Prior to this patch, we are using `ConstantVariable.create` to create VT
for frozenset objects, and intended yet failed to predicate that on all
itmes being literals (see https://github.com/pytorch/pytorch/pull/140984#discussion_r1847393736).
The code was from https://github.com/pytorch/torchdynamo/commit/7c03434 and
the original goal was to help DBR quantization, but as the new test in
this patch shows, it could lead to silent incorrectness.
Upon a closer look, this exposes some subtleties in how Dynamo handles
`ConstantVariable` and `LOAD_CONST`, so this patch both fixes the
aforementioned issue and documents, enforces, and makes explicit the
invariants around `ConstantVariable` and `LOAD_CONST` -- only immutable
objects are supported.
Specifically, this patch:
1. refine the checks for wrapping a `frozenset` object, document why we
can't just wrap its items directly due to lack of `Sourcec` for set
items, and use a safe workaround (`SourcelessBuilder`) to ensure
soundness while keeping the DBR quantization support.
2. Adds more types to `common_constant_types`, thereby making
`ConstantVariable.is_base_literal` more lenient, and strictly checks
this property in the constructor of `ConstantVariable`.
3. Change relevant uses of `create_instruction("LOAD_CONST", ...)` to
`create_load_const` which checks `is_safe_constant`, and makes
developer overrides explicit by using `create_load_const_unchecked`
when needed.
4. In a few places, use more specific `VariableTracker`, e.g.,
`TypingVariable` rather than `ConstantVariable`, and
`FrozensetVariable` rather than `SetVariable`.
(2) and (3) are mainly to future-proof Dynamo against bugs like (1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141504
Approved by: https://github.com/jansel
In addition to `NewCellVariable`, Dynamo has 3 ways of modeling cell objects:
1. For cells captured and created by the root frame, represent them as
their contents in `root_tx.symbolic_locals`, which `LOAD_DEREF` and
`STORE_DEREF` update directly, without going through `SideEffects`.
2. `ClosureVariable`: this is created when cells from (1) are captured
by a newly created function Dynamo is about to inline. It's a handle
with a name that redirects `LOAD_DEREF` and `STORE_DEREF` back (1),
to make `root_tx.symbolic_locals` up-to-date.
3. For cells that are captured by both the root frame and some
pre-existing function Dynamo is about to inline, represent those
cells as contents, and do not allow writes to them.
Note that (2) and (3) are mainly to conform with (1) -- to make sure
Dynamo has a consistent modeling of cells for the same cell objects.
In this patch, we represent all of these cells as `NewCellVariable`. The
main new code paths introduced are:
- using `NewCellVariable` to model cell objects created by the root
frame (the cells are passed in as input to `InstructionTranslator`),
this is what allows us to get rid of all 3 legacy paths above.
- adding a new `AutoDerefLocalSource` to deal with the python-code
level (guards) and bytecode level (codegen) auto-dereferencing
behavior, when accessing pre-existing python cells. This also
involves a tiny update to guard manager generation.
- plumbing some extra info into `LocalSource` and `CellVariable` so that
we can still emit `LOAD_DEREF`, `STORE_DEREF`, `LOAD_CLOSURE` (instead
of `make_cell`, `cell_contents` attribute access, and `LOAD_FAST`),
which is important for readability, performance, and some
assumptions `bytecode_transformation.py` makes.
As a result, this patch removes a lot of the now-dead code paths and
TODOs. Notably, it significantly simplified the `prune_dead_locals`
function, which was duplicating a lot of the logic from
`prune_dead_object_new`; this conveniently closes#137123.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140153
Approved by: https://github.com/jansel
ghstack dependencies: #140330, #140152, #140436, #140435
The `cell_or_freevar` was added in #106403 to help us ensure
Dynamo-export only allows graph input that depends on the frame input
(rather than a captured cell, for instance).
However, when taken literally, the `cell_or_freevar` condition is
actually not accurate, because for frame inputs that are also cells
(i.e., captured by some inner function), we actually set the
`cell_or_freevar` flag to false. This makes sense, because otherwise the
existing implementation would prevent Dynamo-export to add any of these
inputs to the graph.
To help with reasoning, this patch refines the `cell_or_freevar` flag to
what we really want to check -- `is_input`, and updates the relevant use
sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140151
Approved by: https://github.com/jansel
ghstack dependencies: #140035, #140036, #140149, #140150
TLDR; this PR supports exporting cond x inine_inbuilt nn modules flag by inling into tracing code in proxy_tensor.py _symbolic_trace.py (internally, the pattern is make_fx(record_module_stack)(torch.compile(f))).
We have two special treatments for following cases:
1. _ModuleStackTracer will wrap all the nn modules into _AttrProxy. This _AttrProxy has several subtiles which make it hard to inline in dynamo like overriding _modules with a property method and overrides the `__getattr__`, which mutates captured states when calling `__getattr__`.
Solution to this is that we unwrap the _AttrProxy and get its corresponding nn_module (a 1-1 correspondence). So that dynamo symbolically traces the original nn module instead of tracing _AttrProxy.
2. The tracer applies a bunch of patches the `__getattr__` and `__call__` of nn.Module for tracking reasons. This doesn't work well with dynamo. The immediate error we see is `torch._dynamo.exc.Unsupported: 'inline in skipfiles: WeakKeyDictionary.__contains__ | __contains__ /home/yidi/.conda/envs/pytorch/lib/python3.10/weakref.py` caused by a weakdict in PythonKeyTracer.
Solution to this is that we remove the patches during dynamo symbolic convert temporally. So that dynamo has a clean environment. make_fx will be trace the transformed bytecode of dynamo and patches nn modules there instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133731
Approved by: https://github.com/anijain2305
ghstack dependencies: #134775
This PR adds support for tracing `torch._C._pop_torch_function_stack()` without graph breaking and in order to verify the state change also adds replay of mutations to the torch function mode stack via side_effects appending supplemental bytecode as we do for other python mutable objects.
Details:
To represent the torch function mode stack symbolically a deque field is added to the instruction translator. When the InstructionTranslator is initialized, all modes are read from the current torch function mode stack, and stashed in a global weak ref for later access (using existing sources) without needing to push/pop the python/cpp torch function mode stack.
During tracing, when `_pop_torch_function_stack` is encountered a value is popped from this deque and the variable tracker representing the mode is returned. To ensure the true torch function mode stack matches this state, `TorchFunctionModeStackVariable`, a singleton, is marked as mutated, this adds it to side effects, where during final codegen, side effects will codegen a call to a python helper which will update the python torch function mode stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133131
Approved by: https://github.com/jansel
ghstack dependencies: #133130, #133729
All the changes brought by the original PR have been addressed in alternative ways in the stack. Why the original PR has to be reverted requires more effort because there is some bad interaction with export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131058
Approved by: https://github.com/williamwen42
Fixes#129601
Background: it's possible that a traceable wrapper subclass will have an optional inner tensor constituent (e.g. NJT's cached min / max sequence lengths). To specify this, the subclass's `__tensor_flatten__()` impl should leave out any unspecified optional inner tensors in the returned list of `attrs`.
This PR guards on the list of inner tensor `attrs` returned in `subclass.__tensor_flatten__()[0]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129618
Approved by: https://github.com/anijain2305
Significant bytecode generation API change!
The new suggested convention to generating bytecode to call a function is now to wrap instructions that push a callable to the stack with `add_push_null`, then that callable is called with `create_call_function` with `push_null=False` (see diff for examples).
In Python 3.13, NULL is now expected to be pushed after the callable. In <=3.12, the NULL was pushed before the callable. This change abstracts away the exact placement of the NULL, but the developer must be aware that a NULL may be needed when codegen'ing a callable.
This abstraction also reduces the need for the `push_null=True` option in `create_call_function`, which removes the need to rotate a NULL to the right place on the stack with a sequence of `SWAP` instructions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129172
Approved by: https://github.com/jansel
Fixes https://github.com/pytorch/pytorch/issues/125720
I was earlier worried that DELETE_* or STORE_* on referent values should result in a graph break, because they could invalidate the weak ref. But then @zou3519 pointed out that weakref invalidation will happen EVENTUALLY, CPython provides no guarantees when the weakref will be invalidated (even when the user calls del x and x is the last reference).
So any code that relies on del x to invalidate the weakref of x right away is BAD code. CPython provide no guarantees. Therefore we can (ab)use this nuance, and can just ignore DELETE_* or STORE_* on the referent objects.
The only corner case is when Dynamo is reconstructing the weakref object. Dynamo will have a hard time being correct here, so just SKIP_FRAME on such a case. This is rare.
Cpython notes
1) https://docs.python.org/3/library/weakref.html
2) https://docs.python.org/3/reference/datamodel.html#index-2
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128533
Approved by: https://github.com/jansel
This PR requires a little justification, but let's start with what it does first:
1. When you have a 0d CPU scalar int64/float64 tensor input to a graph, we will preallocate a backed SymInt/SymFloat corresponding to what you would get if you call item() on this tensor. This means you can freely change your input to be a Python int/float or a Tensor with an item() call and end up with exactly the same level of expressivity (specifically, you can guard on the internal SymInt/SymFloat no matter what). By default, the source of the backed SymInt/SymFloat is `L['tensor'].item()`, but if you have promoted a float input into a Tensor, we will cancel out `torch.as_tensor(L['float']).item()` into just `L['float']`.
2. We switch wrap_symfloat to use this, instead of hand crafting the new SymNodeVariable. Everything works out, except that we carefully pass the item() result to tracked fakes (and not the fake Tensor argument)
OK, so why do this at all? There is some marginal benefit where now some item() calls on scalar inputs can be guarded on, but IMO this is a pretty marginal benefit, and if it was the only reason, I wouldn't do this. The real reason for this is that I need to be able to propagate fake tensors through the graphs that are produced by Dynamo, and if I am doing the old custom wrap_symfloat logic, there's no way I can do this, because ordinarily an item() call will cause an unbacked SymInt when I reallocate.
The other obvious way to solve the problem above is to make a HOP alternative that item() that "bakes in" the backed SymInt its supposed to return. But this strategy seems more parsimonious, and it does have the marginal benefit I mentioned above. The main downside is that what I have to do next, is make it so that when I run tensor computation, I also apply the equivalent operations to the SymInt/SymFloat as well. That's next PR.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126245
Approved by: https://github.com/eellison
ghstack dependencies: #126637
The big idea is that floats are treated as Tensors on input/output to the FX graph, but on the inside, we immediately call item() on the synthetic Tensor and record regular float operations on it. Canonicalization to Tensor operations will happen in a standalone FX pass. This behavior is controlled by `specialize_float` config variable when set to False.
The generated graph looks like this for the test `test_unspec_float_output`:
```
def forward(self, L_x_: "f32[3]", L_y_: "f32[]"):
l_x_ = L_x_
l_y_ = L_y_
# File: /data/users/ezyang/a/pytorch/test/dynamo/test_unspec.py:511 in f, code: return x + 1, y * 2
add: "f32[3]" = l_x_ + 1; l_x_ = None
item: "Sym(zf0)" = l_y_.item(); l_y_ = None
mul: "Sym(2*zf0)" = item * 2; item = None
scalar_tensor: "f32[]" = torch.scalar_tensor(mul); mul = None
return (add, scalar_tensor)
```
The ingredients:
* **torch/_dynamo/variables/builder.py** When `specialize_float` is False, we wrap float literals with `wrap_symfloat`. This is an unholy mashup of `wrap_symint` and `wrap_unspecialized_primitive`. The overall strategy is that we first generate a tensor argument (because that's what we want to show up into the FX graph), but then immediately call item() on the tensor argument to get a SymNodeVariable, which we will do the rest of the tracing with. Importantly, this SymNodeVariable is backed with the source of the original float: this means we can guard on the resulting value (something we could NOT do with UnspecializedPythonVariable). This has to be done manually, because if you literally call item() on the tensor, you will end up with an unbacked float. There is a bit of copy paste from wrap_symint and wrap_unspecialized_primitive which we can try to factor out, but this really is its own thing and you should review every line of code in the function.
* **torch/fx/experimental/symbolic_shapes.py** We now can generate guards on float inputs, and these guards are handled inside of ShapeEnv. So we need to be able to allocate (backed!) float symbols, and produce guards for them. Fairly straightforward generalization.
* **torch/_dynamo/codegen.py** I also need to maintain the invariant that there are no float outputs to the FX graph. I chose to do this at codegen time. When we detect a SymNodeVariable on the return stack for a float, we on the fly convert it (via `as_tensor`) to a TensorVariable, which is the true output. We then special case the output bytecode to call item() on it again. The tensor conversion is memoized on SymNodeVariable since we typically run the code generation process twice.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125325
Approved by: https://github.com/lezcano, https://github.com/jansel
I am ok if people don't want this PR to be merged.
For optimizers, we know that the state dict and param_group have same parameters. So, I think its ok to skip TENSOR_MUST_ALIAS guards.
Similarly for state tensors, all of them are different. Therefore, we can skip the tensor aliasing guards.
With this PR, these are the numbers for Megatron which has 394 parameters
<img width="290" alt="image" src="https://github.com/pytorch/pytorch/assets/13822661/0ce75dc6-4299-46bb-bf3c-7989ebc7cfc4">
C++ numbers jump a lot because of 2 reasons
1) We are now not doing INCREF/DECREF for a large number of tensors.
2) For python guards, we can expect higher numbers but that requires some more plumbing because the Python tensor guards are all collapsed into one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123044
Approved by: https://github.com/jansel, https://github.com/mlazos
Context: view fake-ification should handle closed-over state in ViewFuncs for use in view replay by:
* fake-ifying tensors
* symbolicizing SymInts
This avoids invalid specialization during view replay. However, the symbols / tensors created as intermediates in the view chain should not stick around or be guarded on. This PR introduces an `EphemeralSource` intended to be used as a source for this purpose. It has the following properties:
* Considered first to be simplified out in symbol simplification logic
* Errors if guarded on
Differential Revision: [D54561597](https://our.internmc.facebook.com/intern/diff/D54561597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120948
Approved by: https://github.com/ezyang
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)
We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan
When building guards which went through a property we were analyzing the property using getattr_static but the guard wasn't built using getattr_static so if the property was "unusual" it generated misbehaved code which referenced a non-existent `__closure__` field.
Fixes#118786
Note that after this change some of the referenced tests are still failing with a different error - but getting further.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119719
Approved by: https://github.com/oulgen
Make variables in dict lazy and remove DICT_KEYS guard.
We build the keys of a dict depth-first and we rely on the guards of
each element in the dict to create the correct guards. This allows us to
remove the rather buggy DICT_KEYS guard and make the guard lazy.
The guards are not completely lazy yet, as we instantiate them in
`_HashableTracker._eq_impl` but it should be possible to make them
truly lazy.
Also, adding new types to the supported types within keys should be less
error prone.
This is marginally less efficient when we graph break, but in turn we
should graph break much less. It also makes the dicts code easier to maintain
(removes `is_hashable_python_var`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117625
Approved by: https://github.com/jansel, https://github.com/peterbell10, https://github.com/anijain2305
ghstack dependencies: #117982, #118098, #117983
This prepares the PR where we implement sets in terms of dicts.
To do so, rather than storing internally a dictionary that maps literals
to VariableTrackers, it stores (pretty much) a dictionary from VTs to VTs.
To do so, keys are wrapped in an opaque internal class _Hashable.
The Hashable class is opaque on purpose so that it fails hard if
if it inadvertently leaks back into user code.
We also found and fixed a number of latent bugs and inconsistencies
in the way dynamo checked what can be a dict key. More generally, we
make much clearer what are the things that need to be modified to add
a new supported key type to Dicts.
Fixes [#107595](https://www.internalfb.com/tasks?t=107595)
Fixes [#111603](https://www.internalfb.com/tasks?t=111603)
Re-PR of https://github.com/pytorch/pytorch/pull/111196 sadly due to reverts, we could not reuse @lezcano's original PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116785
Approved by: https://github.com/mlazos
This prepares the PR where we implement sets in terms of dicts.
To do so, rather than storing internally a dictionary that maps literals
to VariableTrackers, it stores (pretty much) a dictionary from VTs to VTs.
To do so, keys are wrapped in an opaque internal class `_Hashable`.
The Hashable class is opaque on purpose so that it fails hard if
if it inadvertently leaks back into user code.
We also found and fixed a number of latent bugs and inconsistencies
in the way dynamo checked what can be a dict key. More generally, we
make much clearer what are the things that need to be modified to add
a new supported key type to Dicts.
Fixes https://github.com/pytorch/pytorch/issues/107595
Fixes https://github.com/pytorch/pytorch/issues/111603
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111196
Approved by: https://github.com/jansel
The motivation for removing this is already present in the pre-PR comments. Copying it
~~~
# NB - SuperSource is a weird one.
# it is our only source with 2 bases, so we use the objec
# as the base, rather than the type, since an invocation
# like super(Foo, foo) is represented here, the source object base is more spiritually
# aligned with the instance, rather than the type.
# This whole construction is questionable tho, and we should probably find a way to
# avoid this exception to our otherwise nice source parentage invariant.
~~~
Instead of using super(a, b), we can use `type(b).__mro__[index]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110475
Approved by: https://github.com/jansel
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
pred = x.size(0) == 3
torch.compile(f)(pred, x)
make_fx(f, tracing_mode="symbolic")(x)
```
The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
pred = x.size(0) == 3
torch.compile(f)(pred, x)
make_fx(f, tracing_mode="symbolic")(x)
```
The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
Summary:
Original commit changeset: 33650f7cb0fb
Original Phabricator Diff: D48833682
Test Plan: See T162942232 for how we figured out that this diff caused significant numeric difference.
Reviewed By: voznesenskym
Differential Revision: D49082219
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108823
Approved by: https://github.com/xw285cornell
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/
We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.
In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.
Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.
All the tests in `tests/torch_np` take about 75s to run.
This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
Previously, you would get an error like
```
Dynamo input and output is a strict subset of traced input/output
```
now you get
```
Cannot export model which references tensors that are neither
buffers/parameters/constants nor are direct inputs. For each tensor, if you'd
like this tensor to be an explicit input, add it as a dummy argument
to the top-level model definition you are exporting; if you would
like its value to be embedded as an exported constant, wrap its access
in a function marked with @assume_constant_result.
G['bulbous_bouffant'], accessed at:
File "test_export.py", line N, in f
return bulbous_bouffant + y
```
This doesn't handle outputs, I'm going to hit that next.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106403
Approved by: https://github.com/tugsbayasgalan
Fixes: #101979
This PR adds support for dictionaries with torch object as keys in dynamo.
The main problem was that, for example, the source built for `d[torch.float]` (`d` being a
dictionary) was `ODictGetItemSource(GlobalSource('d'), index=torch.float)`. When
`Source.name` method was called, we got `odict_getitem(G['d'], torch.float)`. Evaluating
that string raised an error, since `torch` was only available in the global dictionary `G`
as `G["torch"]`.
Instead, this PR builds the source:
`ODictGetItemSource(GlobalSource('d'), index=AttrSource(GlobalSource('torch'), 'float'))`.
The to-be-evaluated string is correctly generated as:
`odict_getitem(G['d'], G['torch'].float)`.
Here's a minimal example that reproduces the error, before this PR:
```python
import torch
d = {
torch.float16: torch.float32,
}
@torch.compile
def f():
return torch.randn(3, dtype=d[torch.float16])
f()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103158
Approved by: https://github.com/mlazos
All Sources must be hashable, since we are using set equality to check for
duplicate sources in AOTAutograd. We should have a more systematic way
of asserting this. For this PR just fix the local issue.
Fixes#99145
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99379
Approved by: https://github.com/ezyang
Previously, we had a problem when partitioning forward-backward dynamic graphs, which is that we could end up with a backward graph that mentions a symbol in an input tensor (e.g., `f32[s0 + s1]`), but without this symbol being otherwise bound elsewhere. When this happens, we have no way of actually deriving the values of `s0` and `s1`. Our fix for this in https://github.com/pytorch/pytorch/pull/93059 was to just retrace the graph, so that s0 + s1 got allocated a new symbol s2 and everything was happy. However, this strategy had other problems, namely (1) we lost all information from the previous ShapeEnv, including guards and (2) we end up allocating a LOT of fresh new symbols in backwards.
With this change, we preserve the same ShapeEnv between forward and backwards. How do we do this? We simply require that every symbol which may be present inside tensors, ALSO be a plain SymInt input to the graph. This invariant is enforced by Dynamo. Once we have done this, we can straightforwardly modify the partitioner to preserve these SymInt as saved for backwards, if they are needed in the backwards graph to preserve the invariant as well.
This apparently breaks yolov3, but since everything else is OK I'm merging this as obviously good and investigating later.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99089
Approved by: https://github.com/voznesenskym
The purpose of this PR is to remove reliance on argument positions in dedup guards, AND extend the functionality to params.
A version of this PR was stamped prior https://github.com/pytorch/pytorch/pull/95831 - but was kinda gross, because it was based on an underlying PR that did way too much with source names.
This PR leaves most of that alone, in favor of just reusing the same name standardization logic that dynamo module registration does.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96774
Approved by: https://github.com/ezyang
Handle tensor default func/method args when inlining
Previously, when inlining a function, its default arguments
were only wrapped with VariableTrackers if non-tensor. Now,
tensor default args are also handled by adding them to the
parent InstructionTranslator as an attribute.
- also patches up a missing source in nnmodule call_function,
needed to properly guard on a default arg in its methods
- adds new 'DefaultsSource' type which guards either a `__defaults__`
or `__kwdefaults__` entry on a function
Fixes#90361https://github.com/pytorch/torchdynamo/issues/1968
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90575
Approved by: https://github.com/voznesenskym