Fixes#10536
Reattempt of #61467. Thank you so much to @mskoh52 for your excellent work!
As I was trying to create a more efficient LLM data collator, I realized that `pad_sequence` only supports right padding, even though left padding is a very common format for LLMs, like Llama and Mistral.
The proposed alternative implementation was to use multiple flips, which tends to be 1.5x-2x slower. Instead we can add a [`padding_side` parameter as there is for for Hugging Face tokenizers](9d6c0641c4/src/transformers/tokenization_utils_base.py (L1565)), which requires only a very small change in the C++ code.
Here are the benchmarks of the new implementation!
`float32`:

`bool`:

Code:
```python
from __future__ import annotations
import random
import time
from typing import Literal
import numpy as np
import torch
def pad_sequence_with_flips(
sequences: list[torch.Tensor],
batch_first: bool = False,
padding_value: int | float | bool = 0.0,
padding_side: Literal["left", "right"] | str = "left",
) -> torch.Tensor:
if padding_side == 'right':
padded_sequence = torch._C._nn.pad_sequence([t.flatten() for t in sequences], batch_first=batch_first, padding_value=padding_value)
elif padding_side=='left':
padded_sequence = torch._C._nn.pad_sequence([t.flatten().flip(0) for t in sequences], batch_first=batch_first, padding_value=padding_value) # pyright: ignore[reportArgumentType]
padded_sequence = padded_sequence.flip(int(batch_first))
else:
raise ValueError(f"padding_side should be either 'right' or 'left', but got {padding_side}")
return padded_sequence
sequence_lengths: list[int] = []
flip_left_pad_times: list[float] = []
flip_left_pad_times_std: list[float] = []
left_pad_times: list[float] = []
left_pad_times_std: list[float] = []
RUNS_PER_LOOP: int = 100
for i in range(1, 7):
sequence_length = i * int(1e6) // 6
sequence_lengths.append(sequence_length)
sequences = [torch.randint(0, 2, (random.randint(1, sequence_length),), dtype=torch.bool) for _ in range(64)]
inner_left_pad_times: list[float] = []
inner_right_pad_times: list[float] = []
inner_flip_left_pad_times: list[float] = []
inner_flip_right_pad_times: list[float] = []
for _ in range(RUNS_PER_LOOP):
start = time.perf_counter()
torch._C._nn.pad_sequence(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_left_pad_times.append(end - start)
start = time.perf_counter()
pad_sequence_with_flips(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_flip_left_pad_times.append(end - start)
left_pad_times.append(sum(inner_left_pad_times) / len(inner_left_pad_times))
left_pad_times_std.append(np.std(inner_left_pad_times))
flip_left_pad_times.append(sum(inner_flip_left_pad_times) / len(inner_flip_left_pad_times))
flip_left_pad_times_std.append(np.std(inner_flip_left_pad_times))
print(f"Sequence Length: {sequence_length}, Left Pad Time: {left_pad_times[-1]}, Left with Flips Pad Time: {flip_left_pad_times[-1]}")
import matplotlib.pyplot as plt
plt.plot(sequence_lengths, left_pad_times, label="new pad_sequence left")
plt.scatter(sequence_lengths, left_pad_times)
plt.errorbar(sequence_lengths, left_pad_times, yerr=left_pad_times_std, linestyle='None', marker='^')
plt.plot(sequence_lengths, flip_left_pad_times, label="old pad_sequence left (2 flips)")
plt.scatter(sequence_lengths, flip_left_pad_times)
plt.errorbar(sequence_lengths, flip_left_pad_times, yerr=flip_left_pad_times_std, linestyle='None', marker='^')
plt.xlabel("Sequence Length")
plt.ylabel("Time (s)")
plt.legend(loc="upper right")
# Sequence Length: 166666, Left Pad Time: 0.06147645162009212, Left with Flips Pad Time: 0.09842291727001794
# Sequence Length: 333333, Left Pad Time: 0.08933195920990329, Left with Flips Pad Time: 0.15597836187991562
# Sequence Length: 500000, Left Pad Time: 0.08863158334006585, Left with Flips Pad Time: 0.15224887342999863
# Sequence Length: 666666, Left Pad Time: 0.10524682551997103, Left with Flips Pad Time: 0.18177212480995877
# Sequence Length: 833333, Left Pad Time: 0.11801802741003485, Left with Flips Pad Time: 0.20821274195001024
# Sequence Length: 1000000, Left Pad Time: 0.131894061660023, Left with Flips Pad Time: 0.23223503091008751
```
Co-authored-by: mskoh52 <mskoh52@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131884
Approved by: https://github.com/ezyang
Fixes#112632
Before: 171
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:177 in private nested class `ShapeComputeModule`:
D400: First line should end with a period (not 'n')
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
D400: First line should end with a period (not 's')
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
D401: First line should be in imperative mood; try rephrasing (found 'Helper')
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
D202: No blank lines allowed after function docstring (found 1)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
D400: First line should end with a period (not ':')
torch/backends/cuda/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/cuda/__init__.py:30 in public function `is_built`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:30 in public function `is_built`:
D209: Multi-line docstring closing quotes should be on a separate line
torch/backends/cuda/__init__.py:30 in public function `is_built`:
D400: First line should end with a period (not 's')
torch/backends/cuda/__init__.py:30 in public function `is_built`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cuda/__init__.py:37 in public class `cuFFTPlanCacheAttrContextProp`:
D101: Missing docstring in public class
torch/backends/cuda/__init__.py:40 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:44 in public method `__get__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:47 in public method `__set__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
D400: First line should end with a period (not 'e')
torch/backends/cuda/__init__.py:60 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:73 in public method `clear`:
D102: Missing docstring in public method
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
D400: First line should end with a period (not ',')
torch/backends/cuda/__init__.py:89 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:93 in public method `__getitem__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:106 in public method `__getattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:109 in public method `__setattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:116 in public class `cuBLASModule`:
D101: Missing docstring in public class
torch/backends/cuda/__init__.py:117 in public method `__getattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:126 in public method `__setattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:147 in public function `preferred_linalg_library`:
D202: No blank lines allowed after function docstring (found 1)
torch/backends/cuda/__init__.py:204 in public class `SDPBackend`:
D204: 1 blank line required after class docstring (found 0)
torch/backends/cudnn/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:81 in public function `version`:
D400: First line should end with a period (not 'N')
torch/backends/cudnn/__init__.py:81 in public function `version`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:95 in public function `is_available`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/mkl/__init__.py:5 in public function `is_available`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkl/__init__.py:14 in public class `verbose`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkl/__init__.py:14 in public class `verbose`:
D400: First line should end with a period (not 'y')
torch/backends/mkl/__init__.py:41 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:44 in public method `__enter__`:
D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:53 in public method `__exit__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:9 in public function `is_available`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
D400: First line should end with a period (not 'y')
torch/backends/mkldnn/__init__.py:47 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:50 in public method `__enter__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:59 in public method `__exit__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:64 in public function `set_flags`:
D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:71 in public function `flags`:
D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:81 in public class `MkldnnModule`:
D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:82 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/openmp/__init__.py:5 in public function `is_available`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/intrinsic/qat/modules/conv_fused.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_fused.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_relu.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/__init__.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/__init__.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/modules/linear.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/modules/__init__.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/modules/conv.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/modules/embedding_ops.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/qat/modules/linear.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/activation.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/rnn.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/__init__.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/conv.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/linear.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/rnn.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/sparse.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/utils.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/__init__.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/conv.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/linear.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/rnn.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/functional.py:1 at module level:
D400: First line should end with a period (not 'l')
torch/nn/quantized/modules/__init__.py:1 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/activation.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/batchnorm.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/conv.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/dropout.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/embedding_ops.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/functional_modules.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/linear.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/normalization.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/rnn.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/quantized/modules/utils.py:2 at module level:
D400: First line should end with a period (not 's')
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
D401: First line should be in imperative mood (perhaps 'Extract', not 'Extracts')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
D400: First line should end with a period (not 'e')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
D400: First line should end with a period (not ')')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:84 in public function `maybe_scale_by_batch_size`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:90 in public function `set_grad_sample_if_exists`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:108 in public function `unpack_expanded_weight_or_tensor`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
D400: First line should end with a period (not 't')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
D401: First line should be in imperative mood (perhaps 'Calculate', not 'Calculates')
torch/nn/utils/convert_parameters.py:1 at module level:
D100: Missing docstring in public module
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
D400: First line should end with a period (not 'd')
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/nn/utils/rnn.py:1 at module level:
D100: Missing docstring in public module
torch/nn/utils/rnn.py:28 in public class `PackedSequence`:
D204: 1 blank line required after class docstring (found 0)
torch/nn/utils/rnn.py:63 in public method `__new__`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:73 in public method `pin_memory`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:80 in public method `cuda`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:87 in public method `cpu`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:94 in public method `double`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:97 in public method `float`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:100 in public method `half`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:103 in public method `long`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:106 in public method `int`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:109 in public method `short`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:112 in public method `char`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:115 in public method `byte`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:119 in public method `to`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:119 in public method `to`:
D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
torch/nn/utils/rnn.py:146 in public method `is_cuda`:
D400: First line should end with a period (not 'u')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
D400: First line should end with a period (not 'y')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
D103: Missing docstring in public function
torch/nn/utils/rnn.py:274 in public function `pad_packed_sequence`:
D401: First line should be in imperative mood (perhaps 'Pad', not 'Pads')
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
D400: First line should end with a period (not '`')
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:454 in public function `pack_sequence`:
D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
D400: First line should end with a period (not 's')
171
```
After: 81
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
D103: Missing docstring in public function
torch/backends/cuda/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/cuda/__init__.py:39 in public class `cuFFTPlanCacheAttrContextProp`:
D101: Missing docstring in public class
torch/backends/cuda/__init__.py:42 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:46 in public method `__get__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:49 in public method `__set__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:63 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:76 in public method `clear`:
D102: Missing docstring in public method
torch/backends/cuda/__init__.py:91 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:95 in public method `__getitem__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:108 in public method `__getattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:111 in public method `__setattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:118 in public class `cuBLASModule`:
D101: Missing docstring in public class
torch/backends/cuda/__init__.py:119 in public method `__getattr__`:
D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:128 in public method `__setattr__`:
D105: Missing docstring in magic method
torch/backends/cudnn/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/mkl/__init__.py:42 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:45 in public method `__enter__`:
D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:54 in public method `__exit__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:48 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:51 in public method `__enter__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:60 in public method `__exit__`:
D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:65 in public function `set_flags`:
D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:72 in public function `flags`:
D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:82 in public class `MkldnnModule`:
D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:83 in public method `__init__`:
D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
D104: Missing docstring in public package
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:87 in public function `maybe_scale_by_batch_size`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:93 in public function `set_grad_sample_if_exists`:
D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:111 in public function `unpack_expanded_weight_or_tensor`:
D103: Missing docstring in public function
torch/nn/utils/convert_parameters.py:1 at module level:
D100: Missing docstring in public module
torch/nn/utils/rnn.py:1 at module level:
D100: Missing docstring in public module
torch/nn/utils/rnn.py:64 in public method `__new__`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:74 in public method `pin_memory`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:81 in public method `cuda`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:88 in public method `cpu`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:95 in public method `double`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:98 in public method `float`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:101 in public method `half`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:104 in public method `long`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:107 in public method `int`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:110 in public method `short`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:113 in public method `char`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:116 in public method `byte`:
D102: Missing docstring in public method
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
D103: Missing docstring in public function
81
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112695
Approved by: https://github.com/mikaylagawarecki
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
Without this change I get the following error.
```
line 444, in unpad_sequence
mask = idx < length
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98042
Approved by: https://github.com/mikaylagawarecki
Signed-off-by: Boris Fomitchev <bfomitchev@nvidia.com>
Fixes#91351
As for unit tests - in this PR I only fixed LSTM unit test to properly use dynamic axes and expose export issue by running test with same ONNX for additional inputs.
If the changes approved, we should also fix the rest of the tests (RNN/GRU and beyond).
I have verified the following updated tests are working with new code and failing with the old code:
test/onnx/test_pytorch_onnx_onnxruntime.py::TestONNXRuntime_opset_version_14_is_script_False_keep_initializers_as_inputs_True::test_rnn_name_lstm_nonlinearity_None_unilayer_bidirectional_no_initial_state_with_variable_length_sequences_with_dropout
test/onnx/test_pytorch_onnx_onnxruntime.py::TestONNXRuntime_opset_version_14_is_script_False_keep_initializers_as_inputs_True::test_rnn_name_lstm_nonlinearity_None_unilayer_bidirectional_with_initial_state_with_variable_length_sequences_with_dropout
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92970
Approved by: https://github.com/titaiwangms, https://github.com/kit1980
Changes:
- #95200
1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience.
2. Fix deep setting merge in `tools/vscode_settings.py`.
- => this PR: #95267
3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`:
`namedtuple + __annotations__`:
```python
PackedSequence_ = namedtuple('PackedSequence_',
['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])
# type annotation for PackedSequence_ to make it compatible with TorchScript
PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor,
'sorted_indices': Optional[torch.Tensor],
'unsorted_indices': Optional[torch.Tensor]}
```
`Namedtuple`: Python 3.6+
```python
class PackedSequence_(NamedTuple):
data: torch.Tensor
batch_sizes: torch.Tensor
sorted_indices: Optional[torch.Tensor]
unsorted_indices: Optional[torch.Tensor]
```
- #95268
4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files.
5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95267
Approved by: https://github.com/janeyx99
This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72662
This commit was produced by running
```
python -m libcst.tool codemod --no-format --jobs=1 convert_type_comments.ConvertTypeComments caffe2/torch/nn/ --no-quote-annotations
```
and then manually fixing unreadable lines by breaking up very
long function defintiion (unfortuantely
it's very difficult to fully automate tranforms of code that
isn't autoformatted).
Test Plan:
Wait for CI. This should be safe, the types all appear to be valid - but it's
always good to let the jit tests run, in some cases we find typing errors that
crash tests.
Reviewed By: jbschlosser, albanD
Differential Revision: D34147388
fbshipit-source-id: 40701228837a927b54239ab87699b4b3169546b7
(cherry picked from commit 05a900c43f)
Summary:
As this diff shows, currently there are a couple hundred instances of raw `noqa` in the codebase, which just ignore all errors on a given line. That isn't great, so this PR changes all existing instances of that antipattern to qualify the `noqa` with respect to a specific error code, and adds a lint to prevent more of this from happening in the future.
Interestingly, some of the examples the `noqa` lint catches are genuine attempts to qualify the `noqa` with a specific error code, such as these two:
```
test/jit/test_misc.py:27: print(f"{hello + ' ' + test}, I'm a {test}") # noqa E999
test/jit/test_misc.py:28: print(f"format blank") # noqa F541
```
However, those are still wrong because they are [missing a colon](https://flake8.pycqa.org/en/3.9.1/user/violations.html#in-line-ignoring-errors), which actually causes the error code to be completely ignored:
- If you change them to anything else, the warnings will still be suppressed.
- If you add the necessary colons then it is revealed that `E261` was also being suppressed, unintentionally:
```
test/jit/test_misc.py:27:57: E261 at least two spaces before inline comment
test/jit/test_misc.py:28:35: E261 at least two spaces before inline comment
```
I did try using [flake8-noqa](https://pypi.org/project/flake8-noqa/) instead of a custom `git grep` lint, but it didn't seem to work. This PR is definitely missing some of the functionality that flake8-noqa is supposed to provide, though, so if someone can figure out how to use it, we should do that instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56272
Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI run (before this PR was finished) failed:
- https://github.com/pytorch/pytorch/runs/2365189927
Reviewed By: janeyx99
Differential Revision: D27830127
Pulled By: samestep
fbshipit-source-id: d6dcf4f945ebd18cd76c46a07f3b408296864fcb
Summary:
This behavior was changed by side effect by https://github.com/pytorch/pytorch/pull/41984
Update the doc to reflect the actual behavior of the function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46937
Reviewed By: mruberry
Differential Revision: D24682750
Pulled By: albanD
fbshipit-source-id: 89b94b61f54dbcfc6a6988d7e7d361bd24ee4964
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33504
Fix resolution fo functions that are bound onto torch in torch/functional.py. This does not fix compilation of all of those functions, those will be done in follow ups. Does torch.stft as a start.
Fixes#21478
Test Plan: Imported from OSS
Differential Revision: D20014591
Pulled By: eellison
fbshipit-source-id: bb362f1b5479adbb890e72a54111ef716679d127