This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
This PR introduces `torch.nested.nested_tensor_from_jagged(values, offsets=None, lengths=None, jagged_dim=1)` (bikeshedding welcome). This is intended to be the main entrypoint for getting an NJT from the `(values, offsets, lengths)` components. The returned NJT is a view of the `values` component.
Note that `torch.nested.nested_tensor()` / `torch.nested.as_nested_tensor()` already exist for constructing an NJT from a list of tensors.
TODO:
* Some doc formatting; suggestions welcome there
* Tests / examples using `jagged_dim != 1`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121518
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #113280
This PR adds support for tensor inputs to `as_nested_tensor()`. The tensor is treated as a batch of consistently-sized constituents. It utilizes `_nested_view_from_values_offsets()` to return a real view that allows for propagating gradients into inputs.
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113280
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
This PR:
* Uses reified ViewFuncs to swap in fake tensors / symbolic SymInts for view replay during subclass view fake-ification
* Enables automatic dynamic on view bases -> fakeifies according to the resultant symbolic context instead of the old "all-static" approach
* Covers the following view types:
* subclass -> dense
* dense -> subclass
* subclass -> subclass
* Dense -> dense views are handled the old way via an `as_strided()` call, as it's likely there is no view func available
Differential Revision: [D54269082](https://our.internmc.facebook.com/intern/diff/D54269082)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118405
Approved by: https://github.com/ezyang
Meta registration wrongly assumes 4D inputs, while the underlying op allows 3D inputs for the `mha_varlen_fwd()` case.
Testing: I added `detach()`es so the NJT test `test_sdpa_compile()` won't fail for a view-related reason. It should pass now with this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119812
Approved by: https://github.com/drisspg
Before: `softmax` definition uses `jagged_unary_pointwise()` (wrong)
After: `softmax` impl adjusts the `dim` arg to account for the difference in dimensionality between the outer NT and the NT's `_values`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119459
Approved by: https://github.com/soulitzer
It should usually be safe to run pointwise binary ops with >2 inputs. e.g. threshold_backward(tensor, tensor, scalar): we just operate on the values of the nested tensors, and pass in the other args as-is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119419
Approved by: https://github.com/soulitzer
* The TODOs in `test/test_nestedtensor.py` has been mitigated, I keep the issue for reference.
* ~~The TODOs in `test/test_ops_fwd_gradients.py` doesn't apply anymore~~
* The TODOs in `run_test.py` to support disabling C++ tests is probably not going to happen. I have never seen a flaky C++ test that needs to be disabled before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119113
Approved by: https://github.com/kit1980
Uses case: `_unsafe_view` is used in aot_autograd to create a view that doesn't register as a view:
eebe7e1d37/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py (L470-L476)
If a transposed nested tensor (i.e. NT with ragged_idx != 1) encounters this code path, it previously would fail for two reasons: 1) because `_unsafe_view` isn't registered, and 2) because ragged_idx != 1 is not supported. This PR adds support for `_unsafe_view` (completely reusing the implementation of `view`; this just registers `_unsafe_view` as another op using the same implementation). It also adds support for ragged_idx != 1, but only for trivial cases where inp._size == size (the use case used by aot_autograd).
Tests: verify that the result of `_unsafe_view` doesn't have a `_base`, and that simple views on transposed NTs work.
Differential Revision: [D53096814](https://our.internmc.facebook.com/intern/diff/D53096814)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118317
Approved by: https://github.com/soulitzer
This PR allows pointwise ops to operate on tensors with ragged_idx != 1. It does this by passing the ragged_idx metadata into the construction of the returned NestedTensor when computing pointwise ops. The assumption is that: pointwise ops can operate directly on the values tensors, and the resulting tensor should have all the same metadata properties as the input tensors. For binary ops, a test is added to verify that adding two tensors with different ragged_idx cannot be added.
Previously:
* unary pointwise ops would error out when performed on nested tensors with ragged_idx != 1
* binary pointwise ops would produce tensors with nonsense shapes
Differential Revision: [D53032641](https://our.internmc.facebook.com/intern/diff/D53032641)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118157
Approved by: https://github.com/jbschlosser
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer
Part 2 of implementation for general [subclass view fake-ification](https://docs.google.com/document/d/1C5taWiplmX7nKiURXDOAZG2W5VNJ2iV0fQFq92H0Cxw).
Details:
* Codegen `rev_view_func()` alongside `view_func()`
* Reverse view_func gives you a "base" from a "view": `rev_view_func(new_view) -> new_base` AKA it plays the original view backwards
* Utilizes the functional inverses defined in `FunctionalInverses.cpp`, passing `InverseReturnMode::AlwaysView`
* Manually implements functional inverses for `narrow()` and `chunk()`
* **NB: Multi-output views now set view_func() / rev_view_func() for each of the output views!**
* Due to this, the `as_view()` overload that operates on a list of views is scrapped in favor of iteration via codegen
Example codegen in `ADInplaceOrViewTypeN.cpp`:
```cpp
at::Tensor narrow(c10::DispatchKeySet ks, const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length) {
auto _tmp = ([&]() {
at::AutoDispatchBelowADInplaceOrView guard;
return at::_ops::narrow::redispatch(ks & c10::after_ADInplaceOrView_keyset, self, dim, start, length);
})();
std::function<at::Tensor(const at::Tensor&)> func=nullptr;
std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
if (false || !self.unsafeGetTensorImpl()->support_as_strided() ||
c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
func = [=](const at::Tensor& input_base) {
return at::_ops::narrow::call(input_base, dim, start, length);
};
rev_func = [=](const at::Tensor& input_view) {
// NB: args from narrow() signature are passed along to the inverse
return at::functionalization::FunctionalInverses::narrow_copy_inverse(self, input_view, at::functionalization::InverseReturnMode::AlwaysView, dim, start, length);
};
}
auto result = as_view(/* base */ self, /* output */ _tmp, /* is_bw_differentiable */ true, /* is_fw_differentiable */ true, /* view_func */ func, /* rev_view_func */ rev_func, /* creation_meta */ InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : (at::GradMode::is_enabled() ? CreationMeta::DEFAULT : CreationMeta::NO_GRAD_MODE));
return result;
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115894
Approved by: https://github.com/soulitzer
Decorates all NT tests with `@markDynamoStrictTest` to ensure we get the correct signal. Adds xfails where needed to get things passing.
Includes a fix in meta_utils.py for a bug that was breaking several python 3.11 tests. In particular, a dense tensor graph input that is a view of a strided NT would slip past Dynamo's check and break in meta-ification.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116111
Approved by: https://github.com/soulitzer, https://github.com/zou3519
ghstack dependencies: #115192
This PR removes the need for passing `ragged_size` into the `NestedTensor` constructor. This was an artifact of fake-ification, where sometimes we needed the NT to have a symbolic singleton symint shape for the ragged dimension. The new way of achieving this is to also store mappings between fake / functional tensors -> symbolic symints in the ragged structure registry. Now the `NestedTensor` constructor can just query this registry for the `ragged_size`.
Old: `NestedTensor(values, offsets, *, ragged_size=None, **kwargs)`
New: `NestedTensor(values, offsets, **kwargs)`
This makes it possible to have a `_nested_view_from_values_offsets(values, offsets)` without needing to pass a `ragged_size`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113491
Approved by: https://github.com/ezyang, https://github.com/soulitzer
Summary:
Add split and layer_norm_backward.
Note: It is non trivial to support split_with_sizes backward so adding the split operation to support the use case in the model.
Test Plan: unit tests
Differential Revision: D51052966
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113108
Approved by: https://github.com/soulitzer