Summary:
# Context:
When memory leak happens, it usually trigger the OOM in the later iterations. The snapshot of full iteration will be huge and hard to interpret.
On CUDA side, they provide OOM observer which generates snapshot when OOM happens with latest 1,500,000 entries for debugging.
In this diff, we want to implement the feature on MTIA side
Test Plan:
Run this test with last diff in the stack.
```
buck run @//mode/opt kineto/libkineto/fb/mtia/integration_tests:mtia_memory_auto_trace_test
```
As shown, the memory_snapshot is generated when oom happens
Log: P1794792326
Snapshot: https://fburl.com/pytorch_memory_visualizer/lx73y6s3 {F1977402355}
Differential Revision: D71993315
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152160
Approved by: https://github.com/sraikund16
MemPool is a separate pool of memory handled by the caching allocator. This PR adds the option let the caching allocator try to use this pool as a last resort instead of OOMing by associating a use_on_oom bool with each MemPool.
Usage:
Users can optionally specify a ``use_on_oom`` bool (which is False by default) during MemPool creation. If true, then the CUDACachingAllocator will be able to use memory in this pool as a last resort instead of OOMing.
```
pool = torch.cuda.MemPool(allocator, use_on_oom=True)
with torch.cuda.use_mem_pool(pool):
a = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
del a
# at the memory limit, this will succeed by using pool's memory in order to avoid the oom
b = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
```
Testing:
```
python test/test_cuda.py -k test_mempool_limited_memory_with_allocator
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151487
Approved by: https://github.com/eqy, https://github.com/syed-ahmed, https://github.com/ngimel
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
# Motivation
We propose adding support for the Python with statement on `torch.accelerator.device_index` to enable device switching functionality. This enhancement would simplify writing device-agnostic code and provide benefits across all accelerators. Its device-specific counterparts include [`torch.cuda.device`](00199acdb8/torch/cuda/__init__.py (L482)) and [`torch.cuda._DeviceGuard`](00199acdb8/torch/cuda/__init__.py (L469)).
**Design Philosophy**
It accepts either an `Int` or `None` as input. When `None` is passed, no device switch is performed. Supporting `None` is important for compatibility, as it's possible to encounter `None` values from `torch.device.index`.
Therefore, with this PR, we can do like this
```python
src = 0
dst = 1
# Set src to current device
torch.accelerator.set_device_index(src)
with torch.accelerator.device_index(dst):
# Inside with statement, we set dst to current device
assert torch.accelerator.get_device_index() == dst
# Here the current device should be src
assert torch.accelerator.get_device_index() == src
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148864
Approved by: https://github.com/albanD
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Differential Revision: [D72987485](https://our.internmc.facebook.com/intern/diff/D72987485/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
Summary:
I can confirm that `torch.jit.Error.mro()` contains `Exception` in the inheritance hierarchy.
This avoids a bunch of `pyre-ignore`s in D73352417.
Test Plan: Sandcastle
Differential Revision: D73464544
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151947
Approved by: https://github.com/Skylion007
This adds a non-blocking mode to queue_pop. This allows for workers to poll if work is ready without blocking the main loop. This is useful for the case where you want to have a GPU have maximum utilization when something only periodically is sent on the queue.
We also expose a `torch.distributed.QueueEmptyError` so users can catch the error and handle it accordingly.
Test plan:
```
pytest test/distributed/test_store.py -k queue -v -s -x
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151485
Approved by: https://github.com/fduwjj, https://github.com/tianfengfrank
Summary: add one option to allow skipping all reduce unused parameters, this could help improve training throughput significantly when the number of unused parameters is large in the model.
Test Plan: unit tests, CI
Differential Revision: D72282069
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151503
Approved by: https://github.com/mrshenli
# Motivation
Adapt `torch.accelerator.device_count` for multi-process usage. For example, `torch.cuda.device_count` avoids poisoning fork, then `torch.accelerator.device_count` should meet the same requirement.
Now that `torch.get_device_module(device).device_count` supports this, `torch.accelerator.device_count` should align with this behavior as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149924
Approved by: https://github.com/albanD
ghstack dependencies: #147507
This adds lazy initialization support to ProcessGroupGloo via `TORCH_GLOO_LAZY_INIT` or via `create_device(..., lazy_init=True)`
This is still a draft PR as there's one race condition when doing coalesced operations that needs to be fixed upstream in Gloo first. Depends on https://github.com/facebookincubator/gloo/pull/427 landing first
This also updates the gloo submodule to include the required changes.
Test plan:
added lazy init test variants
```
pytest -v test/distributed/test_c10d_gloo.py -k Lazy
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150801
Approved by: https://github.com/fduwjj
This PR creates two utils for generating a schema for hops from example inputs and use base hop as an exmaple.
1. HopArgumentInfoGen creates an argument or an output schema with mutation information.
2. CFuncitonSchemaGen piece together the argument info of inputs and outputs and produces torch._C.FunctionSchema.
is_write attribute of argument info can be computed. Note that the is_write annotation only works when the inputs are flattened (e.g. cannot support mutation inside tuple). We need special handling the case where we have tuple inputs like cond.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149688
Approved by: https://github.com/zou3519
Relanding #148590 due to merge conflict.
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Squashed contents:
* [ptd][nccl] use current-stream as nccl-stream under async=False mode (#147820)
PTD current workflow:
- PTD creates its own dedicated `ncclStream` for comm operation
- it will first add a dependency on current-stream (typically the compute stream) to ensure tensors are ready before invoking collective
such stream synchronization become expensive in Inference world (cpu overhead: 70us vs GPU kernel time: 160us).
This diff:
- async=False [default], will use current-stream as nccl-stream and avoid the stream-sync overhead
- async=True, will retain existing logic: create new nccl-stream, let it wait on current-stream to ensure tensors are ready
- pass down async from c10d down to NCCL-PG
this helps shave off 50% CPU overhead **(70us -> 35us)**, which reduce total CPU/GPU from **230us to 195us by 15%**
* [PGNCCL] Make avoid-record-stream default
* [c10d] Add asyncOp argument to Ops
* Change python side wait
* Pass asyncOp at ProcessGroup level
* Watchdog unstashing tensors as a safety net
* Stash tensors for reduce_scatter_v and all_gather_v
Pull Request approved: https://github.com/pytorch/pytorch/pull/149753
* [c10d] Move unstashing from watchdog to main thread
Pull Request approved: https://github.com/pytorch/pytorch/pull/150079
* [PGNCCL][BE] Merge mutex into TensorShelf for encapsulation
Pull Request approved: https://github.com/pytorch/pytorch/pull/150130
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150398
Approved by: https://github.com/atalman
Summary:
Oftentimes, users complain that a bunch of extra events are prepended to their desired GPU snapshot. This is because they usually attach an OOM logger without knowing and when they go to collect the actual snapshot, it adds all the OOM logger contents. Since OOM and regular snapshot use the same backend, we currently don't have the infra in place to split these snapshots.
As a solution we add a flag to the snapshot frontend to clear out the history when starting the auto-trace record memory history.
A more thorough solution would be to have a user pass in a handle and to have snapshots per handle to seperate the events. However, this would likely be complicated and more work than it is worth as we would have to change the callbacks in the caching allocator and pass these objects between python and cpp.
Test Plan:
See diff below
Differential Revision: D71159720
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149352
Approved by: https://github.com/eqy, https://github.com/aaronenyeshi
This is a new version of https://github.com/pytorch/pytorch/pull/148561 fixing the ROCM test failure
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Probably lots of features of the triton C++ generated code that I haven't handled yet.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149238
Approved by: https://github.com/oulgen
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete, will do in separate diff:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z. With https://github.com/pytorch/pytorch/pull/147583, we should be able to handle all of the grid logic directly in _StaticCudaLauncher.launch_kernel, and get rid of the python evaluation.
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Hooking it up with a config to inductor
- Testing harness to test against torch generated triton kernels
Differential Revision: [D69926783](https://our.internmc.facebook.com/intern/diff/D69926783/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148561
Approved by: https://github.com/aorenste, https://github.com/syed-ahmed
Summary:
**Codegen**
- Skip some codegen parts for torchbind (such as arg decleration) because they are loaded in proxy executor, so we do not need to declare torchbind args in cpp code
- Added a helper method to get the schema of CallTorchBind HOP. The returned schema is only the schema of `obj.method()`.
**Serialization**
Add support for torchbind object in serialization
- For CallTorchBind HOP, we need to handle it specially because of it's schema. The output serialized args is in the format of `(obj, method, *args, **kwargs)`.
- it.TorchBindObject inputs are serialized to `as_custom_obj` Argument.
**Packaging**
Add torchbind objects file and `custom_objs_config.json` file to generated files output of `aot_compile`.
The json file is stored in the `data/aotinductor/<model_name>` folder in pt2 archive.
The torchbind objects are stored in data/constants/ folder in pt2 archive.
The format of torchbind objects are `f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}"`. e.g. `custom_obj_0`.
CustomClassHolder objects implement their own pickle methods.
Note that this `custom_objs_config.json` file is different from the `model_constants_config.json` file produced in package_sigmoid(). The keys in `custom_objs_config` directly correspond to the arg name in extern nodes json.
The key in `model_constants_config.json` produced by `package_sigmoid` is the attribute name in the user mode code.
This is required for both internal and OSS torchbind support.
For OSS torchbind support, we also need to package torchbind_constants into the .pt2 output.
**Work Left**
We still need to add torchbind support in ProxyExecutor for inductor.aoti_load_package to work. See other diffs in the stack.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r schema
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile
```
Differential Revision: D69490718
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148506
Approved by: https://github.com/angelayi
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70937982](https://our.internmc.facebook.com/intern/diff/D70937982)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70835197](https://our.internmc.facebook.com/intern/diff/D70835197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70835197](https://our.internmc.facebook.com/intern/diff/D70835197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This adds `abort` and `shutdown` to `Backend` and `ProcessGroup` objects. This simplifies the logic in `distributed_c10d.py` by having a default noop implementation for all PGs.
This will be useful for torchft and upcoming versions of NCCL which will handle abort correctly. Currently `torchft` would have to call internal methods `_abort` on the PGNCCL object directly but with this change we can now just call `.abort()` and have it work for any PG implementation.
Test plan:
```
pytest distributed/test_backends.py distributed/test_c10d_common.py distributed/test_c10d_pypg.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148798
Approved by: https://github.com/kwen2501
This PR adds support for non-functional collectives under `FakeTensorMode` and `fake_pg`. It helps eliminate the patching of collectives for memory and runtime estimation.
It also modifies the `ModTracker` to enable the post-backward hook call for modules whose inputs don't require gradients but parameters do.
For the memory tracking, we now enable tracking DTensor dispatcher for custom dispatch functions like `entropy_loss`.
Dispatcher is only enabled for the memory tracking part and disabled as soon as it is done.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147566
Approved by: https://github.com/weifengpy
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Currently, recorded profiler events for aten ops do not store overload names. It would be useful to know which overloads are actually called to analyse performance.
For example, consider the following dispatch trace which occurs if there is a fallthrough kernel registered for aten::add:
```
[call] op=[aten::add.Tensor], key=[AutogradCPU]
[redispatch] op=[aten::add.Tensor], key=[Undefined]
[call] op=[aten::empty.memory_format], key=[BackendSelect]
[redispatch] op=[aten::empty.memory_format], key=[CPU]
[call] op=[aten::add.out], key=[CPU]
```
In this case, aten::add.out is a child of aten::add.Tensor, however the current profiler trace provides no way to differentiate aten op calls.
See the added unit test for a more detailed example.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143114
Approved by: https://github.com/sraikund16
1. My company is using privateuseone to connect new hardware device and requires the use of `batch_isend_irecv` function. However, `batch_isend_irecv` is currently only open to CUDA, so I add `supports_coalescing` property in `c10d::Backend` to determine whether backend supports coalescing.
2. If `pg._has_hooks` return True, We don't need to determine if the current device is CUDA. So privateuseone can also support `pg._wait_for_pending_works`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135338
Approved by: https://github.com/kwen2501, https://github.com/albanD