inference():
return x.sum()
else:
return x.min()
```
I've also tried to add guards on the tensor to guard against `is_inference`. I wasn't 100% sure where these should go so please don't hesitate to correct me.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136450
Approved by: https://github.com/ezyang
Context: Adding support for the beta parameters to be tensors
Details: Similarly to the previous two PRs addcmul_ is used with the tensor betas as the value argument. When this occurs, an item() call is invoked in the aten op. To avoid this graph break, addcmul_ is decomposed into its constrituent ops to avoid this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134168
Approved by: https://github.com/anijain2305
ghstack dependencies: #134166, #134167
Context: Adding support for the beta parameters to be tensors
Details:
In this PR similarly to the previous, foreach_pow calls item() on the first argument when it is a scalar tensor. In this case, we broadcast that scalar tensor into a list of aliases of that tensor to avoid the item() call, and this results in a device copy of the scalar tensor. Once again, I dont think we can change the foreach_pow API due to BC concerns, so this op rewrite allows us to avoid a graph break, generate semantically the same code, and not affect eager.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134167
Approved by: https://github.com/anijain2305
ghstack dependencies: #134166
Context: Adding support for the beta parameters to be tensors
Details:
In order to add support for the beta params to be tensors without graph breaks in the Adam family of optimizers it is necessary to support foreach_lerp(x, y, s) where s is a scalar tensor. Today, this isn't possible because when `s` is a scalar, internally the aten op calls item() on it to extract the value and distribute it to each of the ops on the individual list indices. To support this in dynamo without graph breaks, I decompose the lerp into its constituent ops which support a scalar tensor in the list argument positions which do not result in an item() call. To be clear the item() call is more performant for eager I think and for BC I don't think we can modify that API, so this allows us to have performance in eager and no graph breaks in compile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134166
Approved by: https://github.com/anijain2305
Need to revert due to internal hangs: S437700
This reverts commit b6c1490cc0.
Revert "[dynamo] implement IteratorVariable and polyfill fallbacks for enumerate (#131725)"
This reverts commit 2576dbbc35.
Revert "[dynamo] add itertools repeat/count bytecode reconstruction (#131716)"
This reverts commit 35b4de32fa.
Revert "[dynamo] add lazy IteratorVariable implementations for map and zip (#131413)"
This reverts commit 7d282d8755.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132528
Approved by: https://github.com/ZainRizvi
Need to revert due to internal hangs: S437700
This reverts commit b6c1490cc0.
Revert "[dynamo] implement IteratorVariable and polyfill fallbacks for enumerate (#131725)"
This reverts commit 2576dbbc35.
Revert "[dynamo] add itertools repeat/count bytecode reconstruction (#131716)"
This reverts commit 35b4de32fa.
Revert "[dynamo] add lazy IteratorVariable implementations for map and zip (#131413)"
This reverts commit 7d282d8755.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132528
Approved by: https://github.com/ZainRizvi
Fixes https://github.com/pytorch/pytorch/issues/130750.
Repro of lazy/eager `map` discrepancy without `islice`:
```python
def fn(a, b):
y = 1
def f(x):
nonlocal y
y += 1
return x
l = list(zip([a, b], map(f, [1, 2, 3, 4])))
return a + y
```
The major change is that we implement `MapVariable` and `ZipVariable` based on `IteratorVariable`. Before, `map` and `zip` were being traced by immediately unpacking the result as a `TupleVariable`, which is wrong in cases such as the example above.
`MapVariable`s are not allowed to be unpacked while `ZipVariable`s can only be unpacked if all of its iterables can also be unpacked.
We also add new `[has_]force_unpack_var_sequence` methods to `VariableTracker` for the case where it is safe to unpack the entire sequence lazily, e.g., when building a list from a map (i.e. `list(map(f, ...))`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131413
Approved by: https://github.com/anijain2305
Fixes https://github.com/pytorch/pytorch/issues/103602.
This PR implements the idea of "if someone creates a string and then ends up not using it, we would prefer to NOT have specialized." mentioned in above issue. Specifically, we create a lazy variable tracker instead of ConstantVariable when we're in FORMAT_VALUE, and when the lazy variable tracker is realized (i.e. it's going to be used), we create a ConstantVariable and the specialization/guarding happens at the time of realization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131529
Approved by: https://github.com/ezyang