Commit Graph

46 Commits

Author SHA1 Message Date
Xuehai Pan
b5c006acac [BE][Easy] enable UFMT for torch/nn/ (#128865)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128865
Approved by: https://github.com/ezyang
2024-07-25 02:48:42 +00:00
NVS Abhilash
eb5487361d docs: fix docstring errors in quantized modules and others (#112695)
Fixes #112632

Before: 171
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:177 in private nested class `ShapeComputeModule`:
        D400: First line should end with a period (not 'n')
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
        D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
        D400: First line should end with a period (not 's')
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
        D401: First line should be in imperative mood; try rephrasing (found 'Helper')
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D202: No blank lines allowed after function docstring (found 1)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D400: First line should end with a period (not ':')
torch/backends/cuda/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D400: First line should end with a period (not 's')
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cuda/__init__.py:37 in public class `cuFFTPlanCacheAttrContextProp`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:40 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:44 in public method `__get__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:47 in public method `__set__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
        D400: First line should end with a period (not 'e')
torch/backends/cuda/__init__.py:60 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:73 in public method `clear`:
        D102: Missing docstring in public method
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
        D400: First line should end with a period (not ',')
torch/backends/cuda/__init__.py:89 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:93 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:106 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:109 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:116 in public class `cuBLASModule`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:117 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:126 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:147 in public function `preferred_linalg_library`:
        D202: No blank lines allowed after function docstring (found 1)
torch/backends/cuda/__init__.py:204 in public class `SDPBackend`:
        D204: 1 blank line required after class docstring (found 0)
torch/backends/cudnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:81 in public function `version`:
        D400: First line should end with a period (not 'N')
torch/backends/cudnn/__init__.py:81 in public function `version`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:95 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
        D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkl/__init__.py:5 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkl/__init__.py:14 in public class `verbose`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkl/__init__.py:14 in public class `verbose`:
        D400: First line should end with a period (not 'y')
torch/backends/mkl/__init__.py:41 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:44 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:53 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:9 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
        D400: First line should end with a period (not 'y')
torch/backends/mkldnn/__init__.py:47 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:50 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:59 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:64 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:71 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:81 in public class `MkldnnModule`:
        D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:82 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/openmp/__init__.py:5 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/intrinsic/qat/modules/conv_fused.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_fused.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_relu.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/embedding_ops.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/activation.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/sparse.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/utils.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/functional.py:1 at module level:
        D400: First line should end with a period (not 'l')
torch/nn/quantized/modules/__init__.py:1 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/activation.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/batchnorm.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/dropout.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/embedding_ops.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/functional_modules.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/normalization.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/utils.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D401: First line should be in imperative mood (perhaps 'Extract', not 'Extracts')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D400: First line should end with a period (not 'e')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D400: First line should end with a period (not ')')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:84 in public function `maybe_scale_by_batch_size`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:90 in public function `set_grad_sample_if_exists`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:108 in public function `unpack_expanded_weight_or_tensor`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D400: First line should end with a period (not 't')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D401: First line should be in imperative mood (perhaps 'Calculate', not 'Calculates')
torch/nn/utils/convert_parameters.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D400: First line should end with a period (not 'd')
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/nn/utils/rnn.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:28 in public class `PackedSequence`:
        D204: 1 blank line required after class docstring (found 0)
torch/nn/utils/rnn.py:63 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:73 in public method `pin_memory`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:80 in public method `cuda`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:87 in public method `cpu`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:94 in public method `double`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:97 in public method `float`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:100 in public method `half`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:103 in public method `long`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:106 in public method `int`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:109 in public method `short`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:112 in public method `char`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:115 in public method `byte`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:119 in public method `to`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:119 in public method `to`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
torch/nn/utils/rnn.py:146 in public method `is_cuda`:
        D400: First line should end with a period (not 'u')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
        D400: First line should end with a period (not 'y')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
        D103: Missing docstring in public function
torch/nn/utils/rnn.py:274 in public function `pad_packed_sequence`:
        D401: First line should be in imperative mood (perhaps 'Pad', not 'Pads')
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
        D400: First line should end with a period (not '`')
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
        D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:454 in public function `pack_sequence`:
        D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
        D400: First line should end with a period (not 's')
171
```

After: 81
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
        D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
        D103: Missing docstring in public function
torch/backends/cuda/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cuda/__init__.py:39 in public class `cuFFTPlanCacheAttrContextProp`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:42 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:46 in public method `__get__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:49 in public method `__set__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:63 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:76 in public method `clear`:
        D102: Missing docstring in public method
torch/backends/cuda/__init__.py:91 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:95 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:108 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:111 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:118 in public class `cuBLASModule`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:119 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:128 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cudnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
        D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkl/__init__.py:42 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:45 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:54 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:48 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:51 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:60 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:65 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:72 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:82 in public class `MkldnnModule`:
        D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:83 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:87 in public function `maybe_scale_by_batch_size`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:93 in public function `set_grad_sample_if_exists`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:111 in public function `unpack_expanded_weight_or_tensor`:
        D103: Missing docstring in public function
torch/nn/utils/convert_parameters.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:64 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:74 in public method `pin_memory`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:81 in public method `cuda`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:88 in public method `cpu`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:95 in public method `double`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:98 in public method `float`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:101 in public method `half`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:104 in public method `long`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:107 in public method `int`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:110 in public method `short`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:113 in public method `char`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:116 in public method `byte`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
        D103: Missing docstring in public function
81
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112695
Approved by: https://github.com/mikaylagawarecki
2023-11-07 23:52:16 +00:00
zaf
c92e5ac95b [quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] [Current PR] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [ ] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- Documentation @vkuzo
  - docs/source/conf.py
  - docs/source/quantization.rst
- [quantize_fx](torch/ao/quantization/quantize_fx.py) @jerryzh168
- [common test routine](test/quantization/ao_migration/common.py) @HDCharles
- JIT stuff @jamesr66a
  - torch/csrc/jit/passes/hoist_conv_packed_params.cpp
  - torch/csrc/jit/passes/quantization/helper.h
  - torch/csrc/jit/serialization/import_source.cpp

Differential Revision: [D38926012](https://our.internmc.facebook.com/intern/diff/D38926012/)

Differential Revision: [D38926012](https://our.internmc.facebook.com/intern/diff/D38926012)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78713
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:33 +00:00
PyTorch MergeBot
6a9c02339d Revert "[quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)"
This reverts commit 432f037498.

Reverted https://github.com/pytorch/pytorch/pull/78713 on behalf of https://github.com/janeyx99 due to Reverting for breaking (trunk-only) ios build
2022-08-22 07:32:37 +00:00
zaf
432f037498 [quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] [Current PR] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [ ] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- Documentation @vkuzo
  - docs/source/conf.py
  - docs/source/quantization.rst
- [quantize_fx](torch/ao/quantization/quantize_fx.py) @jerryzh168
- [common test routine](test/quantization/ao_migration/common.py) @HDCharles
- JIT stuff @jamesr66a
  - torch/csrc/jit/passes/hoist_conv_packed_params.cpp
  - torch/csrc/jit/passes/quantization/helper.h
  - torch/csrc/jit/serialization/import_source.cpp

Differential Revision: [D36860145](https://our.internmc.facebook.com/intern/diff/D36860145/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78713
Approved by: https://github.com/jerryzh168
2022-08-22 01:38:55 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
Weiwen Xia
2edd6aaeaa Add prelu op and module for quantized CPU backend (#73491)
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
2022-07-20 07:48:15 +00:00
PyTorch MergeBot
b64096a264 Revert "Add prelu op and module for quantized CPU backend (#73491)"
This reverts commit 3a6d6bc3cc.

Reverted https://github.com/pytorch/pytorch/pull/73491 on behalf of https://github.com/malfet due to Broke Windows builds, see 3a6d6bc3cc
2022-06-30 12:54:39 +00:00
Weiwen Xia
3a6d6bc3cc Add prelu op and module for quantized CPU backend (#73491)
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
2022-06-30 06:50:22 +00:00
HDCharles
3bcec850e5 [quant] Add QuantizedMHA class (#79956)
The nn.MultiheadAttention is quantized through the custom module mechanism, which uses the nn.quantizable.MultiheadAttention for both observed and quantized paths. This is potentially a source of confusion. This creates a quantized.MultiheadAttention class, which completely takes the quantized path. Note that after this, the old usage will throw an error.
New way of using it:

```
>>> custom_module_config = {
...     'float_to_observed_custom_module_class': {
...         nn.MultiheadAttention: nn.quantizable.MultiheadAttention,
...     },
...     'observed_to_quantized_custom_module_class': {
...         nn.quantizable.MultiheadAttention: nn.quantized.MultiheadAttention,
...     }
... }
>>> tq.prepare(model, prepare_custom_module_class=custom_module_config)
>>> tq.convert(model, convert_custom_module_class=custom_module_config)
```

due to weird CI issues with previous PR,
old discussion can be found: https://github.com/pytorch/pytorch/pull/71190
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79956
Approved by: https://github.com/z-a-f
2022-06-24 16:54:42 +00:00
Vasiliy Kuznetsov
35545d85dc fx quant: add quantized Softmax workflow integration (#75106)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75106

In https://github.com/pytorch/pytorch/pull/75017 a quantized softmax
kernel was added. This PR adds the FX graph mode quantization workflow
integration to swap `nn.Softmax` to `nnq.Softmax`.

Test Plan:
```
python test/test_quantization.py TestQuantizeFxOps.test_fixed_qparams_ops
```

Reviewed By: kimishpatel, andrewor14

Differential Revision: D35324817

Pulled By: vkuzo

fbshipit-source-id: 710ae3bedf8a6ad1dc411cd9808fdd0ce743e757
(cherry picked from commit d67603c0fbb1d3469d97bd538cec38aa8b03324b)
2022-04-20 21:54:26 +00:00
Jerry Zhang
5613527ef9 [quant][fx] Add lowering support for functional ops using DefaultNodeQuantizeHandler (#73120)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73120

att
This is to align our implementation with https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D34354038

fbshipit-source-id: 873a867e62bd541ef236974c697fac2334bf02ea
(cherry picked from commit 3fce7cade2f057b985833659c2cb365ee4d6d9f3)
2022-02-26 19:29:58 +00:00
Vasiliy Kuznetsov
8b1258698e Improve quantization API docs (#66379)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66379

Description:

Creates a quantization API reference and fixes all the docblock errors.

This is #66122 to #66210 squashed together

Test Plan:
```
cd docs
make html
python -m http.server
// open webpage, inspect it, looks good
```

Reviewed By: ejguan

Differential Revision: D31543172

Pulled By: vkuzo

fbshipit-source-id: 9131363d6528337e9f100759654d3f34f02142a9
2021-10-11 18:46:11 -07:00
Mike Ruberry
09c3e6002b Revert D31447615: Quantization docs: rewrite API reference to be more automated
Test Plan: revert-hammer

Differential Revision:
D31447615 (7d2526ab20)

Original commit changeset: 09874ad9629f

fbshipit-source-id: 0963c9f5118e243cd299f8cded2bf7b0848a7105
2021-10-10 01:51:05 -07:00
Vasiliy Kuznetsov
7d2526ab20 Quantization docs: rewrite API reference to be more automated (#66201)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66201

Description:

This PR switches the quantization API reference to use `autosummary`
for each section.  We define the sections and manually write a list
of modules/functions/methods to include, and sphinx does the rest.
A result is a single page where we have every quantization function
and module with a quick autogenerated blurb, and user can click
through to each of them for a full documentation page.

This mimics how the `torch.nn` and `torch.nn.functional` doc
pages are set up.

In detail, for each section before this PR:
* creates a new section using `autosummary`
* adds all modules/functions/methods which were previously in the manual section
* adds any additional modules/functions/methods which are public facing but not previously documented
* deletes the old manual summary and all links to it

Test Plan:
```
cd docs
make html
python -m http.server
// renders well, links work
```

Reviewed By: jerryzh168

Differential Revision: D31447615

Pulled By: vkuzo

fbshipit-source-id: 09874ad9629f9c00eeab79c406579c6abd974901
2021-10-09 06:46:02 -07:00
Joel Schlosser
febff45900 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: albanD

Differential Revision: D27939544

Pulled By: jbschlosser

fbshipit-source-id: 4bf517e5f74f093e27ca38a85e732da65e44d805
2021-04-22 16:16:53 -07:00
Joel Schlosser
12b2bc94d7 Revert D27909732: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27909732 (5a09def9b0)

Original commit changeset: d8684b2403ab

fbshipit-source-id: d00d69fae4fa4ed58d9e97e70b27a06a0dcb39e4
2021-04-21 13:44:03 -07:00
Joel Schlosser
5a09def9b0 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: malfet

Differential Revision: D27909732

Pulled By: jbschlosser

fbshipit-source-id: d8684b2403ab7eb336371d118799146a2520bd76
2021-04-21 13:20:11 -07:00
Natalia Gimelshein
92d24e3060 Revert D27855386: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27855386 (40483acc51)

Original commit changeset: dabd505d2a04

fbshipit-source-id: f5bf3120d87861b30a8e1bf11977ad7d27cd8500
2021-04-19 20:07:20 -07:00
Joel Schlosser
40483acc51 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: bdhirsh

Differential Revision: D27855386

Pulled By: jbschlosser

fbshipit-source-id: dabd505d2a04208e74b158570fb2859c736eea2c
2021-04-19 12:24:58 -07:00
Sam Estep
d05e7c163f Revert D27600457: [pytorch][PR] Support factory kwargs in torch.nn modules
Test Plan: revert-hammer

Differential Revision:
D27600457 (1077f87269)

Original commit changeset: b58bfee61c39

fbshipit-source-id: 19d5bfc5133a3880383731d0332503ca1f3bce0c
2021-04-19 07:47:24 -07:00
Joel Schlosser
1077f87269 Support factory kwargs in torch.nn modules (#54508)
Summary:
Continuation of https://github.com/pytorch/pytorch/pull/53144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508

Reviewed By: mrshenli

Differential Revision: D27600457

Pulled By: jbschlosser

fbshipit-source-id: b58bfee61c3917524b4622f63ef216c27a588eb1
2021-04-19 06:58:40 -07:00
Zhi-Zheng Wu
7828a22094 fix a bug in leakyReLU (#48265)
Summary:
The scale variable needs to be a scalar, otherwise it will report the following error: "RuntimeError: Cannot input a tensor of dimension other than 0 as a scalar argument"

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48265

Test Plan: Tested locally and the error disappeared.

Reviewed By: zhizhengwu

Differential Revision: D25105423

Pulled By: jerryzh168

fbshipit-source-id: 2a0df24cf7e40278a950bffe6e0a9552f99da1d1
2020-11-19 20:15:05 -08:00
Jerry Zhang
8aaca4b46a [reland][quant] Remove nn.quantized.ReLU module and nn.quantized.functional.relu (#47415) (#48038)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48038

nn.ReLU works for both float and quantized input, we don't want to define an nn.quantized.ReLU
that does the same thing as nn.ReLU, similarly for nn.quantized.functional.relu

this also removes the numerical inconsistency for models quantizes nn.ReLU independently in qat mode

Test Plan:
Imported from OSS

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D25000462

fbshipit-source-id: e3609a3ae4a3476a42f61276619033054194a0d2
2020-11-17 09:52:21 -08:00
Vasiliy Kuznetsov
4779553921 Revert "[quant] Remove nn.quantized.ReLU module and nn.quantized.functional.relu (#47415)" (#47949)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47949

This reverts commit 1478e5ec2a.

Test Plan: Imported from OSS

Reviewed By: supriyar

Differential Revision: D24966363

Pulled By: vkuzo

fbshipit-source-id: ca1126f699eef84027a15df35962728296c8a790
2020-11-14 08:40:30 -08:00
Ayush Saraf
f86ec08160 [pytorch][quantization] adding jit state for QuantizedLeakyReLU (#47660)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47660

Currently, `QuantizedLeakyReLU` doesn't have any items in the `state_dict`. However, this operator needs to store the `scale` and `zero_point` in its state dictionary or the loading state dict for a quantized model with LeakyReLUs that have non-default quantization params would break.

Test Plan:
Originally the issue was found here: https://www.internalfb.com/intern/anp/view/?id=390362&revision_id=2510709822565735

In the latest version, I fixed this issue: https://www.internalfb.com/intern/anp/view/?id=390362

Reviewed By: jerryzh168

Differential Revision: D24757522

fbshipit-source-id: 57e1dea072b5862e65e228e52a86f2062073aead
2020-11-13 18:59:46 -08:00
Jerry Zhang
1478e5ec2a [quant] Remove nn.quantized.ReLU module and nn.quantized.functional.relu (#47415)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47415

nn.ReLU works for both float and quantized input, we don't want to define an nn.quantized.ReLU
that does the same thing as nn.ReLU, similarly for nn.quantized.functional.relu

this also removes the numerical inconsistency for models quantizes nn.ReLU independently in qat mode

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24747035

fbshipit-source-id: b8fdf13e513a0d5f0c4c6c9835635bdf9fdc2769
2020-11-12 10:56:30 -08:00
Jerry Zhang
83d2c9a232 [quant] Add quantized Sigmoid module (#45883)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45883

Test Plan:
python test/test_quantization.py TestStaticQuantizedModule.test_sigmoid

Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24129116

fbshipit-source-id: aa960549509c60374012f35b1f5be39e90418099
2020-10-07 10:33:18 -07:00
Jerry Zhang
8b7ee33ee6 [quant] Add quantized LeakyReLU module (#45711)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45711

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24069960

fbshipit-source-id: ccdd294308e07fd215556a63fa47191c09a1519f
2020-10-06 11:34:48 -07:00
Gao, Xiang
37658b144b Remove useless py2 compatibility import __future__, part 1 (#43808)
Summary:
To avoid conflicts, this PR does not remove all imports. More are coming in further PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43808

Reviewed By: wanchaol

Differential Revision: D23436675

Pulled By: ailzhang

fbshipit-source-id: ccc21a1955c244f0804277e9e47e54bfd23455cd
2020-09-02 19:15:11 -07:00
Vasiliy Kuznetsov
9bf255573f quant docs: add and clean up ELU (#40377)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40377

Cleans up the docstring for quantized ELU and adds it to the quantization docs.

Test Plan: * build on Mac OS and inspect

Differential Revision: D22162834

Pulled By: vkuzo

fbshipit-source-id: e548fd4dc8d67db27ed19cac4dbdf2a942586759
2020-06-23 09:02:43 -07:00
Vasiliy Kuznetsov
c4594a97ae quant docs: clean up hardswish (#40323)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40323

Cleans up the naming and the function param docs for quantized hardswish.
Remove redundant docstrings and link to floating point modules instead.

Test Plan:
* build the docs on Mac OS
* verify that every link works as expected

Differential Revision: D22152638

Pulled By: vkuzo

fbshipit-source-id: fef04874ae460b449c677424a6a1c6dd47054795
2020-06-23 08:59:34 -07:00
Vasiliy Kuznetsov
03ed802a90 quantized elu: eager mode static handling (#40103)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40103

Add eager mode static quantization handling for quantized ELU.

Test Plan:
```
python test/test_quantization.py TestStaticQuantizedModule.test_elu
python test/test_quantization.py TestPostTrainingStatic.test_activations
```

Imported from OSS

Differential Revision: D22075081

fbshipit-source-id: 8a3df428be135a0565472ebd0f55fa801689bcc5
2020-06-21 09:40:44 -07:00
Vasiliy Kuznetsov
65df8b3886 hardswish: make it work in static quantization (#36545)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36545

* adds a quantized nn.module for Hardswish so we can observe activation values
* modifies the hardswish op to allow specifying scale + zero_point
* makes hardswish model be properly swapped in static quantization

Test Plan:
added tests and they pass for:
* the new _out flavor of hardswish
* QNNPACK changes
* static quant e2e

Imported from OSS

Differential Revision: D21045320

fbshipit-source-id: ab7e52f0f54a7d5923ab6f58197022cc28c12354
2020-04-15 18:02:35 -07:00
Zafar Takhirov
aa658a2a68 Adding inplace quantized relu6
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29245

Test Plan: Imported from OSS

Differential Revision: D18334541

Pulled By: z-a-f

fbshipit-source-id: 25b12cc88ee81434d96cf5c44c008c6f85da0673
2019-11-09 14:53:42 -08:00
Zafar Takhirov
57c9b1cefc Enabling inplace relu
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28710

Test Plan: Imported from OSS

Differential Revision: D18146120

Pulled By: z-a-f

fbshipit-source-id: d8f0982f5a2ae35f7deb34e67cdb64be700a9d6c
2019-10-29 17:33:48 -07:00
James Reed
4d7bec5f3e Improve repr for quantized modules
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27008

Test Plan: Imported from OSS

Differential Revision: D17649174

Pulled By: jamesr66a

fbshipit-source-id: e3e6c4bb31e1ad8ed1ebe27f803f90d564ecfe53
2019-09-28 15:15:14 -07:00
Jerry Zhang
254122dd4e quantize_linear -> quantize_per_tensor (#26574)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26574

Since we also have `quantized::linear`, `quantize_linear` sounds
confusing, so we plan to rename it before the branch cut

Test Plan:
ci

Imported from OSS

Differential Revision: D17514876

fbshipit-source-id: 01d9005e6ec8cb9950b9d8bba122109c389641d3
2019-09-20 21:58:48 -07:00
Zafar Takhirov
a99a4485fa Added relu6 kernel (#24799)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24799

Pull Request resolved: https://github.com/pytorch/pytorch/pull/24799

Differential Revision: D16875493

Test Plan: Imported from OSS

Pulled By: zafartahirov

fbshipit-source-id: 0d256db193c6a8e0d37dbdf6cf35dd031fd4ec6c
2019-08-21 13:57:00 -07:00
Jerry Zhang
761ae8e9b6 Add intrinsic module mappings (#23753)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23753

Add intrinsic(fused) module mappings in quantize.py to enable mapping fused modules
in both QAT and post PTQ

Differential Revision: D16820749

fbshipit-source-id: 07de76a4f09b44bde8b193c103eac02c22b875b6
2019-08-15 09:37:24 -07:00
Edward Yang
ce79d5135a Revert D16634539: Enabling inline in quantized relu
Differential Revision:
D16634539

Original commit changeset: 84266f92049c

fbshipit-source-id: 5e1d8e3560483600a61c2ac62b13e9c3fede8301
2019-08-09 08:33:39 -07:00
Zafar Takhirov
9558ccdd76 Enabling inline in quantized relu
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23704

Test Plan: Imported from OSS

Differential Revision: D16634539

Pulled By: zafartahirov

fbshipit-source-id: 84266f92049ce4410ec25821b8d4699a9e3f123e
2019-08-09 02:37:12 -07:00
Zafar Takhirov
5e4c24baef Documentation cleanup
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23148

Test Plan: Imported from OSS

Differential Revision: D16414202

Pulled By: zafartahirov

fbshipit-source-id: a999be0384a2ff5272dd2f8adcf87547ce6ee9dd
2019-07-31 11:30:44 -07:00
Jerry Zhang
5040d52a5a torch.quantization conversion utilities, observers for eager mode quantization (#22010)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22010

torch.quantization module with observers and conversion routines

Reviewed By: zafartahirov

Differential Revision: D15554183

fbshipit-source-id: 05a3fabe28dd701978b8ecebf5bfc3a4c044ba5c
2019-07-09 10:51:38 -07:00
David Riazati
10c4b98ade Remove weak script (#22212)
Summary:
* Deletes all weak script decorators / associated data structures / methods
   * In order to keep supporting the standard library in script, this enables recursive script on any function defined in `torch.nn`
   * Most changes in `torch/nn` are the result of `ag -Q "weak" torch/nn/ -l | xargs sed -i '/weak/d'`, only `rnn.py` needed manual editing to use the `ignore` and `export` to continue supporting the overloaded `forward` methods
* `Sequential`/`ModuleList` no longer need to be added to constants since they are compiled on demand

This should also fix https://github.com/pytorch/pytorch/issues/22212
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22212

Differential Revision: D15988346

Pulled By: driazati

fbshipit-source-id: af223e3ad0580be895377312949997a70e988e4f
2019-07-03 17:28:25 -07:00
Jerry Zhang
5e77111486 nn.quantized.Relu and nn.quantize.Quantize/DeQuantize modules
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21930

Differential Revision: D15554224

fbshipit-source-id: 1de9ac7412468106be60e53852c23318ead37bc6
2019-06-27 16:15:17 -07:00