In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.
Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.
Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)
dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)
Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430
This PR moves the logic for computing the overlapping relations between input tensors that
share a storage instance to C++.
In summary, this PR:
- Moves both `tensors_definitely_do_not_overlap` and part of `compute_overlapping_tensors`
to C++
- Introduces a `check_overlapping` function that re-runs `compute_overlapping_tensors`,
checking that the result is consistent with what is expected
- Introduces the `StorageOverlapChecker` class
- Keeps track of overlapping and non-overlapping tensors
- Actually checks the overlapping relation (call `check_overlapping`) when all tensors
are collected
- Introduces the `STORAGE_OVERLAPPING` relational guard
- Has a reference to a `StorageOverlapChecker`
- Stores the to-be-checked tensors in the checker, and triggers its check
- Introduces `install_storage_overlapping_guard` python function
- Creates an instance of `StorageOverlapChecker`
- Creates 2 instances of the `STORAGE_OVERLAPPING` guard (for overlapping and
non-overlapping tensors), referencing the same `StorageOverlapChecker` instance
**Why is `StorageOverlapChecker` needed?**
The way `GuardManager` is implemented, we have no control over the order in which the
check methods are called, i.e. no control over the order the tensors are collected. So, we
can't easily split them in "overlapping" and non-overlapping kinds.
Instead, we create 2 instances of `STORAGE_OVERLAPPING` guard, each of which helps
collecting the tensors for one of the kinds mentioned above. They are then used in a
single `StorageOverlapChecker` instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140013
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139554, #139555
A subsequeunt patch attempts to fix a side-effect issue for range
iterators, which in turn exposed an exising issue on guards for range
iterators -- the following test started failing:
```
PYTORCH_TEST_WITH_DYNAMO=1 python test/test_tensor_creation_ops.py TestTensorCreationCPU.test_hstack_column_stack_cpu_int16
```
This patch adds a `RANGE_ITERATOR_MATCH` guard to make sure that we
properly guard on range iterators, and adds a regression test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141902
Approved by: https://github.com/jansel
ghstack dependencies: #141713, #141714, #141715
This is a bug on the main exposed by https://github.com/pytorch/pytorch/issues/139476
We have dict tag optimization where if the dict tag does not change, we
skip guards on all the items of the dict that are "immutable". We
considered tensors as immutable in such scenarios. This is critical for
guard eval performance, because generally users dont change their
parameters.
If I try to remove this optimization, we see slowdowns, e.g, 3.03x to
2.95x on conv_mixer TIMM benchamrk.
So, I am adding a flag which keeps the current state but allows the
users to remove this optimization. Not ideal, but given how serious guard eval perf has to be,
we are in the gray are of unsoundness vs performance tradeoff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139560
Approved by: https://github.com/jansel
This is a bug on the main exposed by https://github.com/pytorch/pytorch/issues/139476
We have dict tag optimization where if the dict tag does not change, we
skip guards on all the items of the dict that are "immutable". We
considered tensors as immutable in such scenarios. This is critical for
guard eval performance, because generally users dont change their
parameters.
If I try to remove this optimization, we see slowdowns, e.g, 3.03x to
2.95x on conv_mixer TIMM benchamrk.
So, I am adding a flag which keeps the current state but allows the
users to remove this optimization. Not ideal, but given how serious guard eval perf has to be,
we are in the gray are of unsoundness vs performance tradeoff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139560
Approved by: https://github.com/jansel
This reverts commit 7743149b2b.
Reverts
* https://github.com/pytorch/pytorch/pull/135503
* https://github.com/pytorch/pytorch/pull/135502
* https://github.com/pytorch/pytorch/pull/135422
This passes this test. Earlier, the getitem would stay like a getitem in the Fx graph. But now the fake tensor propagations fails saying that .item is called. It seems that torch function is not getting triggered while fake tensor propagation.
```
import torch
from torch.nn.attention.flex_attention import BlockMask, _mask_mod_signature, _score_mod_signature, flex_attention
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.virtualized import ops
from torch.nn.attention.flex_attention import create_block_mask
torch.set_default_device('cuda')
flex_attention = torch.compile(flex_attention, dynamic=False)
prefix_lengths = torch.arange(8)
def prefix_lm(b, h, q, kv):
return prefix_lengths[b] >= kv
mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136590
Approved by: https://github.com/Chillee
Adds guards checking whether torch function mode is in the all disabled state.
There are three torch function enablement states:
* All torch function disabled (modes + subclasses)
* Torch function subclass disabled
* All enabled
We now have guards checking if the state is All enabled and if state is All disabled.
All of the above ternary states are assigned to a unique pair of these two flags.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133135
Approved by: https://github.com/anijain2305
ghstack dependencies: #133130, #133729, #133131, #133132, #133133, #133134, #133136
This PR adds a guard on the torch function mode stack state at the beginning of tracing. The way this is implemented is via a new leaf guard which is passed the initial stack state at construction and compares it to the stack state at the time the guard is run.
Details:
The stack state is extracted via popping all modes, appending them to a list, and pushing all modes back. This list is stored on the output graph and read during guard construction to pass to the stack mode guard. There the length and types of the modes are recorded. Next time the guard is run it compares this recorded state to the current mode stack state.
To implement this in python a helper function was added to utils.py and this is used if cpp guards are not enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133130
Approved by: https://github.com/anijain2305
Fix static `py::object`s with `py::gil_safe_call_once_and_store`.
The following code will leak a `py::object` which will call its destructor when shutdown the program. The destructor will call `Py_DECREF(obj.m_ptr)` which may raise a segmentation fault.
```c++
void func() {
static py::object obj = py::module_::import("foo").attr("bar");
...
}
```
The correct code is to use raw pointers rather than the instance.
```c++
void func() {
static py::object* obj_ptr = new py::object{py::module_::import("foo").attr("bar")};
py::object obj = *obj_ptr;
...
}
```
This PR uses the `py::gil_safe_call_once_and_store` function from `pybind11`, which can run arbitrary initialization code only once under the Python GIL thread safely.
```c++
void func() {
PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object> storage;
py::object obj = storage
.call_once_and_store_result(
[]() -> py::object {
return py::module_::import("foo").attr("bar");
}
)
.get_stored();
...
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130341
Approved by: https://github.com/ezyang, https://github.com/malfet
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.
```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```
With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`.
Differential Revision: [D59399546](https://our.internmc.facebook.com/intern/diff/D59399546)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/atalman
Fix static `py::object`s with `py::gil_safe_call_once_and_store`.
The following code will leak a `py::object` which will call its destructor when shutdown the program. The destructor will call `Py_DECREF(obj.m_ptr)` which may raise a segmentation fault.
```c++
void func() {
static py::object obj = py::module_::import("foo").attr("bar");
...
}
```
The correct code is to use raw pointers rather than the instance.
```c++
void func() {
static py::object* obj_ptr = new py::object{py::module_::import("foo").attr("bar")};
py::object obj = *obj_ptr;
...
}
```
This PR uses the `py::gil_safe_call_once_and_store` function from `pybind11`, which can run arbitrary initialization code only once under the Python GIL thread safely.
```c++
void func() {
PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object> storage;
py::object obj = storage
.call_once_and_store_result(
[]() -> py::object {
return py::module_::import("foo").attr("bar");
}
)
.get_stored();
...
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130341
Approved by: https://github.com/ezyang
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.
```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```
With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`, and other different types to be summarized as the following list. The list is collected from all aten operations and ordered by the number of being used.
- `Tensor`
- `bool`
- `int64_t`
- `TensorList`
- `Scalar`
- `c10::SymIntArrayRef`
- `::std::optional<Tensor>`
- `IntArrayRef`
- `double`
- `c10::SymInt`
- `::std::optional<ScalarType>`
- `::std::optional<double>`
- `::std::optional<bool>`
- `::std::optional<Layout>`
- `::std::optional<Device>`
- `::std::optional<int64_t>`
- `Dimname`
- `::std::optional<Generator>`
- `c10::string_view`
- `::std::optional<c10::string_view>`
- `OptionalIntArrayRef`
- `::std::optional<Scalar>`
- `OptionalSymIntArrayRef`
- `::std::optional<MemoryFormat>`
- `::std::optional<c10::SymInt>`
- `ScalarType`
- `ArrayRef<Scalar>`
- `DimnameList`
- `::std::optional<ArrayRef<double>>`
- `::std::array<bool,3>`
- `::std::optional<DimnameList>`
- `c10::List<::std::optional<Tensor>>`
- `::std::array<bool,2>`
- `Storage`
- `::std::array<bool,4>`
- `Device`
- `DeviceIndex`
- `ITensorListRef`
- `Stream`
- `Layout`
- `MemoryFormat`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel
Fixes https://github.com/pytorch/pytorch/issues/125720
I was earlier worried that DELETE_* or STORE_* on referent values should result in a graph break, because they could invalidate the weak ref. But then @zou3519 pointed out that weakref invalidation will happen EVENTUALLY, CPython provides no guarantees when the weakref will be invalidated (even when the user calls del x and x is the last reference).
So any code that relies on del x to invalidate the weakref of x right away is BAD code. CPython provide no guarantees. Therefore we can (ab)use this nuance, and can just ignore DELETE_* or STORE_* on the referent objects.
The only corner case is when Dynamo is reconstructing the weakref object. Dynamo will have a hard time being correct here, so just SKIP_FRAME on such a case. This is rare.
Cpython notes
1) https://docs.python.org/3/library/weakref.html
2) https://docs.python.org/3/reference/datamodel.html#index-2
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128533
Approved by: https://github.com/jansel
Going through the dispatcher + pybind11 + torch.ops adds about 2 us overhead
per call compared to `PyArgParser`.
Note that views of inputs are reconstructed by AOTAutograd before being returned
to the python code, so dispatching for autograd's sake shouldn't be required
here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128185
Approved by: https://github.com/lezcano
ghstack dependencies: #128183, #128184
We guard on key order
1) When a key is a non-constant object
2) When we actually need key order - like .values, .items etc
For dicts/OrderedDicts that do not require key order guarding, we just rely on usual `GuardManger + DictGetItemGuardAccessor`. This is faster than going through the `list(d.keys())` based design for OrderedDicts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124779
Approved by: https://github.com/jansel
Speeds up the guard-overhead microbenchmark by around 10% normalized to main-branch CPP guards
~~~
import torch
@torch.compile(backend="eager")
def fn(x, lst):
for l in lst:
x = x + l
return x
n = 1000
lst = [i for i in range(n)]
x = torch.randn(4)
print(fn(x, lst))
print("Sucess")
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123396
Approved by: https://github.com/jansel
ghstack dependencies: #123285, #123302, #123303
Reset guard at the end of RootGuardManager, even if the result is true. Earlier we reset only when result was False. But this causes extra bookkeeping in each guard. This PR gives a tiny bit improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123046
Approved by: https://github.com/jansel