MemPool is a separate pool of memory handled by the caching allocator. This PR adds the option let the caching allocator try to use this pool as a last resort instead of OOMing by associating a use_on_oom bool with each MemPool.
Usage:
Users can optionally specify a ``use_on_oom`` bool (which is False by default) during MemPool creation. If true, then the CUDACachingAllocator will be able to use memory in this pool as a last resort instead of OOMing.
```
pool = torch.cuda.MemPool(allocator, use_on_oom=True)
with torch.cuda.use_mem_pool(pool):
a = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
del a
# at the memory limit, this will succeed by using pool's memory in order to avoid the oom
b = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
```
Testing:
```
python test/test_cuda.py -k test_mempool_limited_memory_with_allocator
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151487
Approved by: https://github.com/eqy, https://github.com/syed-ahmed, https://github.com/ngimel
Followup work on top https://github.com/pytorch/pytorch/pull/149480
Wrapper on top of nvrtc inspired by https://gist.github.com/malfet/2c9a25976dd7396430c38af603f791da from @malfet
Compiling toy kernels with this setup takes 0.01s vs 90s using `load_inline()` on my local H100. This was primarily motivated by the timeouts I was seeing in the popcorn leaderboard but would also be useful to integrate into KernelBench
This PR is in the same spirit as https://github.com/pytorch/pytorch/pull/148972 which was a similar UX for Metal
For now we are planning on landing this as a private function because we expect to iterate both on the user facing API and the internals implementation, will open up a seperate issue to discuss the path towards making this work public and give a broader overview of the state of custom cuda kernel authoring in PyTorch
Future work, as a prereq to making the work public
* divup primitive
* support multiple kernels
* Expose _get_nvrtc_version from native code
* interop with torch.compile
* AMD support
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151484
Approved by: https://github.com/malfet
This PR adds support for submatrices in offline tuning for:
- GEMM
- GEMM and bias
- ScaledGEMM
- Batch Strided GEMM
New UTs to cover submatrices. Submatrices for strided batch API is not part of this PR and will be done seperately.
There is also a bug fix for offline tuning for full matrix for GEMM and bias in the `NT` case. Offline and online UTs were updated to cover this corner case.
To improve code readability, swapped definition of transA and transB.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151138
Approved by: https://github.com/jeffdaily
# Motivation
Adapt `torch.accelerator.device_count` for multi-process usage. For example, `torch.cuda.device_count` avoids poisoning fork, then `torch.accelerator.device_count` should meet the same requirement.
Now that `torch.get_device_module(device).device_count` supports this, `torch.accelerator.device_count` should align with this behavior as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149924
Approved by: https://github.com/albanD
ghstack dependencies: #147507
Improvements to unit tests and warnings for unsupported cases in offline tuning. Here are more details:
- Previously we only compared the OpSig for the untuned vs. tuned entries. This was not strict enough so we now compare OpSig+ParamSig.
- The main offline and online UTs are now stricter to make sure we exercise the code paths for the four combinations of transA and transB.
- Offline tuning does not support some tensor shapes. Emit warning and skip tuning.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150142
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
The main purpose of this PR is to fix offline tuning for ScaledGEMM. The previous UT passed because it was not strict enough. Additionally:
- All the offline tuning tests now do a comparison with the online results to ensure that ParamSignature match.
- We raise an error if submatrices are encountered as this is only supported in online tuning mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149677
Approved by: https://github.com/jeffdaily
Summary:
Oftentimes, users complain that a bunch of extra events are prepended to their desired GPU snapshot. This is because they usually attach an OOM logger without knowing and when they go to collect the actual snapshot, it adds all the OOM logger contents. Since OOM and regular snapshot use the same backend, we currently don't have the infra in place to split these snapshots.
As a solution we add a flag to the snapshot frontend to clear out the history when starting the auto-trace record memory history.
A more thorough solution would be to have a user pass in a handle and to have snapshots per handle to seperate the events. However, this would likely be complicated and more work than it is worth as we would have to change the callbacks in the caching allocator and pass these objects between python and cpp.
Test Plan:
See diff below
Differential Revision: D71159720
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149352
Approved by: https://github.com/eqy, https://github.com/aaronenyeshi
This PR includes additional enhancements to TF32 support in TunableOp.
- OpSignature now differentiates between float32 and tf32 data types.
- Offline tuning now supports TF32.
- Unit tests for online and offline tuning of TF32.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149088
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
This PR adds support for rowwise scaling versus tensorwise scaling on scaled GEMM.
There are few other items included in this PR as well:
- Fixes for offline tuning of scaled GEMM
- Simplification of existing offline UT
- Update existing online UT to also test rowwise versus tensorwise scaled GEMM
- New UT for offline scaled GEMM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148238
Approved by: https://github.com/jeffdaily
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Summary: ROCm uses ROCM_HOME/ROCM_PATH to specify which version of rocm the user wants to use. This is especially important in multi-version setups. Let's respect that behavior when loading amdsmi.
Test Plan:
CI
```
NCCL_DEBUG=INFO NCCL_DEBUG_SUBSYS=INIT,COLL MSCCL_ALGO_DIR=~/2fbsource/third-party/rccl/develop/tools/msccl-algorithms RCCL_MSCCLPP_THRESHOLD=(math '128*1024*1024') RCCL_MSCCLPP_ENABLE=1 ENABLE_MSCCLPP=1 buck2 run fbcode//mode/opt-amd-gpu -m rocm621 fbcode//accelerators/workloads/microbench:bench_comm -- --shape moe_17b --comm_algo nccl_allreduce
```
Differential Revision: D69597647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147117
Approved by: https://github.com/malfet
Summary:
amdsmi bundles its own copy of `libamd_smi.so`. When you're interacting with `amdsmi` from *only* python that's fine, but when you try to interact with `libamd_smi.so` from native code too this poses a problem, because from native code you'll be linking against the copy of `libamd_smi.so` from the SDK.
This means you'll end up with 2 copies of `libamd_smi.so` in your process, and potentially (Murphey's law says you will, as does our CI) violate ODR.
In order to avoid this issue from the PT side of the world we can hook the `dlopen("path/to/bundled/libamd_smi.so")` and try to use the already loaded/SDK version of `libamd_smi.so` first, before proceeding to use the `path/to/bundled/libamd_smi.so`.
Test Plan: CI, inspect process using libamd_smi.so from native + python and observe only a single copy loaded
Differential Revision: D69064038
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146324
Approved by: https://github.com/malfet
Triton 2.2 and greater have a bug where allowing TF32 generation for a GPU that does not support TF32 will cause code generation errors. Patch around this problem by:
1. Adding a function to `torch.cuda` that determines whether CUDA hardware is capable of using the TF32 format.
2. Using that function to explicitly disable TF32 generation when calling Triton, where needed.
To demonstrate that this fix works, try running `test/inductor/test_max_autotune.py` on a GPU with CUDA compute capability < 8 (e.g. any NVIDIA consumer GPU) without this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145684
Approved by: https://github.com/eqy
# Motivation
We propose to support Python with statement on `torch.Stream`. This is a benefit for all accelerators when writing device-agnostic code. The device-specific stream will also be supported because they are generally derived from `torch.Stream`.
With this PR, we can do like this
```python
s1= torch.Stream()
# Set s1 to the current stream
torch.accelerator.set_stream(s1)
with torch.Stream() as s2:
# Inside with statement, we set s2 to the current stream
assert torch.accelerator.current_stream() == s2
# Here the current stream should be s1
assert torch.accelerator.current_stream() == s1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140138
Approved by: https://github.com/albanD
Fixes#141652
This PR contains:
- Fix for `matmul_offline_mgpu_tunableop`
- Modifications to _checking_tuning_assertions to enable TunableOp if it is disabled. Also moved it into the concurrent futures initializer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143507
Approved by: https://github.com/jeffdaily
The access to lazy init callbacks (`_lazy_seed_tracker` and `_queued_calls`) is not synchronized with the initialization lock.
This exposes us to the following race:
1. start `_lazy_init`
2. take `_initialization_lock`
3. flush `_queued_calls` and run them all
4. another thread comes in and uses `_lazy_call` to put something on the queue (in our case, the `manual_seed`)
5. original thread finishes initializing, but never runs that call
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143238
Approved by: https://github.com/ngimel
TunableOp's rotating buffer feature cannot be properly tested because the environment variable that controls this feature is sticky. A Python API is introduced to modify this value.
Additional items in this PR:
* UT for rotating buffer API
* Clean up UTs that were setting the rotating buffer via the environment variable
* Align behavior of environment variable and Python API when a negative value (< 0) is set.
* Update documentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143172
Approved by: https://github.com/jeffdaily
Fixes#141652
This PR fixes (at least in part) the unit test failure. However, we may also need to do a separate flush of the untuned results-- if this test continues to be flaky, another PR would be needed to flush the untuned results as well.
Tested locally and it seems to be working.
Also fixing code that was accidentally commented out code in the unit test from the prior multi-gpu offline tuning PR https://github.com/pytorch/pytorch/pull/139673
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142269
Approved by: https://github.com/jeffdaily
Certain `cpp_wrapper`-enabled tests were OOM-ing in the CI pipeline, with error messages suggesting that sufficient memory was accessible. This ultimately resulted from an internal memory limitation that was not queryable in the API. This PR adds querying for that limit.
Additionally, the failing tests had incorrect memory availability checks, and are updated with measured memory requirements.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140620
Approved by: https://github.com/malfet, https://github.com/eqy
ghstack dependencies: #141367
This PR enhances offline tuning to support multi-GPUs.
High-level description of algorithm:
- Duplicate GEMMs are first eliminated
- GEMMs are distributed to multi-GPUs for tuning
- Results are gathered into a file with `_full` in the filename
Also adding support for GemmAndBias and ScaledGemm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139673
Approved by: https://github.com/jeffdaily, https://github.com/hongxiayang
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet