Changes decomposition behavior of `aten.to` to respect the aliasing/non-aliasing behavior in eager, and to specialize to the input/conversion dtype & device.
Before change: we always decompose `aten.to` into `_to_copy`, regardless of aliasing behavior. This leads us to ban mutations on the result of `_to_copy` when aliased, since we can't guarantee correct program semantics. This meant users had to explicitly call `.clone()` before mutating. In the special cases where we don’t ban mutations (e.g. dtype conversion), we add runtime assertions on the input & conversion dtype/devices in the decomposed program (see https://github.com/pytorch/pytorch/pull/142420).
After change: we decompose to the aliasing/non-aliasing behavior that matches eager, allowing mutations in all cases. We also add dtype/device assertions for all `aten.to` ops, starting in the pre-dispatch graph, basically specializing the program to the dtype/devices.
Differential Revision: D71229547
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149235
Approved by: https://github.com/tugsbayasgalan
Summary:
Instead of explicitly specifying dynamic shapes, it is possible to infer them from additional example inputs. Together with the example inputs provided to export, we can basically make any varying dim dynamic and keep any fixed dim static. This should be useful for prod scenarios that have access to tests and/or profiling data, yet are somewhat removed from the model authoring process.
However this alone is not satisfactory: the exported program by design has only one graph, representing one path through the model, and we cannot necessarily guarantee that this graph works for the additional example inputs because different guards might have been created if we had exported with them instead (corresponding to different traced paths). However, checking that the additional example inputs satisfy the guards created by the original export should be sufficient for generalization.
Now, while we don't preserve all guards in the exported program, we do check a subset of them as part of input matching. So we add a verification step at the end of export when such additional example inputs are provided. This should be enough for now.
Test Plan: added test (positive and negative cases)
Differential Revision: D72001771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150144
Approved by: https://github.com/bobrenjc93
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows
Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic
Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....
Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.
We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
During tracing it is possible for a `s1: VR[2, inf]` to be replaced by a `s0: VR[3, inf]` (note smaller range) by the shape env. But after export, unfortunately we'd previously record `range_constraints[s0] = VR[2, inf]` (note larger range), which is incorrect.
This is because we'd map `s1.node.expr` (`s0`) to the `var_to_range` of `s1.node._expr` (`s1`) when creating `range_constraints`. The comment surrounding this code suggests this predated `bound_sympy`, but now we can do better.
For users, this means that when using `Dim.DYNAMIC` previously they wouldn't get input constraints checked sufficiently, now they do (shifting errors early).
Differential Revision: D71962694
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150103
Approved by: https://github.com/zhxchen17
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows
Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic
Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....
Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.
We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
Somehow the torch._dynamo.is_compiling is changed to torch.compiler.is_compiling(), which also checks whether we're exporting. This is not caught by cI because we don't have an export test for scan.
Changing to torch.compiler.is_dynamo_compiling and added a test.
edit: piggyback the re-tracing support in this PR. Related code in combine_fn_is_normalized.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149903
Approved by: https://github.com/zou3519
Summary: For Scalar variant resolution, we didn't handle a corner case of "Tensor_mode" variant (from aten::div). Adding the missing case to the graph pass.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_operator_aten_tensor_mode_variant_cpp_runtime
Differential Revision: D71638433
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149755
Approved by: https://github.com/yushangdi
Summary: adding operator.truediv and operator.neg support to the runtime
Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_sym_float_operators_cpp_runtime_nonstrict
Differential Revision: D71637267
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149754
Approved by: https://github.com/pianpwk
Summary: When we call torch.inference_mode, we seem to skip Autograd key causing the custom op export uses to be not decomposed properly before subclass dispatching starts. We fix this by force desugaring this op at Python key
Test Plan: test
Differential Revision: D71599541
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149698
Approved by: https://github.com/bdhirsh
Summary: This diff ports some technique from torch.fx symbolic trace to trace through Python asserts when we run into data dependent symbolic shape assertions, so that we can achieve the same effect as torch dynamo to automatically turn assert into torch.check()s.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_python_asserts_with_sym_int
Differential Revision: D71425360
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149444
Approved by: https://github.com/tugsbayasgalan
WHen we create constraints, we look at the ordering of kwargs according to model signature. But when we trace, we use the ordering that is created based on how user passes in their kwargs. As a result, constraints and dynamic shapes end up having a different order causing issues when they have different dynamic tensor specs.
Differential Revision: [D71478578](https://our.internmc.facebook.com/intern/diff/D71478578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149528
Approved by: https://github.com/ydwu4
Summary: Remove torch.export.export_for_inference, it is redundant and can always be replaced with torch.export.export_for_training() + run_decompositions()
Test Plan: unit tests
Differential Revision: D71069057
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149078
Approved by: https://github.com/tugsbayasgalan
Summary:
Recall that we use "ivals" to track intermediate values of mutations during unflattening. Previously, for each such intermediate value, we would create a hidden shared attribute that would be updated / read by respective submodules.
Unfortunately this scheme doesn't work when some but not all of those submodules are swapped out. This is because the swapped in submodules have no knowledge of these hidden attributes. Thus the submodules that are not swapped out end up reading / updating dangling state.
This PR does away with these hidden attributes. Instead, we directly read the underlying buffer or placeholder that was updated, and update those underlying buffers and placeholders in place. This makes the graphs look much closer to their eager origins.
Test Plan: added some tests, ensured existing tests pass
Differential Revision: D71203469
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149206
Approved by: https://github.com/tugsbayasgalan
Summary:
- Flip the default value of strict argument in torch.export.export from True to False
- Update test infra to cope with the change, some of them made the assumption of strict mode as default
- Disabled some tests that fail in non-strict mode
Test Plan: Sandcastle
Differential Revision: D70228628
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148790
Approved by: https://github.com/angelayi
Adds option `torch.fx.experimental._config.backed_size_oblivious = True` to allocate `[0, inf]` instead of `[2, inf]` ranges for size backed symbols, and opting into size-oblivious semantics for them.
Helps in a number of cases like
- Keeps `[0, inf]` bounds for unbacked symbols, when we make a unbacked -> backed replacement
- More sound handling for 0/1 inputs at runtime when we lower from export
- Avoids ends-of-bounds, sys.maxsize constraint violations for exporting with named Dims (https://github.com/pytorch/pytorch/issues/146315, https://github.com/pytorch/pytorch/issues/146046)
May look towards turning this on globally for export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148696
Approved by: https://github.com/bobrenjc93
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
Plan: avoid the use of unbacked renamings, and introduce a pass run in `_produce_aten_artifact` that recomputes unbacked bindings. Decided to do this because in we don't serialize unbacked renamings (or any ShapeEnv state), so this used to compose poorly with de/serialization. This hopefully establishes the invariant that the unbacked binding keys are always in sync with the example values (i.e. same indices, and removed if the symbol is replaced / specialized).
For de/serialization, we don't stored unbacked bindings, and just rerun the pass.
Involved a refactor of compute_unbacked_bindings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147574
Approved by: https://github.com/avikchaudhuri
The same code is repeated multiple times with slightly different implementations.
Use the existing function for brevity and consistency.
In the function the code from `test_export` is used which does a single `load_library` with cleaner conditions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148082
Approved by: https://github.com/angelayi
The `export` API takes a `nn.Module` and traces its `forward` method. However sometimes it is useful to export different methods of a `nn.Module`, either as a one-off for debugging or as a set of methods that are called in some sequence outside `export` (e.g., `encode` / `decode`). When multiple methods of the same module instance are exported, they should share the same of the common module instance.
This PR adds a couple of utils in `torch._export.utils` for this workflow.
The `wrap_method` util wraps a method as a `nn.Module` that can then be exported. See included test. We recommend using the same module instance to export multiple methods on that instance, in which case they are guaranteed to share state. On serde, this state sharing is lost, so we provide another util, `sync_state`, to re-sync the state.
These utils are meant to be eventually replaced by API-level changes, but for now this can unblock users who need this workflow. In particular, in the future we can accept one or multiple method entrypoints, with their own args / kwargs / dynamic shape specifications, which can create a variant of `ExportedProgram` with multiple graphs that share state; then we can automatically ensure that the state sharing is preserved through serde.
Differential Revision: [D69960801](https://our.internmc.facebook.com/intern/diff/D69960801/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147573
Approved by: https://github.com/tugsbayasgalan
Summary: There are ~260 tests for all the corner cases of export from test_export.py. utitlizing to test sigmoid in the OSS setting.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r _sigmoid
Differential Revision: D69937387
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147535
Approved by: https://github.com/yiming0416
Summary:
This pr add a _is_script_object method to differentiate scriptModule and scriptObject, where the formal inherits from ScriptObject in C++ so they both passes the isinstance(obj, torch.ScriptObject) check.
The qualified name of ScriptObject (i.e. custom class) would starts with "__torch__.torch.classes", this has been a widely used assumption for dealing with custom class across our code base.
Test Plan: Add new test.
Differential Revision: D69685316
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147399
Approved by: https://github.com/yushangdi
Note: This is a re-land of https://github.com/pytorch/pytorch/pull/141791, which I reverted due to breaking some Meta-internal tests - an internal ET delegate did not handle the non-decomposed upsample_nearest2d, and it was not caught in CI. I've resolved that issue and should be ready to safely re-land.
Summary:
As upsample_bilinear2d.vec and upsample_nearest2d.vec are core ATen ops, they should not be decomposed by default in the export path. Because the operators have CompositeImplicitAutograd dispatch, their decomposition is registered by default. This change adds an override list for CIA decompositions being registered in the default decomp table.
In the long-term, we likely will want to exclude decompositions for all core-tagged CIA ops, but this will require all consumers to be ready to handle the remaining two ops, avg_pool1d, and adaptive_avg_pool1d. Until they are ready, I believe an explicit override list is the safest option.
Additionally, I've also removed the ExecuTorch XNNPACK delegate ConvertToUpsampleBilinear2d pass, as the pass breaks (and is not needed), given that the op is not decomposed. The purpose of this pass was originally to pattern match the decomposition and recompose it, but this is no longer necessary.
Test Plan:
Added a new test (`test_default_decomposition_core_cia_ops`) in test_export.py to verify that upsample_bilinear2d.vec (and in the future, other core-tagged CIA ops) are not decomposed by default. Also, I manually validated end to end with ExecuTorch that the op is not decomposed in to_edge (see N6238522).
```
buck test //caffe2/test:test_export -- test_default_decomposition_core_cia_ops
```
Differential Revision: D69625112
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147153
Approved by: https://github.com/manuelcandales
Summary: Previously we added support for `all_reduce` to non strict. This PR extends this support to other non-functional collectives that are remapped in Dynamo: `all_gather`, `all_gather_into_tensor`, `all_to_all_single`, `reduce_scatter_tensor`.
Test Plan: added unit tests
Differential Revision: D69813991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147417
Approved by: https://github.com/angelayi
Summary:
Some distributed collectives like `all_reduce` have special handling in Dynamo, where they are mapped to functional collectives. Non-strict was previously blind to such mappings, which means using them would fail to trace. Here we show how intercepting them in non-strict's torch function mode can mimic this remapping logic. More ops to follow.
Side note: a recently added distributed test was in the wrong place, making the expected failures for non-strict not fire because we weren't actually generating those tests to begin with! Now fixed.
Test Plan: moved and updated test
Differential Revision: D69607140
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147133
Approved by: https://github.com/tugsbayasgalan