Fixes https://github.com/pytorch/pytorch/issues/114389
Previously, dynamo would attempt to trace through the `__init__` of traceable tensor subclasses, since their constructors are AOT dispatcher traceable by definition, dynamo should automatically put these in the graph like we do for any other tensors. Not doing this is difficult because dynamo would need to apply mutations post tensor subclass creation in the graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135151
Approved by: https://github.com/bdhirsh
Summary:
When exporting for training with `tolist`, we do not hit `FunctionalTensor.tolist` since we do not functionalize. Unfortunately, this means we hit `FakeTensor.tolist`, which creates unbacked symints that are not backed by proxies.
Rather than trying to patch up this low-level implementation, we replace it with essentially what `FunctionalTensor.tolist` does, which is higher-level: we essentially desugar to `item()` calls and let it take care of unbacked symints.
Test Plan:
Some expected failures are gone now.
Also found a test for `tolist` that was written when `FunctionalTensor.tolist` was implemented but not really doing much; repurposed it now to exercise more modes.
Differential Revision: D62197742
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135131
Approved by: https://github.com/ezyang
The goal of this PR is to avoid stack overflow when we create extremely long chains of thunks, and then evaluate them (e.g., as occurs if you sum(long list of symint)). The basic idea behind this PR is to only thunkify proxies if they're being created in places where they may or may not be used--crucially, symint operations that occur in user code we are tracing are eagerly placed into the graph, even if they may eventually be dead.
I annotated the PR with explanation of changes.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132421
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #132674, #132675
Combines contributions from https://github.com/pytorch/pytorch/pull/130505
Some context can be found in this large comment block:
a5b64d39fd/test/dynamo/test_subclasses.py (L1667-L1681)
Changes in this PR
- For each tensor fakified, check the nested int registry in eager, and eagerly symbolicize if that tensor has already been associated with nested int in eager.
- Adds a separate counter stored on FakeTensorMode as a fake analog to _tensor_id_counter (which keeps track of unique tensors). This counter is initialized to the global eager tensor id counter upon creation of the FakeTensorMode, and needs to be reset when the same FakeTensorMode is reused to trace again (in this PR, we piggyback on the epoch incrementing logic).
- (refactor) Today, we store FakeTensor -> symbolic nested int in the global registry. With this PR, symbolic nested int is stored directly on the FakeTensor. (Eager still caches nested int in the registry, though we should avoid this at some point.)
Basically unchanged, but worth noting:
- `__tensor_unflatten__` is still responsible for determining whether we should cache for now. The logic is somewhat simplified.
- to_copy is still using the trick of updating two different tensors in the registry to point to the same nested int. This is kind of broken, but we try to leave it as is, and plan a better fix with the UnionFind stack.
Differential Revision: [D60406772](https://our.internmc.facebook.com/intern/diff/D60406772)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130292
Approved by: https://github.com/bdhirsh
ghstack dependencies: #131916, #131803
Rewrite of original PR in https://github.com/pytorch/pytorch/pull/130291
To answer review comments from https://github.com/pytorch/pytorch/pull/130291#pullrequestreview-2166671953:
> At a higher level, do we need this?
Today, this should not change the behavior of anything. But an invariant of "same tensor always corresponds to the same FakeTensor" is nice (from discussion with @bdhirsh).
> Why does this happen?
Today, both dynamo and meta_utils do some recursion when it comes to FakeTensors. So whenever we fakify a subclass, the process would roughly like:
```
wrap_to_fake (subclass)
meta_utils (subclass)
meta_utils (values) -> not cached because we use callback
meta_utils(offsets) -> not cached because we use callback
wrap_to_fake (values)
wrap_to_fake (offsets) -> cached because we rely on top-level meta_utils
```
However, we know that:
- Caching only occurs at the top-level of meta_utils.
- The return value of the top-level wrap_to_fake is returned.
This means that after all of this:
- The fakified subclass holds inner FakeTensors that are NOT part of the cache
- values/offsets are Fakified a second time, and those instances are cached.
Differential Revision: [D60406773](https://our.internmc.facebook.com/intern/diff/D60406773)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131803
Approved by: https://github.com/ezyang
ghstack dependencies: #131916
python_code(verbose=True) (or print_readable()) generates a string with the code representing the fx graph, with extra annotations indicating the size or stride of the tensor. Currently, it'll only shows sizes/strides for FakeTensors provided in metadata. For subclass tensors like NestedTensor, the outer class (provided in the node metadata) will be a non-FakeTensor and the inner tensors will be fake. This PR expands the conditional to show sizes/strides for all tensors, not just FakeTensors.
Testing: I ran this test script (below), ran it with `TORCH_LOGS=+dynamo` and found in the logs the graph shown below - we see that the input nested tensor has sizes and strides associated with it. Also, I stacked a diff on top of this one that forces the readable graph to be generated whenever PT2 is in use in tests, which should hopefully find any issues; https://github.com/pytorch/pytorch/pull/132195 shows no significant failures except for preexisting failures.
test script:
```python
import torch
def fn(x):
return x.cos()
nt = torch.nested.nested_tensor_from_jagged(
torch.randn(10, 10),
torch.tensor([0, 1, 3, 6, 10]),
)
torch.compile(fn)(nt)
```
logs excerpt:
```
[0/0] [__graph_code] TRACED GRAPH
[0/0] [__graph_code] ===== __compiled_fn_1 =====
[0/0] [__graph_code] /data/users/dberard/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.M
[0/0] [__graph_code] def forward(self, L_x_: "f32[4, zf1, 10][10*zf1, 10, 1]cpu", zf1: "Sym(zf1)"):
[0/0] [__graph_code] l_x_ = L_x_
[0/0] [__graph_code]
[0/0] [__graph_code] # File: /data/users/dberard/scripts/nt_print_graph.py:4 in fn, code: return x.c
[0/0] [__graph_code] cos: "f32[4, zf1, 10][10*zf1, 10, 1]cpu" = l_x_.cos(); l_x_ = None
[0/0] [__graph_code] return (cos,)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132192
Approved by: https://github.com/Chillee
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.
Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
def forward(self, x: "f32[2, 3]"):
# No stacktrace found for following nodes
rootparam: "f32[2, 3]" = self.rootparam
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam); x = rootparam = None
# No stacktrace found for following nodes
foo: "f32[2, 3]" = self.foo(mul); mul = None
bar: "f32[2, 3]" = self.bar(foo); foo = None
return (bar,)
class foo(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# No stacktrace found for following nodes
child1param: "f32[2, 3]" = self.child1param
nested: "f32[2, 3]" = self.nested(mul); mul = None
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param); nested = child1param = None
return add
class nested(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul); mul = None
return div
class bar(torch.nn.Module):
def forward(self, add: "f32[2, 3]"):
# No stacktrace found for following nodes
child2buffer: "f32[2, 3]" = self.child2buffer
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer); add = child2buffer = None
return sub
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.
Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
def forward(self, x: "f32[2, 3]"):
# No stacktrace found for following nodes
rootparam: "f32[2, 3]" = self.rootparam
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam); x = rootparam = None
# No stacktrace found for following nodes
foo: "f32[2, 3]" = self.foo(mul); mul = None
bar: "f32[2, 3]" = self.bar(foo); foo = None
return (bar,)
class foo(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# No stacktrace found for following nodes
child1param: "f32[2, 3]" = self.child1param
nested: "f32[2, 3]" = self.nested(mul); mul = None
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param); nested = child1param = None
return add
class nested(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul); mul = None
return div
class bar(torch.nn.Module):
def forward(self, add: "f32[2, 3]"):
# No stacktrace found for following nodes
child2buffer: "f32[2, 3]" = self.child2buffer
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer); add = child2buffer = None
return sub
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
Fixes#129601
Background: it's possible that a traceable wrapper subclass will have an optional inner tensor constituent (e.g. NJT's cached min / max sequence lengths). To specify this, the subclass's `__tensor_flatten__()` impl should leave out any unspecified optional inner tensors in the returned list of `attrs`.
This PR guards on the list of inner tensor `attrs` returned in `subclass.__tensor_flatten__()[0]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129618
Approved by: https://github.com/anijain2305
Idea: close over min / max sequence length in the main NJT view func (`_nested_view_from_jagged`) so that view replay during fake-ification propagates these correctly in torch.compile.
For dynamic shapes support for min / max sequence length, this PR uses a hack that stores the values in `(val, 0)` shaped tensors.
**NB: This PR changes SDPA to operate on real views instead of using `buffer_from_jagged()` / `ViewNestedFromBuffer`, which may impact the internal FIRST model. That is, it undoes the partial revert from #123215 alongside a fix to the problem that required the partial revert. We need to verify that there are no regressions there before landing.**
Differential Revision: [D55448636](https://our.internmc.facebook.com/intern/diff/D55448636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122836
Approved by: https://github.com/soulitzer
Idea: close over min / max sequence length in the main NJT view func (`_nested_view_from_jagged`) so that view replay during fake-ification propagates these correctly in torch.compile.
For dynamic shapes support for min / max sequence length, this PR uses a hack that stores the values in `(val, 0)` shaped tensors.
**NB: This PR changes SDPA to operate on real views instead of using `buffer_from_jagged()` / `ViewNestedFromBuffer`, which may impact the internal FIRST model. That is, it undoes the partial revert from #123215 alongside a fix to the problem that required the partial revert. We need to verify that there are no regressions there before landing.**
Differential Revision: [D55448636](https://our.internmc.facebook.com/intern/diff/D55448636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122836
Approved by: https://github.com/soulitzer
ghstack dependencies: #127007, #128057
When handling an input to dynamo that's a view of a subclass, dynamo does some handling to reconstruct the view. Part of this is to construct symints for the input parameters to the view.
Previously, the code would just call `create_symbol()` which by default specifies a _positive_ symint (>= 0); this fails in the case where you have an aten::view that was called with a -1.
Fix: just specify `positive=None` when calling `create_symbol()`, to avoid restricting the symint to >= 0 or <= 0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128662
Approved by: https://github.com/jbschlosser
Taking inspiration from `GraphModule.print_readable` (aka I copied its [code](17b45e905a/torch/fx/graph_module.py (L824))), I added a `print_readable` to the unflattened module, because it's kind of nontrivial to print the contents of this module.
Example print from `python test/export/test_unflatten.py -k test_unflatten_nested`
```
class UnflattenedModule(torch.nn.Module):
def forward(self, x: "f32[2, 3]"):
# No stacktrace found for following nodes
rootparam: "f32[2, 3]" = self.rootparam
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:99 in forward, code: x = x * self.rootparam
mul: "f32[2, 3]" = torch.ops.aten.mul.Tensor(x, rootparam); x = rootparam = None
# No stacktrace found for following nodes
foo: "f32[2, 3]" = self.foo(mul); mul = None
bar: "f32[2, 3]" = self.bar(foo); foo = None
return (bar,)
class foo(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# No stacktrace found for following nodes
child1param: "f32[2, 3]" = self.child1param
nested: "f32[2, 3]" = self.nested(mul); mul = None
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:79 in forward, code: return x + self.child1param
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(nested, child1param); nested = child1param = None
return add
class nested(torch.nn.Module):
def forward(self, mul: "f32[2, 3]"):
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:67 in forward, code: return x / x
div: "f32[2, 3]" = torch.ops.aten.div.Tensor(mul, mul); mul = None
return div
class bar(torch.nn.Module):
def forward(self, add: "f32[2, 3]"):
# No stacktrace found for following nodes
child2buffer: "f32[2, 3]" = self.child2buffer
# File: /data/users/angelayi/pytorch2/test/export/test_unflatten.py:87 in forward, code: return x - self.child2buffer
sub: "f32[2, 3]" = torch.ops.aten.sub.Tensor(add, child2buffer); add = child2buffer = None
return sub
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128617
Approved by: https://github.com/zhxchen17, https://github.com/pianpwk
When we don't dynamo.reset(), we don't recompile on different dynamic shapes.
Also, some of the returned views were tuples - so when we `* 2`, we actually just copy all the inputs twice in the tuple. I changed it so that it would just return one of the values from the return tuple.
Additionally, this exposes a bug that fails with the slice operation, so I skipped it when we're testing with dynamic shapes:
```
File "/home/dberard/local/pytorch/torch/fx/experimental/symbolic_shapes.py", line 3996, in produce_guards
sexpr = ShapeGuardPrinter(symbol_to_source, source_ref, self.var_to_sources).doprint(expr)
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/printer.py", line 292, in doprint
return self._str(self._print(expr))
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/printer.py", line 331, in _print
return printmethod(expr, **kwargs)
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/str.py", line 56, in _print_Add
t = self._print(term)
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/printer.py", line 331, in _print
return printmethod(expr, **kwargs)
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/str.py", line 366, in _print_Mul
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/str.py", line 366, in <listcomp>
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/str.py", line 37, in parenthesize
return self._print(item)
File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.10/site-packages/sympy/printing/printer.py", line 331, in _print
return printmethod(expr, **kwargs)
File "/home/dberard/local/pytorch/torch/fx/experimental/symbolic_shapes.py", line 1494, in _print_Symbol
assert self.symbol_to_source.get(expr), (
AssertionError: s3 (could be from ['<ephemeral: symint_visitor_fn>', '<ephemeral: symint_visitor_fn>']) not in {s0: ["L['x'].a.size()[1]", "L['x'].b.size()[1]", "L['x'].size()[1]", "L['x'].a.size()[1]", "L['x'].b.size()[1]", "L['x'].a.size()[1]", "L['x'].b.size()[1]"], s1: ["L['x'].a.stride()[0]", "L['x'].b.stride()[0]", "L['x'].stride()[0]", "L['x'].a.stride()[0]", "L['x'].b.stride()[0]", "L['x'].a.stride()[0]", "L['x'].b.stride()[0]"], s2: ["L['x'].a.storage_offset()", "L['x'].b.storage_offset()", "L['x'].a.storage_offset()", "L['x'].b.storage_offset()"]}. If this assert is failing, it could be due to the issue described in https://github.com/pytorch/pytorch/pull/90665
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128659
Approved by: https://github.com/YuqingJ