This PR improves opcheck to:
1. directly use torch.testing.assert_close (without a msg override).
This allows it to print the absolute and relative differences and the
number of mismatched elements.
2. take in an atol/rtol tolerance (for if someone just wants to use
opcheck in their testing).
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146488
Approved by: https://github.com/williamwen42
This PR is slightly a revival / update to the discussion from https://github.com/pytorch/pytorch/pull/98960:
Part of FSDP2's tracing strategy right now is that:
(1) it is painful/difficult to handle the case where we have multiple graph input tensors that are aliased to each other and at least one of them is duplicated
(2) we already have longstanding in logic to remove duplicate input tensors from the graph in dynamo. Morally, FSDP2 gives us duplicate input tensors in the backward graph for every `unsharded_param`, because we have (a) the `unsharded_param` being closed over by the backward hook to resize/allgather, and (b) the same `unsharded_param` being saved for backward by autograd (we now guarantee in the partitioner that we will always save the base tensor for backward and recompute views)
(3) However, we were still seeing cases where the `unsharded_param` showed up twice in the backward graph inputs, as distinct tensor objects (with different python ids) instead of being true duplicates that dynamo can de-dup.
It turns on that this was because we were `.detach()`ing the `unsharded_param` in AOTDispatcher before plumbing it through the compiled forward (and so autograd would save a detach'd version of the `unsharded_param`). This is precisely because of the logic from https://github.com/pytorch/pytorch/pull/98960.
However, re-reading the detailed comments, it seems unnecessary to do a detach() on a graph input that is a (leaf) `nn.Parameter`, even if it happens to get no gradients in the backward. Since it is a leaf, we don't have to worry about the autograd engine "continuing to backprop through the graph beyond the current tensor" (the leaf has no other grad_fn for autograd to backprop through).
So this PR makes us a bit less aggressive about calling detach() on inputs: we only do it when:
(1) our graph input statically will get a `None` gradient (and also has no metadata mutations, the existing state)
(2) **and** our graph input is a non-leaf tensor (so detach()ing is actually required to prevent autograd from incorrectly backpropping past the non-leaf.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134193
Approved by: https://github.com/yf225
Co-authored-by: Will Feng <yf225@cornell.edu>
This PR excises opcheck's dependency on
torch.testing._internal.common_utils, (which comes with dependencies on
expecttest and hypothesis). We do this by moving what we need to
torch.testing._utils and adding a test for it.
Fixes#126870, #126871
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127292
Approved by: https://github.com/williamwen42
ghstack dependencies: #127291
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.
Resolves#126888
- #126888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
This PR:
- exposes torch.testing._internal.optests.opcheck as
torch.library.opcheck
- Adds support for CustomOpDef (aka functions decorated with
torch.library.custom_op) to opcheck.
Test Plan:
- Updated tests
- We validated opcheck's design internally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124496
Approved by: https://github.com/williamwen42
Motivations:
- this is pretty redundant with test_aot_dispatch_dynamic.
- The user story for opcheck is that a user should use opcheck to see
if their operator was "registered correctly". If a user's custom op
only supports dynamic shapes, then it's a bit awkward for
one of the tests (e.g. `test_aot_dispatch_static`) to fail.
- We've already stopped running test_aot_dispatch_static in all of
our opcheck tests.
Test Plan:
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124495
Approved by: https://github.com/williamwen42
ghstack dependencies: #124180, #124200, #124299, #124134, #124199, #124403, #124414
This is a lot of files changed! Don't panic! Here's how it works:
* Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file.
* When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded.
* The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors.
* Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list.
* Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves.
* torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state.
* There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many.
In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file.
The codemod was done with this script authored by GPT-4:
```
import glob
exclude_patterns = [
...
]
for pattern in exclude_patterns:
for filepath in glob.glob(pattern, recursive=True):
if filepath.endswith('.py'):
with open(filepath, 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write('# mypy: ignore-errors\n\n' + content)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414
Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
Summary:
1. We stop using excess memory in generate_opcheck_tests. This is safe because
all the individual test utils already ensure that they do not modify the
inputs.
2. We re-enable the fbgemm TBE tests (see internal diff, but all of this is open
source). They were previously removed because they OOM'ed when run serially;
(1) and (3) cut down the memory usage to ~20gb peak.
3. I needed to skip some newly failing generated tests and also some that had an
impact on the memory usage.
Test Plan: - run tests
Reviewed By: sryap
Differential Revision: D51601964
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114641
Approved by: https://github.com/williamwen42
Summary:
If there are xfails in the failures_dict and the operator has the
pt2_compliant_tag, then we raise an error. These generated tests are separate
from those in the failures dict because we don't actually need any sample
inputs to check this.
Test Plan: - New tests
Differential Revision: D50936201
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112759
Approved by: https://github.com/ezyang
Summary: Use `TORCHDYNAMO_DISABLE=1` when running generated opcheck tests. Enable some `fbgemm::pack_segments` tests that errored out (with error `RuntimeError: expected int but got s0*s1**2`) because dynamo was being run in the opcheck tests.
Test Plan: `parsh -v --build-flags mode/dev-nosan //deeplearning/fbgemm/fbgemm_gpu:sparse_ops_test` then `run_tests("test_pack_segments")`
Differential Revision: D50508958
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111685
Approved by: https://github.com/zou3519
Summary:
Make it easier to add `generate_opcheck_tests` by adding defaults for
the failures_dict location, the additional decorators, and the test
utils.
Test Plan:
Existing tests
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110977
Approved by: https://github.com/williamwen42
ghstack dependencies: #110951
This PR adds the following helper functions for generated opcheck tests:
- dontGenerateOpCheckTests is a decorator that skips generation of the
opcheck tests for the generated function
- is_inside_opcheck_mode lets us query if we are in a generated test.
Useful for fast debugging out-of-tree without needing to update
PyTorch.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110951
Approved by: https://github.com/williamwen42
Part of #109684
- #109684
Changes:
- Add new functions `tree_structure`, `tree_leaves`, `tree_map_` and `tree_map_only_` to Python pytree.
- Extract reusable tests for pytree to `TestGenericPytree`.
- Change `treespec_dumps` and `treespec_loads` in C++ pytree to call Python pytree and use JSON string as serialization type.
- Rename `torch.utils.pytree` -> `torch.utils._cxx_pytree`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110395
Approved by: https://github.com/zou3519
This PR allows us to use the same failures_dict for multiple test
classes. This is helpful if you have a bunch of small TestCase(es) and
to centralize all the failures dict into one big one.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110164
Approved by: https://github.com/williamwen42
On failure of a test, we will always print a "repro". This repro isn't
really runnable but gives the user a sense of how to actually reproduce
the test without the test suite, because using the test suite is a bit
convoluted.
If the user passes PYTORCH_OPCHECK_PRINT_BETTER_REPRO, we will print a
fuller repro that saves the exact problematic test inputs to disk and
reads them back out.
Test Plan:
- expecttests on the generate_repro helper function
- tried this out locally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109640
Approved by: https://github.com/bdhirsh, https://github.com/soulitzer
ghstack dependencies: #109637, #109638, #109639
Richard, I'm curious to see what you think of this. I'm trying to use optest on the torchvision test suite, and after hacking up pytest support in https://github.com/pytorch/pytorch/pull/108929 I noticed that this was 5x'ing the test time... for no good reason.
* torchvision nms tests before optests: 60 passed, 4 skipped, 1206 deselected in 11.47s
* after optests: 300 passed, 20 skipped, 1206 deselected in 49.85s
It's no good reason because torchvision has parametrized the tests to get a spread of various random generation, but for checking schema or fake tensor, we don't actually need to test for different values.
This PR hacks up the codegen to replace pytest parametrize markers so that, instead of sampling many values, we sample only one value if you mark it with `opcheck_only_one`. There's a carveout for device parametrization, where we always run all those variants.
With this PR:
* reduced optests: 88 passed, 4 skipped, 1206 deselected in 13.89s
Companion torchvision PR which uses this at https://github.com/pytorch/vision/pull/7961
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108936
Approved by: https://github.com/zou3519
- Update cross-ref FakeMode test to use ShapeEnv. Dynamic ops can now
return an unbacked SymInt. We always accept this as equal to whatever
the real value was.
- Relax test so it works on all classes, not just unittest.TestCase
- Properly wrap the original method, so things like
pytree.mark.parametrize are carried over
- Support dynamic shapes by default for make_fx `tracing_mode="fake"` without symbolifying everything else
Fixes https://github.com/pytorch/pytorch/issues/108927
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108929
Approved by: https://github.com/zou3519
We changed the failures_dict format from .py to json and added a way to
automatically update the failures dict (the user can set
PYTORCH_OPCHECK_ACCEPT=1 to do so), assuming the tests don't crash in the
process.
Some details:
- We introduced a FailuresDict class that handles save/load and from which one
can query a test status ("xfail", "skip", etc).
- PYTORCH_OPCHECK_ACCEPT=1 does not override everything. In particular: it
doesn't try to update the failures dict for a test marked as "skip", but it
will update it for tests marked as "xfail" or "success".
- PYTORCH_OPCHECK_ACCEPT=1 also does not override the "comment" field, unless
it is flipping an "xfail" into "success".
- I'll update the gdoc linked in the comments with how to actually use
PYTORCH_OPCHECK_ACCEPT=1 internally (it's not trivial).
Note that this isn't multithreading-safe, the current recommendation is to run
the tests sequentially if the user wants to use PYTORCH_OPCHECK_ACCEPT=1.
Differential Revision: D49167181
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109110
Approved by: https://github.com/ezyang
Summary:
This PR improves `generate_opcheck_tests`:
- We shouldn't run automated testing through operators called in
torch.jit.trace / torch.jit.script
- I improved the error message and added a guide on what to do if one of the
tests fail.
- While dogfooding this, I realize I wanted a way to reproduce the failure
without using the test suite. If you pass `PYTORCH_OPCHECK_PRINT_REPRO`, it
will now print a minimal repro on failure. This involves serializing some
tensors to disk.
- The minimal repro includes a call to a new API called `opcheck`.
The opcheck utility runs the same checks as the tests generated
by `generate_opcheck_tests`. It doesn't have a lot of knobs on it for
simplicity. The general workflow is: if an autogenerated test fails, then the
user may find it easier to reproduce the failure without the test suite by
using opcheck
Test Plan: - new tests
Differential Revision: D48485013
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107597
Approved by: https://github.com/ezyang
Summary:
We change `generate_opcheck_tests` to be a bit more user-friendly. Note that
there are some internal-only changes, go review them there.
Test Plan: - tests
Differential Revision: D47965247
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107328
Approved by: https://github.com/ezyang
This PR adds `generate_opcheck_tests`. This is a utility that adds
additional crossref tests to an existing TestCase that has tests that
invokes operators. The main use case is if you have a large test suite
that already exercises operators and want to add automated testing that
the operators are correct, without actually refactoring your code into
something like OpInfos.
Given a `test_` method of a TestCase, we will generate one new
additional test for each of {schema correctness, autograd registration,
faketensor rule, aot_autograd static shapes, aot_autograd dynamic
shapes}. Each newly generated test runs the original test method under a
special torch_function mode (OpCheckMode) that intercepts
`op(*args, **kwargs)` calls and additional passes (op, args, kwargs) to
a separate function (e.g. SchemaCheck).
Nitty-gritty details:
- If a test is named test_cumsum, we end up generating new tests
(`test_schema__test_cumsum`, `test_<something>__test_cumsum`)
- Users can provide a dictionary of expected failures / skips that is indexed on
operators. This gives us a sense of what operators support PT2 and which
operators require fixing before they support PT2.
Due to some co-dev limitations, I'm planning on landing this PR first
and then using it to add crossref testing for internal tests and
fbgemms. I could squash this PR with the internal changes if we want to
see how that works out, just let me know.
Test Plan:
- We create a mini op test suite called MiniOpTests.
- Then, we use `generate_opcheck_tests` to generate tests onto it.
- We have our own test xfail list to check that the things that should
fail do fail.
- Finally, there is a separate TestGenerateOpcheckTests that checks that
the correct number of tests were generated and also tests some helper
functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106903
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
This PR:
- Changes the AOTAutograd tests to also check that the output of the
forward is equal under AOTAutograd and eager-mode PyTorch.
- Adds a "check_gradients" flag to `check_aot_autograd`.
- If True, then we attempt to compute gradients and check them.
- If False, then we we just check the outputs are equal
- If "auto", then we will compute gradients and check them only if
some input and some output requires grad. This option is useful for
crossref tests where we don't necessarily have inputs that require
grad.
1) I need a testing utility to test "AOTAutograd for inference",
e.g. make_fx + functionalize.
2) I want to run aot_autograd_check in crossref tests for other test
suites (e.g. fbgemm) and not all inputs require grad.
Test Plan:
- existing tests
- new tests to test the degenerate cases
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106558
Approved by: https://github.com/ezyang, https://github.com/soulitzer