Commit Graph

617 Commits

Author SHA1 Message Date
PyTorch MergeBot
c93e34d7b5 Revert "bound sympy accuracy (#150383)"
This reverts commit 1bc2b2b12a.

Reverted https://github.com/pytorch/pytorch/pull/150383 on behalf of https://github.com/laithsakka due to big regression ([comment](https://github.com/pytorch/pytorch/pull/150383#issuecomment-2779227548))
2025-04-04 16:26:00 +00:00
Avik Chaudhuri
1bc2b2b12a bound sympy accuracy (#150383)
Differential Revision: D72215735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150383
Approved by: https://github.com/pianpwk
2025-04-04 00:15:32 +00:00
Pian Pawakapan
90ddb33141 [export] specialize for aten.to (#149235)
Changes decomposition behavior of `aten.to` to respect the aliasing/non-aliasing behavior in eager, and to specialize to the input/conversion dtype & device.

Before change: we always decompose `aten.to` into `_to_copy`, regardless of aliasing behavior. This leads us to ban mutations on the result of `_to_copy` when aliased, since we can't guarantee correct program semantics. This meant users had to explicitly call `.clone()` before mutating. In the special cases where we don’t ban mutations (e.g. dtype conversion), we add runtime assertions on the input & conversion dtype/devices in the decomposed program (see https://github.com/pytorch/pytorch/pull/142420).

After change: we decompose to the aliasing/non-aliasing behavior that matches eager, allowing mutations in all cases. We also add dtype/device assertions for all `aten.to` ops, starting in the pre-dispatch graph, basically specializing the program to the dtype/devices.

Differential Revision: D71229547

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149235
Approved by: https://github.com/tugsbayasgalan
2025-04-03 05:20:10 +00:00
Avik Chaudhuri
1017927c83 multidimensional slicing (#150104)
Differential Revision: D71962884

Fixes #150057

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150104
Approved by: https://github.com/angelayi
2025-04-02 20:57:16 +00:00
Yidi Wu
22030efb64 expect fail scan test in sigmoid (#150475)
Summary: as titled.

Test Plan: see modified test.

Differential Revision: D72271976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150475
Approved by: https://github.com/zhxchen17
2025-04-02 19:56:50 +00:00
angelayi
60fe0922f6 [pytree] Register normal class to register_dataclass (#147752)
Fixes https://github.com/pytorch/pytorch/pull/147532#discussion_r1964365330

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147752
Approved by: https://github.com/zou3519
2025-04-01 23:28:20 +00:00
Avik Chaudhuri
b70d105c77 infer dynamic shapes through additional inputs (#150144)
Summary:
Instead of explicitly specifying dynamic shapes, it is possible to infer them from additional example inputs. Together with the example inputs provided to export, we can basically make any varying dim dynamic and keep any fixed dim static. This should be useful for prod scenarios that have access to tests and/or profiling data, yet are somewhat removed from the model authoring process.

However this alone is not satisfactory: the exported program by design has only one graph, representing one path through the model, and we cannot necessarily guarantee that this graph works for the additional example inputs because different guards might have been created if we had exported with them instead (corresponding to different traced paths). However, checking that the additional example inputs satisfy the guards created by the original export should be sufficient for generalization.

Now, while we don't preserve all guards in the exported program, we do check a subset of them as part of input matching. So we add a verification step at the end of export when such additional example inputs are provided. This should be enough for now.

Test Plan: added test (positive and negative cases)

Differential Revision: D72001771

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150144
Approved by: https://github.com/bobrenjc93
2025-04-01 21:13:39 +00:00
Pian Pawakapan
925fd4aa2e [export] min/max ranges for dim hints (#149590)
Differential Revision: D71522032

Adds min/max ranges to Dim.AUTO/DYNAMIC/STATIC, so users can do `Dim.AUTO(min=2, max=2048)`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149590
Approved by: https://github.com/tugsbayasgalan
2025-03-31 21:32:20 +00:00
Pian Pawakapan
103bf64a3c [export] refactor _Dim into Dim (#149891)
Summary: forward fix T218515233

Test Plan: test_export

Differential Revision: D71769231

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149891
Approved by: https://github.com/jingsh, https://github.com/angelayi
2025-03-28 06:19:03 +00:00
bobrenjc93
f649ee73ce Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-28 05:36:32 +00:00
Tugsbayasgalan Manlaibaatar
c49315e645 Improve attr mismatch msg (#149576)
Differential Revision: [D71513041](https://our.internmc.facebook.com/intern/diff/D71513041)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149576
Approved by: https://github.com/avikchaudhuri
2025-03-28 05:10:56 +00:00
Avik Chaudhuri
21bcbbfb5e fix range constraints for expr (#150103)
During tracing it is possible for a `s1: VR[2, inf]` to be replaced by a `s0: VR[3, inf]` (note smaller range) by the shape env. But after export, unfortunately we'd previously record `range_constraints[s0] = VR[2, inf]` (note larger range), which is incorrect.

This is because we'd map `s1.node.expr` (`s0`) to the `var_to_range` of `s1.node._expr` (`s1`) when creating `range_constraints`. The comment surrounding this code suggests this predated `bound_sympy`, but now we can do better.

For users, this means that when using `Dim.DYNAMIC` previously they wouldn't get input constraints checked sufficiently, now they do (shifting errors early).

Differential Revision: D71962694

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150103
Approved by: https://github.com/zhxchen17
2025-03-27 22:11:39 +00:00
PyTorch MergeBot
af7719a2fa Revert "Use source hashing to generate consistent symbolic ids (#149665)"
This reverts commit 1f92348dc6.

Reverted https://github.com/pytorch/pytorch/pull/149665 on behalf of https://github.com/malfet due to Broke trunk, see 6eb3c2e282/1 ([comment](https://github.com/pytorch/pytorch/pull/149665#issuecomment-2758578187))
2025-03-27 16:02:27 +00:00
bobrenjc93
1f92348dc6 Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-27 03:39:27 +00:00
Yidi Wu
b2b9aaf0ad Fix non-strict export doesn't turn on dynamo for hop (#149903)
Somehow the torch._dynamo.is_compiling is changed to torch.compiler.is_compiling(), which also checks whether we're exporting. This is not caught by cI because we don't have an export test for scan.

Changing to torch.compiler.is_dynamo_compiling and added a test.

edit: piggyback the re-tracing support in this PR. Related code in combine_fn_is_normalized.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149903
Approved by: https://github.com/zou3519
2025-03-27 02:38:05 +00:00
Scott Wolchok
dc39e673e2 Remove aten.elu core ATen decomp because it is now core ATen (#149780)
Per @larryliu0820.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149780
Approved by: https://github.com/larryliu0820
2025-03-25 01:59:57 +00:00
Zhengxu Chen
84684e9397 [sigmoid] Fix scalar resolution for Scalar_mode aten ops. (#149755)
Summary: For Scalar variant resolution, we didn't handle a corner case of "Tensor_mode" variant (from aten::div). Adding the missing case to the graph pass.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_operator_aten_tensor_mode_variant_cpp_runtime

Differential Revision: D71638433

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149755
Approved by: https://github.com/yushangdi
2025-03-25 01:17:36 +00:00
Zhengxu Chen
490ce7e67c [sigmoid] Support _operator.neg/truediv (#149754)
Summary: adding operator.truediv and operator.neg support to the runtime

Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_sym_float_operators_cpp_runtime_nonstrict

Differential Revision: D71637267

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149754
Approved by: https://github.com/pianpwk
2025-03-24 22:15:25 +00:00
Yidi Wu
0a0a73a9a9 [cond] don't trace fw and bw graph in autograd key (#148930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148930
Approved by: https://github.com/zou3519
2025-03-24 17:07:29 +00:00
Tugsbayasgalan Manlaibaatar
021b3e23ec Fix is_nonzero for more than one elem tensors (#149637)
Differential Revision: [D71560442](https://our.internmc.facebook.com/intern/diff/D71560442)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149637
Approved by: https://github.com/pianpwk
2025-03-22 02:08:28 +00:00
angelayi
ff020d32b6 [export] Patch dynamo configs when nonstrict tracing (#149295)
Differential Revision: [D71298929](https://our.internmc.facebook.com/intern/diff/D71298929)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149295
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2025-03-21 21:44:54 +00:00
Avik Chaudhuri
fb07fe6f36 pretty print graph signature (#149710)
Fixes #141243

Differential Revision: [D71604218](https://our.internmc.facebook.com/intern/diff/D71604218/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149710
Approved by: https://github.com/angelayi
2025-03-21 21:31:58 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
c5deacc27a Fix subclass access custom op bug (#149698)
Summary: When we call torch.inference_mode, we seem to skip Autograd key causing the custom op export uses to be not decomposed properly before subclass dispatching starts. We fix this by force desugaring this op at Python key

Test Plan: test

Differential Revision: D71599541

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149698
Approved by: https://github.com/bdhirsh
2025-03-21 19:42:56 +00:00
Avik Chaudhuri
09aa63ea2c preserve custom meta in placeholders (#149661)
Fixes #147338

Differential Revision: [D71573533](https://our.internmc.facebook.com/intern/diff/D71573533/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149661
Approved by: https://github.com/junpeiz, https://github.com/angelayi
2025-03-21 19:09:38 +00:00
Zhengxu Chen
f47aa08130 [export] Support python assertion with symints. (#149444)
Summary: This diff ports some technique from torch.fx symbolic trace to trace through Python asserts when we run into data dependent symbolic shape assertions, so that we can achieve the same effect as torch dynamo to automatically turn assert into torch.check()s.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_python_asserts_with_sym_int
Differential Revision: D71425360

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149444
Approved by: https://github.com/tugsbayasgalan
2025-03-20 23:07:45 +00:00
Avik Chaudhuri
6237495fcf torch.Size input (#149414)
Summary: Support for `torch.Size` inputs was patchy before because `unflatten_fn` for this type returned a tuple. This PR cleans this up.

Fixes #149158

Test Plan: added test

Differential Revision: D71403635

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149414
Approved by: https://github.com/yushangdi
2025-03-20 16:23:13 +00:00
Tugsbayasgalan Manlaibaatar
3b7bd6c63d Fix dynamic shapes repordering bug (#149528)
WHen we create constraints, we look at the ordering of kwargs according to model signature. But when we trace, we use the ordering that is created based on how user passes in their kwargs. As a result, constraints and dynamic shapes end up having a different order causing issues when they have different dynamic tensor specs.

Differential Revision: [D71478578](https://our.internmc.facebook.com/intern/diff/D71478578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149528
Approved by: https://github.com/ydwu4
2025-03-20 01:57:44 +00:00
Avik Chaudhuri
5005e1bc47 support multinomial for dynamic num_samples (#149463)
Test Plan: added test

Fixes #149048

Differential Revision: D71434914

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149463
Approved by: https://github.com/pianpwk
2025-03-19 23:15:29 +00:00
Yanan Cao (PyTorch)
fae79e91a0 Remove torch.export.export_for_inference (#149078)
Summary: Remove torch.export.export_for_inference, it is redundant and can always be replaced with torch.export.export_for_training() + run_decompositions()

Test Plan: unit tests

Differential Revision: D71069057

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149078
Approved by: https://github.com/tugsbayasgalan
2025-03-19 19:57:18 +00:00
Avik Chaudhuri
20874a1f46 debug ival swap (#149206)
Summary:
Recall that we use "ivals" to track intermediate values of mutations during unflattening. Previously, for each such intermediate value, we would create a hidden shared attribute that would be updated / read by respective submodules.

Unfortunately this scheme doesn't work when some but not all of those submodules are swapped out. This is because the swapped in submodules have no knowledge of these hidden attributes. Thus the submodules that are not swapped out end up reading / updating dangling state.

This PR does away with these hidden attributes. Instead, we directly read the underlying buffer or placeholder that was updated, and update those underlying buffers and placeholders in place. This makes the graphs look much closer to their eager origins.

Test Plan: added some tests, ensured existing tests pass

Differential Revision: D71203469

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149206
Approved by: https://github.com/tugsbayasgalan
2025-03-19 03:43:30 +00:00
Tugsbayasgalan Manlaibaatar
6b1b95ad2a Support subclass constructor capturing in export (#147014)
Notable TODOs:
1. Need to implement AutogradHOP to get rid of subclasses before serializing
2. Need to implement mechanism to figure out what subclasses will be used in export when they are not expressed in the inputs

Differential Revision: [D69640673](https://our.internmc.facebook.com/intern/diff/D69640673)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147014
Approved by: https://github.com/bdhirsh
2025-03-16 18:19:19 +00:00
Yanan Cao (PyTorch)
ab45aaca97 Set non-strict export as default mode (#148790)
Summary:
- Flip the default value of strict argument in torch.export.export from True to False
- Update test infra to cope with the change, some of them made the assumption of strict mode as default
- Disabled some tests that fail in non-strict mode

Test Plan: Sandcastle

Differential Revision: D70228628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148790
Approved by: https://github.com/angelayi
2025-03-12 21:10:58 +00:00
Pian Pawakapan
a6459afb0e [dynamic shapes] add backed_size_oblivious option (#148696)
Adds option `torch.fx.experimental._config.backed_size_oblivious = True` to allocate `[0, inf]` instead of `[2, inf]` ranges for size backed symbols, and opting into size-oblivious semantics for them.

Helps in a number of cases like
- Keeps `[0, inf]` bounds for unbacked symbols, when we make a unbacked -> backed replacement
- More sound handling for 0/1 inputs at runtime when we lower from export
- Avoids ends-of-bounds, sys.maxsize constraint violations for exporting with named Dims (https://github.com/pytorch/pytorch/issues/146315, https://github.com/pytorch/pytorch/issues/146046)

May look towards turning this on globally for export.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148696
Approved by: https://github.com/bobrenjc93
2025-03-11 21:52:34 +00:00
Avik Chaudhuri
6cf360be04 fix lost input mutations with export_tracepoint (#148709)
Preserving module call signatures in the presence of input mutation cause incorrect results. The root cause turned out to be that export tracepoints would unwrap / wrap functional args that would lose mutation info on those args.

Differential Revision: [D70734821](https://our.internmc.facebook.com/intern/diff/D70734821/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148709
Approved by: https://github.com/angelayi
2025-03-07 09:36:18 +00:00
Ryan Guo
ad9a10aff0 [dynamo] Make nonstrict_trace work with some pytree.register_constant-ed instances (#148007)
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
2025-03-05 21:28:26 +00:00
angelayi
ed9624ee60 [export] Fix AttrProxy slicing (#148507)
Fixes https://fb.workplace.com/groups/1028545332188949/permalink/1159599265750221/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148507
Approved by: https://github.com/zhxchen17
2025-03-05 21:03:15 +00:00
Pian Pawakapan
c677f3251f [export] don't use unbacked_renamings in export (#147574)
Plan: avoid the use of unbacked renamings, and introduce a pass run in `_produce_aten_artifact` that recomputes unbacked bindings. Decided to do this because in we don't serialize unbacked renamings (or any ShapeEnv state), so this used to compose poorly with de/serialization. This hopefully establishes the invariant that the unbacked binding keys are always in sync with the example values (i.e. same indices, and removed if the symbol is replaced / specialized).

For de/serialization, we don't stored unbacked bindings, and just rerun the pass.

Involved a refactor of compute_unbacked_bindings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147574
Approved by: https://github.com/avikchaudhuri
2025-03-04 21:43:49 +00:00
Alexander Grund
302c660298 Consistently use load_torchbind_test_lib in tests (#148082)
The same code is repeated multiple times with slightly different implementations.
Use the existing function for brevity and consistency.

In the function the code from `test_export` is used which does a single `load_library` with cleaner conditions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148082
Approved by: https://github.com/angelayi
2025-03-03 19:37:28 +00:00
Tugsbayasgalan Manlaibaatar
a821d69d92 Fix register constant to be usable in exportz (#147533)
Differential Revision: [D69939737](https://our.internmc.facebook.com/intern/diff/D69939737)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147533
Approved by: https://github.com/zou3519
2025-02-25 21:10:47 +00:00
Avik Chaudhuri
8d921eb97f export method (#147573)
The `export` API takes a `nn.Module` and traces its `forward` method. However sometimes it is useful to export different methods of a `nn.Module`, either as a one-off for debugging or as a set of methods that are called in some sequence outside `export` (e.g., `encode` / `decode`). When multiple methods of the same module instance are exported, they should share the same of the common module instance.

This PR adds a couple of utils in `torch._export.utils` for this workflow.

The `wrap_method` util wraps a method as a `nn.Module` that can then be exported. See included test. We recommend using the same module instance to export multiple methods on that instance, in which case they are guaranteed to share  state. On serde, this state sharing is lost, so we provide another util, `sync_state`, to re-sync the state.

These utils are meant to be eventually replaced by API-level changes, but for now this can unblock users who need this workflow. In particular, in the future we can accept one or multiple method entrypoints, with their own args / kwargs / dynamic shape specifications, which can create a variant of `ExportedProgram` with multiple graphs that share state; then we can automatically ensure that the state sharing is preserved through serde.

Differential Revision: [D69960801](https://our.internmc.facebook.com/intern/diff/D69960801/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147573
Approved by: https://github.com/tugsbayasgalan
2025-02-25 20:58:54 +00:00
Avik Chaudhuri
698f6f9fae specify only some dimensions in shapes collection (#147534)
Differential Revision: [D69936316](https://our.internmc.facebook.com/intern/diff/D69936316/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147534
Approved by: https://github.com/bobrenjc93
2025-02-21 22:02:42 +00:00
Thomas Bohnstingl
6eb795c9e8 [associative_scan] compile backend change to "eager" (#146973)
This PR fixes some issues with torch export discussed here: https://github.com/pytorch/pytorch/pull/140043#discussion_r1941932960

However, this backend change does still not resolve the failure for specific shapes mentioned here: https://github.com/pytorch/pytorch/issues/137943#issuecomment-2649564994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146973
Approved by: https://github.com/ydwu4
2025-02-21 20:21:41 +00:00
Zhengxu Chen
fdb1305ace reland "[sigmoid] Test OSS model runner with test_export.py" (#147535)
Summary: There are ~260 tests for all the corner cases of export from test_export.py. utitlizing to test sigmoid in the OSS setting.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r _sigmoid

Differential Revision: D69937387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147535
Approved by: https://github.com/yiming0416
2025-02-20 23:45:13 +00:00
Yidi Wu
77aa602871 [torchbind] Differentiate ScriptModule and ScriptObject with qualified name (#147399)
Summary:
This pr add a _is_script_object method to differentiate scriptModule and scriptObject, where the formal inherits from ScriptObject in C++ so they both passes the isinstance(obj, torch.ScriptObject) check.

The qualified name of ScriptObject (i.e. custom class) would starts with "__torch__.torch.classes", this has been a widely used assumption for dealing with custom class across our code base.

Test Plan: Add new test.

Differential Revision: D69685316

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147399
Approved by: https://github.com/yushangdi
2025-02-20 04:57:57 +00:00
Gregory Comer
f63db6255f Re-land exclude upsample_bilinear2d.vec and nearest2d.vec from default export decomposition table (#147153)
Note: This is a re-land of https://github.com/pytorch/pytorch/pull/141791, which I reverted due to breaking some Meta-internal tests - an internal ET delegate did not handle the non-decomposed upsample_nearest2d, and it was not caught in CI. I've resolved that issue and should be ready to safely re-land.

Summary:
As upsample_bilinear2d.vec and upsample_nearest2d.vec are core ATen ops, they should not be decomposed by default in the export path. Because the operators have CompositeImplicitAutograd dispatch, their decomposition is registered by default. This change adds an override list for CIA decompositions being registered in the default decomp table.

In the long-term, we likely will want to exclude decompositions for all core-tagged CIA ops, but this will require all consumers to be ready to handle the remaining two ops, avg_pool1d, and adaptive_avg_pool1d. Until they are ready, I believe an explicit override list is the safest option.

Additionally, I've also removed the ExecuTorch XNNPACK delegate ConvertToUpsampleBilinear2d pass, as the pass breaks (and is not needed), given that the op is not decomposed. The purpose of this pass was originally to pattern match the decomposition and recompose it, but this is no longer necessary.

Test Plan:
Added a new test (`test_default_decomposition_core_cia_ops`) in test_export.py to verify that upsample_bilinear2d.vec (and in the future, other core-tagged CIA ops) are not decomposed by default. Also, I manually validated end to end with ExecuTorch that the op is not decomposed in to_edge (see N6238522).

```
buck test //caffe2/test:test_export -- test_default_decomposition_core_cia_ops
```

Differential Revision: D69625112

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147153
Approved by: https://github.com/manuelcandales
2025-02-19 23:03:29 +00:00
Avik Chaudhuri
24738768a8 more dist ops in non strict (#147417)
Summary: Previously we added support for `all_reduce` to non strict. This PR extends this support to other non-functional collectives that are remapped in Dynamo: `all_gather`, `all_gather_into_tensor`, `all_to_all_single`, `reduce_scatter_tensor`.

Test Plan: added unit tests

Differential Revision: D69813991

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147417
Approved by: https://github.com/angelayi
2025-02-19 21:29:16 +00:00
Avik Chaudhuri
4ab967c44d all reduce non strict (#147133)
Summary:
Some distributed collectives like `all_reduce` have special handling in Dynamo, where they are mapped to functional collectives. Non-strict was previously blind to such mappings, which means using them would fail to trace. Here we show how intercepting them in non-strict's torch function mode can mimic this remapping logic. More ops to follow.

Side note: a recently added distributed test was in the wrong place, making the expected failures for non-strict not fire because we weren't actually generating those tests to begin with! Now fixed.

Test Plan: moved and updated test

Differential Revision: D69607140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147133
Approved by: https://github.com/tugsbayasgalan
2025-02-15 19:37:08 +00:00
angelayi
ea188ac0c7 [export] Add meta for aten.bincount (#147129)
Fixes https://github.com/pytorch/pytorch/issues/147094
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147129
Approved by: https://github.com/pianpwk
2025-02-14 10:33:54 +00:00
xinan.lin
972e927134 [Break XPU][Inductor UT] Fix XPU Inductor UT failures introduced from community. (#146762)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146762
Approved by: https://github.com/EikanWang, https://github.com/desertfire, https://github.com/jansel
2025-02-14 01:38:50 +00:00
Thomas Bohnstingl
3a29992ee6 [associative_scan] Lifted arguments (#140043)
This PR implements lifted arguments for associative_scan

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140043
Approved by: https://github.com/ydwu4
2025-02-11 23:25:55 +00:00