In nonblocking mode, we always check if the NCCL communicator is ready between issuing commands to it.
Today this is done by the `waitReady()` function.
Unfortunately, the `waitReady()` function is burned with `C10D_NCCL_CHECK_TIMEOUT_SLEEP` which would sleep for an interval between two consecutive checks.
While this is nice when waiting for comm init or finalize, it degrades performance of collective calls (which would almost certainly return success immediately.)
This PR adds a `bool longInterval` argument to `waitReady` and let call site determine whether long wait is likely; if not, `waitReady` would use `sched_yield()` to more eagerly check for readiness.
Thanks @eqy for reporting an issue that small collectives has perf impact in nonblocking mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142291
Approved by: https://github.com/eqy, https://github.com/fduwjj
Today `destroy_process_group()` is implemented via `ncclCommAbort`.
When user call it in CPU, risk is that a healthy NCCL kernel gets preempted, which causes data corruption.
Instead of aborting kernels, we should flush collectives in `destroy_process_group`, i.e. let them complete normally, before we tear down resources.
This PR implements such "flushing" behavior using `ncclCommFinalize`, then reclaims resources via `ncclCommDestroy`.
Expected behaviors:
For a bad program, a hang is expected at `destroy_process_group()`. If the PG uses non-blocking communicators, such hang is recoverable, because we attaches a timeout to the flush behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141510
Approved by: https://github.com/wconstab
### Motivation
`ncclCommInitRank` needs GPU guard (documented in NCCL).
`ncclCommAbort`, `ncclCommFinalize` and `ncclCommDestroy` may also need GPU guard (undocumented in NCCL); otherwise, extra CUDA context may be created (or worse, hang); both effects have been seen before in our tests.
### Solution
This PR records a device index during `NCCLComm` object creation, so that we can add GPU guard in `NCCLComm`'s method calling which direct to the above NCCL APIs.
### Note
This is not a bug fix. Just a safety improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141270
Approved by: https://github.com/eqy
ghstack dependencies: #141374
Summary:
Add a wait counter for the dump function.
This is useful to see if we get stuck in the dump function and never return for a particular job.
Test Plan: Tested locally I and see `pytorch.wait_counter.NCCLTraceBuffer__dump.busy_time_us.sum.60` in ODS.
Differential Revision: D65823433
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140823
Approved by: https://github.com/fduwjj
### Motivation
Today, watchdog only reports that it found a collective timeout:
```
[rank1]:[E1104 14:02:18.767594328 ProcessGroupNCCL.cpp:688] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1, OpType=ALLREDUCE, NumelIn=200, NumelOut=200, Timeout(ms)=5000) ran for 5096 milliseconds before timing out.
```
While this is nice, it is hard to associate the error with user's program or library stack.
### This PR
This PR gives watchdog the ability to report the call-time stack of the collective, so that it would be easier to track the error back to the program's behavior.
The call-time stack was recorded by Flight Recorder with minimal overhead (for details, please read this [doc](https://dev-discuss.pytorch.org/t/fast-combined-c-python-torchscript-inductor-tracebacks/1158) written by @zdevito ). In `ProcessGroupNCCL`, we are only tracking / reporting the python part so that it fits most PyTorch users.
### Demo
[stack_demo.py](https://gist.github.com/kwen2501/6758e18d305d67fc6f3f926217825c09).
```
TORCH_NCCL_TRACE_BUFFER_SIZE=100 torchrun --nproc-per-node 2 stack_demo.py
```
`TORCH_NCCL_TRACE_BUFFER_SIZE` is for turning on the Flight Recorder.
Output:
```
[rank0]:[E1104 14:19:27.591610653 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_reduce from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:2696
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 bar from /data/users/kw2501/sync_async/repro.py:15
#3 foo from /data/users/kw2501/sync_async/repro.py:24
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
[rank1]:[E1104 14:19:27.771430164 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_gather_into_tensor from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:3630
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 baz from /data/users/kw2501/sync_async/repro.py:20
#3 foo from /data/users/kw2501/sync_async/repro.py:26
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
```
From the log above, we can tell that `bar()` and `baz()` are the places where the two ranks divert.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139659
Approved by: https://github.com/wconstab, https://github.com/fduwjj
### Why use non-blocking mode in eager init?
For overlapping comm init and model init, etc.

### Why can we set non-blocking as default?
If the setting is dangling -- i.e. not passed in by user nor set via env -- `ProcessGroupNCCL` can have some preferred logic. And torch-level API semantics does not change whether the NCCL comm is blocking or non-blocking (handled within `ProcessGroupNCCL`).
### Why not make non-blocking default for lazy mode as well?
PR https://github.com/pytorch/pytorch/pull/137544 tried it.
Two reasons why that's not preferred today:
1. It is hard -- too big a blast.
2. There is no gain by doing lazy init in non-blocking mode, because the right next CPU call is a collective, and we will block there waiting for comm to be ready, so same effect as blocked init, no "opening" compared to eager mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138527
Approved by: https://github.com/wconstab
ghstack dependencies: #138860
### Why use non-blocking mode in eager init?
For overlapping comm init and model init, etc.

### Why can we set non-blocking as default?
If the setting is dangling -- i.e. not passed in by user nor set via env -- `ProcessGroupNCCL` can have some preferred logic. And torch-level API semantics does not change whether the NCCL comm is blocking or non-blocking (handled within `ProcessGroupNCCL`).
### Why not make non-blocking default for lazy mode as well?
PR https://github.com/pytorch/pytorch/pull/137544 tried it.
Two reasons why that's not preferred today:
1. It is hard -- too big a blast.
2. There is no gain by doing lazy init in non-blocking mode, because the right next CPU call is a collective, and we will block there waiting for comm to be ready, so same effect as blocked init, no "opening" compared to eager mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138527
Approved by: https://github.com/wconstab
ghstack dependencies: #138860
### Why use non-blocking mode in eager init?
For overlapping comm init and model init, etc.

### Why can we set non-blocking as default?
If the setting is dangling -- i.e. not passed in by user nor set via env -- `ProcessGroupNCCL` can have some preferred logic. And torch-level API semantics does not change whether the NCCL comm is blocking or non-blocking (handled within `ProcessGroupNCCL`).
### Why not make non-blocking default for lazy mode as well?
PR https://github.com/pytorch/pytorch/pull/137544 tried it.
Two reasons why that's not preferred today:
1. It is hard -- too big a blast.
2. There is no gain by doing lazy init in non-blocking mode, because the right next CPU call is a collective, and we will block there waiting for comm to be ready, so same effect as blocked init, no "opening" compared to eager mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138527
Approved by: https://github.com/wconstab
ghstack dependencies: #137855, #138488, #138374, #138384
Previously we only wait for comm to become ready after its initialization.
That's not enough. There are other NCCL APIs that can cause the comm to be InProgress, e.g. P2P calls, commSplit, commFinalize, etc.
Therefore, we just ensure comm is ready every "next time" we need to access ncclComm.
The place to add such gate keeper is `getNcclComm`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138384
Approved by: https://github.com/shuqiangzhang, https://github.com/fduwjj
ghstack dependencies: #137855, #138488, #138374
Fixes https://github.com/pytorch/pytorch/issues/137856.
### Issue 1
Today under `ProcessGroupNCCL::Options`, color is declared as:
```
int64_t split_color{0};
```
When passing this variable to `ncclCommSplit` which accepts `int`, the value may overflow and become negative, as in #137856. But NCCL API only accepts non-negative colors (or `NCCL_SPLIT_NOCOLOR`).
But that's not all.
### Issue 2
`split_color` is pybind'ed to python frontend. If we just change from `int64_t` to `int` in C++, pybind will complain:
```
[rank0]: TypeError: (): incompatible function arguments. The following argument types are supported:
[rank0]: 1. (self: torch._C._distributed_c10d.ProcessGroupNCCL.Options, arg0: int) -> None
```
This is because python `int` represents a wider range than C++ `int`. So we cannot pass hash values -- which are potentially big ints -- from python to C++. The PR modulo the hash value with `c_int`'s max value.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137855
Approved by: https://github.com/wconstab
### Fix 1: Throw async error during init wait
Previously we just busy wait for `ncclSuccess`, if the nonblocking init encountered error, we never report that. Added detection of async error via `ncclGetAsyncError`.
### Fix 2: Add wait after comm split
```
// After calling ncclCommSplit in non-blocking mode, we should wait for the
// source communicator to be out of ncclInProgress state.
// Reason 1:
// it's unsafe to call new operations on the parent comm while it's in
// ncclInProgress state.
// Reason 2:
// as of NCCL 2.23, the ptr value of child comm will not be filled until the
// state of parent comm is ncclSuccess. This may change in the future. See:
// https://github.com/NVIDIA/nccl/issues/1472
```
This wait does not mean the child comm is ready for use, neither does it block till that point.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137741
Approved by: https://github.com/shuqiangzhang
When non-blocking mode is enabled, we need to make sure `ncclComm_` is ready before calling NCCL APIs on it.
`NCCLComm::getNcclComm` help us do that (thanks to a wait function inside), thus is preferred than directly using `ncclComm_`.
To prevent `ncclComm_` from being directly used outside, e.g. in `ProcessGroupNCCL`, we also move it as a private member of `NCCLComm` class -- the external-facing wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137573
Approved by: https://github.com/Skylion007, https://github.com/shuqiangzhang, https://github.com/c-p-i-o
ghstack dependencies: #137572
- This PR generates a more useful output log for users: P1552399180.
- It also fixes the logic when we check the all-gather size mismatch.
- Add dtype check for collective input/output
- We store more context information for error match_state so that we can report them in the file.
- Disable the size match for alltoall because we don't log the size for all inputs/outputs.
- Correct some types for func args specification.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134528
Approved by: https://github.com/c-p-i-o
This adds logs if we can't acquire locks in NCCLUtils and ProcessGroupNCCL for 30s.
This is motivated by some deadlocks were seeing and it's unclear if it's in NCCL or on the PyTorch side of things.
This required replacing most `std::mutex` with `std::timed_mutex` and `std::condition_variable_any` as appropriate.
Test plan:
existing CI for regressions
will add unit tests on `C10D_LOCK_GUARD`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134131
Approved by: https://github.com/c-p-i-o, https://github.com/fduwjj
This adds logs if we can't acquire locks in NCCLUtils and ProcessGroupNCCL for 30s.
This is motivated by some deadlocks were seeing and it's unclear if it's in NCCL or on the PyTorch side of things.
This required replacing most `std::mutex` with `std::timed_mutex` and `std::condition_variable_any` as appropriate.
Test plan:
existing CI for regressions
will add unit tests on `C10D_LOCK_GUARD`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134131
Approved by: https://github.com/c-p-i-o, https://github.com/fduwjj
This patch makes two changes:
1. Whenever ncclCommSplit accepts groupRanks in its config, we should
populate it. This is independent of using PMI or not. For example,
non-PMI NCCL can also use this information, if it chooses to.
2. Provide a user flag to decide when to do a uniqueId broadcast and
when to skip it. This is a performance optimization, and not a
correctness requirement. If the user forgets to set this, we will
do the uniqueId broadcast, which is wasteful (because it will be
ignored by NCCL), but not incorrect.
@exported-using-ghexport
Differential Revision: [D60966774](https://our.internmc.facebook.com/intern/diff/D60966774/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133960
Approved by: https://github.com/shuqiangzhang
Summary:
We saw ncclCommAbort was called and hang during the NCCLComm:create.
If NCCL comm is not properly initialized, ncclCommAbort behavior is
'undefined', avoid calling it would allow the process to properly throw
exception
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133630
Approved by: https://github.com/wconstab
Some features of third-party devices depend on TraceUtils.h, so some of the CUDA code was removed and split into NCCLUtils files.
In addition, some common functions still remain in TraceUtils.h since I'm not sure if other devices will use them later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126969
Approved by: https://github.com/c-p-i-o
Summary
Pass parameters from request to dump_nccl_trace_pickle handler.
The supported parameters + value are all lowercase.
includecollectives={true, false}
includestacktraces={true, false}
onlyactive={true, false}
Example post is:
/handler/dump_nccl_trace_pickle?includecollectives=true&includestacktraces=false&onlyactive=true
Test Plan:
unit tests
Differential Revision: [D58640474](https://our.internmc.facebook.com/intern/diff/D58640474)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128781
Approved by: https://github.com/d4l3k
Summary:
D56907877 modified OSS commSplit. However, commSplit requires every rank being called even though it is no-color. ncclCommSplit will not create a communicator for nocolor ranks hence this line of code will potentially throw error like `NCCL WARN CommUserRank : comm argument is NULL`
Revert this change from D56907877
Test Plan: CI
Differential Revision: D58436088
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128459
Approved by: https://github.com/shuqiangzhang
Summary:
Pass parameters from request to dump_nccl_trace_pickle handler.
The supported parameters + value are all lowercase.
includecollectives={true, false}
includestacktraces={true, false}
onlyactive={true, false}
Example post is:
/handler/dump_nccl_trace_pickle?includecollectives=true&includestacktraces=false&onlyactive=true
Test Plan:
unit tests
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128307
Approved by: https://github.com/d4l3k
ghstack dependencies: #128191
Some features of third-party devices depend on TraceUtils.h, so some of the CUDA code was removed and split into NCCLUtils files.
In addition, some common functions still remain in TraceUtils.h since I'm not sure if other devices will use them later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126969
Approved by: https://github.com/c-p-i-o
This is a duplicate of: https://github.com/pytorch/pytorch/pull/127421 which we can't merge. its landed internally already
Summary:
`ncclCommCreateFromRanks` - described in this [document](https://docs.google.com/document/d/1QIRkAO4SAQ6eFBpxE51JmRKRAH2bwAHn8OIj69XuFqQ/edit#heading=h.5g71oqe3soez), replaces `ncclCommSplit` in NCCLX versions 2.21.5+. The difference is that `ncclCommCreateFromRanks` is given a list of active ranks and is collective only over those ranks as opposed to `ncclCommSplit` for which you give it a color for every rank including NO_COLOR for inactive ranks and the collective is over the entire world.
This diff connects `ncclCommCreateFromRanks` to `c10d`
`ncclCommSplit` will still be available at the NCCL API but, in this diff, is not used starting at version 2.21.5
Split the python test and implementation of `split()` for internal FB and external OSS builds.
The diff defines `"USE_C10D_NCCL_FBCODE"` as a compiler option. When defined, we use the version of split in the newly created `NCCLUtils.cpp` in the `fb` directory. The `fb` directory is not *shipit*-ed to *github*.
The same API is used for `split()` in both the `ncclx` and `nccl` versions adding `ranks` to the API. This argument is not used in the `nccl` version nor in the 2.18 `ncclx` version where `ncclCommSplit()` is used instead of `ncclCommCreateFromRanks()` in `ncclx`
This diff was squashed with D57343946 - see D57343946 for additional review comments.
Test Plan:
for 2.18.3-1 and 2.21.5-1 versions:
```
buck2 run fbcode//mode/opt -c param.use_nccl=True -c fbcode.nvcc_arch=a100 -c hpc_comms.use_ncclx="$VERSION" -c fbcode.enable_gpu_sections=true fbcode//caffe2/test/distributed/fb:test_comm_split_subgroup_x
```
```
BUILD SUCCEEDED
...
ok
----------------------------------------------------------------------
Ran 1 test in 10.210s
OK
~/scripts
```
OSS build:
`[cmodlin@devgpu003.vll5 ~/fbsource/third-party/ncclx/v2.21.5-1 (e56338cfa)]$ ./maint/oss_build.sh`
OSS build output:
```
...
ncclCommHash 197dce9b413e2775
nccl commDesc example_pg
Dump from comm 0x4708aa0 rings: [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]
Dump from comm 0x4708aa0 commDesc: example_pg
Dump from comm 0x4708aa0 nRanks: 1
Dump from comm 0x4708aa0 nNodes: 1
Dump from comm 0x4708aa0 node: 0
Dump from comm 0x4708aa0 localRanks: 1
Dump from comm 0x4708aa0 localRank: 0
Dump from comm 0x4708aa0 rank: 0
Dump from comm 0x4708aa0 commHash: "197dce9b413e2775"
2024-05-24T09:02:54.385543 devgpu003:3040664:3040744 [0][AsyncJob]ctran/backends/ib/CtranIb.cc:143 NCCL WARN CTRAN-IB : No active device found.
2024-05-24T09:02:54.385607 devgpu003:3040664:3040744 [0][AsyncJob]ctran/mapper/CtranMapper.cc:187 NCCL WARN CTRAN: IB backend not enabled
Created NCCL_SPLIT_TYPE_NODE type splitComm 0x11c76d0, rank 0
~/fbsource/third-party/ncclx/v2.21.5-1
```
Reviewed By: wconstab, wesbland
Differential Revision: D56907877
Fixes #ISSUE_NUMBER
Co-authored-by: Cory Modlin <cmodlin@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127982
Approved by: https://github.com/izaitsevfb
When working on testing all-reduce with an alternative rccl replacement backend, my test script crashed. After debugging, I found that `ncclGetLastError(NULL)` return null, and then the code uses the return value to do std::string would seg-fault with an exception of `basic_string::_M_construct null not valid`.
This pull request is to fix this edge condition so that it will exit the program gracefully with useful information.
**Test:**
Before the fix, my test script exits like below:
```
File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 2051, in all_reduce
work = group.allreduce([tensor], opts)
RuntimeError: basic_string::_M_construct null not valid
```
After this fix, my test script exited with useful message like,
```
[rank0]: File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 2219, in all_reduce
[rank0]: work = group.allreduce([tensor], opts)
[rank0]: torch.distributed.DistBackendError: NCCL error in: /pytorch/torch/csrc/distributed/c10d/NCCLUtils.hpp:272, internal error - please report this issue to the NCCL developers, NCCL version 0.4.2
[rank0]: ncclInternalError: Internal check failed.
[rank0]: Last error: Unknown NCCL Error
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121905
Approved by: https://github.com/wconstab
resolve#117749
Summary:
Updated the PR with the following intentions:
1. identify eagerMode init (as opposed to lazy init), in which case we will create NCCL comms without guarantees that they are fully initialized if NONBLOCKING mode is also enabled.
2. Python users can do their other works (e.g., model init) between invoking init_process_group and their first collective call.
3. c10D would guarantee/wait for communicators to be initialized before issuing the first collective call.
4. For NCCL collective calls, the contract between python users and c10d is not changed much from blocking calls (C10d would wait the NCCL call to be ncclSuccess, or timeout, whichever happens first).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118256
Approved by: https://github.com/kwen2501
Currently, the only way ProcessGroupNCCL shuts down its background threads and aborts all communicators is via the destructor.
However, given how python GC works and code holding references to the PG in multiple places, in practice calling `destroy_process_group` doesn't actually end up invoking the destructor.
As a result, in this PR I'm adding a explicit shutdown method to that users can call to cleanup all resources.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111392
Approved by: https://github.com/XilunWu, https://github.com/wanchaol, https://github.com/fduwjj