Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Add is_symint_like, by way of is_base_ty_like which generalizes
the pattern for is_tensor_like and is_generator_like. Now that
we can query if a signature contains a SymInt, we can enforce that
you must name the overload with SymInt if the signature contains
SymInt.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83668
Approved by: https://github.com/bdhirsh, https://github.com/larryliu0820
- nondeterministic_seeded was not applied to enough functions. I added
some heuristics to codegen for identifying functions that are likely
to be random and added a bunch of these tags to functions. Not sure
I got all of them.
- Don't constant propagate through nondeterministic functions in FX
tracing.
It would be better to do some testing for the tag but this would be quite an effort.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83650
Approved by: https://github.com/bdhirsh, https://github.com/eellison
Extending the current regex in `model.py` to support annotation alias set. See issue #83214.
Ideally we should have a full fledged lexer similar to `schema_type_parser.cpp`, since regex can be more and more difficult to read if we add more support to it.
Adding this to unblock this issue for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83501
Approved by: https://github.com/SherlockNoMad
Summary:
Previously we don't generate out variant (both schema and kernel) for an operator with functional variant only. This adds support for that and adds test.
## Changes on `native_function_generation.py`
We are generating out variant for all functional variants if possible. This PR introduces a lot of newly generated out variants and `native_functions.yaml` needs to incorporate the changes by adding `autogen` keywords.
The logic for determining what operators we should generate an out variant for is the following:
1. No existing out variant for this `NativeFunction`
2. Contains an existing in place, mutable or functional variant
3. Contains at least 1 tensor like return(s)
For operators matching the first two conditions but failing the third, I listed them in `FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT`.
## Special handling
The following operators satisfy all 3 criteria above but we chose to not autogen them, with some reasons.
* `mkldnn_adaptive_avg_pool2d`, the generated out variant `mkldnn_adaptive_avg_pool2d.out` is colliding with the `mkldnn_adaptive_avg_pool2d_out` kernel in `adaptive_avg_pool2d.out` operator. I manually created `mkldnn_adaptive_avg_pool2d.out` and renamed `mkldnn_adaptive_avg_pool2d_out` to `mkldnn_adaptive_avg_pool2d_out_stub`.
* `min`, `max` and `mean`. There already exist `min.out`, `max.out` and `mean.out` but they are having different semantics with the functional ones. I manually created `min.unary_out`, `max.unary_out` and `mean.dtype_out` to disambiguate.
## Autograd Changes
We introduced a logic to not match derivatives info in `derivatives.yaml` to out variant, since we are generating `NOT_IMPLEMENTED` kernels for those out variants anyway. The issue we are seeing with the original logic is that it doesn't handle `TensorOption` arguments really well. For example we have these two operators:
* `_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor`
* `_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)`
If we uses `_to_copy` derivative info, there will be compilation error since `dtype` is missing from `_to_copy.out` signature.
Test Plan: Rely on unit test
Differential Revision: D37832342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81437
Approved by: https://github.com/iseeyuan, https://github.com/bdhirsh
`derivatives.yaml` can now take a `dispatch` entry which registers per-autograd dispatch key derivatives such as
```
name: foo(Tensor self, Tensor y) -> Tensor
dispatch:
Default:
x: grad
y: grad.expand(y.sizes())
AutogradNestedTensor:
x: grad
y: NestedTensor_foo_backward(grad, y)
output_differentiabilty: [True]
```
However the old schema where there is no `dispatch` entry is still supported.
Would greatly appreciate feedback on *how to improve the testing strategy* of this PR, currently have registered an aten test op in TestOps.cpp with dummy gradients in derivatives.yaml and have some tests in test_autograd.py:TestAutogradMultipleDispatch but I am not sure whether these are sufficiently rigorous.
Additionally, this PR also makes the assumption that sets like [VIEW_FUNCTIONS](ff5399e528/tools/autograd/gen_inplace_or_view_type.py (L60)) are per-native-function and not per-native-function-and-dispatch-key. I'm not sure whether this is necessarily the case, *would there ever be a situation where (e.g. a nested_tensor op is a view op but the aten function is not or vice versa?)*
* __->__ #82801
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82801
Approved by: https://github.com/bhosmer, https://github.com/albanD
Differential Revision: [D38480514](https://our.internmc.facebook.com/intern/diff/D38480514/)
torchgen schema parser does not support parsing function schemas using custom class so far. Here is an example:
```
quantized::conv2d_relu.new(Tensor qx, __torch__.torch.classes.quantized.Conv2dPackedParamsBase packed_weight, float output_scale, int output_zero_point) -> (Tensor)
```
This PR parse custom class name and encapsulate that into an object of CustomClassType. The only thing we need right now is just store the string class name and return that in `__str__` method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82925
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
The functional variant of one of the `arange` overloads has a schema mismatch with the out variant. The functional one has `Scalar step`, but the corresponding out variant has `Scalar step=1`. This isn't allowed, so it had to be special-cased in the python codegen and manually bound. This adds the default `step` value to the functional overload and removes the special-casing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81380
Approved by: https://github.com/ngimel
`resize_()` is annoying because it needs special casing for functionalization. It's technically an inplace-view op, but it can't really have a pure view variant, since calling resize_() might bust the old storage. I gave it an `inplace_view` tag so that stuff like `FakeTensor` that relies on tags will pick it up properly, which required jumping through some codegen hoops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82667
Approved by: https://github.com/eellison
Summary:
Some quantized operators needs `QuantizedCPU` backend, due to an issue in namespace checking, currently if we have two backends as well as a custom namespaces in native function, codegen will hit assertion error. This PR fixes this issue
The root cause is that codegen right now asserts that a native function should only have one namespace. The current behavior is that If a native function is not found in a `BackendIndex`, we will use default namespace for that backend, for fallback kernels. However that default namespace may not be listed in the yaml file and it should not be counted when checking if we have two different namespaces for that backend. In our error case, we have 2 `BackendIndex`, one for `QuantizedCPU` and one for `CPU`. The native function doesn't have a kernel in `QuantizedCPU` but we still use a default namespace (`at::native`) for it. Since we have a custom namespace for dispatch key `CPU`, we ran into the assertion error.
This PR changes the assertion criteria. We only error out if a namespace has two or more kernels and they have two or more different namespaces.
Test Plan: rely on newly added unit test
Differential Revision: D38101345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82133
Approved by: https://github.com/iseeyuan
This also makes them not decompose when we switch Python key.
Note that CompositeExplicitAutogradNonFunctional maybe be overly
conservative for some implementations (which actually call into
other functional ops), but for now I just uniformly apply this
everywhere to avoid errors.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82251
Approved by: https://github.com/bdhirsh, https://github.com/zou3519
Once CompositeImplicitAutograd gets registered to Python key, this will
ensure that tensor subclasses can interpose on these functions directly
rather than getting decomposed. We prefer not decomposing as these
functions are functional, but their implementations use inplace
operations (and are thus more difficult to deal with, unless you use
functionalization.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82238
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
This should fix the last issue that @anijain2305 hit when running ResNet with TorchDynamo <> functionalization.
Today if you try to call an `OpOverloadPacket` from python with some arguments, we will use the types of those arguments to perform overload resolution. With some functional variants of ops, this can be ambiguous.
Today this affects just one op: `_fused_moving_avg_obs_fq_helper`, although it would potentially affect e.g. `native_batch_norm` in the future.
Example:
```
# There are technically two overloads:
# torch.ops.aten._fused_moving_avg_obs_fq_helper.default (returns 2 argument, mutates 4 of its inputs inplace)
# torch.ops.aten._fused_moving_avg_obs_fq_helper.functional (returns 6 argument, mutates none of its inputs)
# We pick the wrong one - no way to know that we should pick the functional one, just from the call site.
outs = torch.ops.aten._fused_moving_avg_obs_fq_helper(a, a, a, a, a, a, a, 1.0, 0, 1, 0)
# raises an error - tries to call the overload with only 2 returns
return _fused_moving_avg_obs_fq_helper_functional[5]
```
Specifically, functionalization will bake `_fused_moving_avg_obs_fq_helper.functional` into the graph, but when AOTAutograd tries to compile with TorchScript, it needs to remove the overload name (TS doesn't know how to parse overload names directly, so we need to remove the overload name and let it infer the right overload at runtime later- so it picks the wrong one).
The situation is pretty similar to inplace; `ops.aten.add` and `ops.aten.add_` represent two different `OverloadPacket` objects; they can't be overloads of the same op, because their schemas would be ambiguous - the alias annotations are different, but that isn't enough to disambiguate).
In this PR, I try to fix the situation in a pretty similar way to how we handle `inplace` in the data model: `inplace` ops get their own base operator name, but they are represented as a flag inside of `BaseOperatorName` in the data model.
Two other important changes that I made as part of this PR:
(1) Originally, there were ~100 different `*_functional` operators: e.g. we had operators named `resize.functional` and `zero.functional`. The `_functional` bit isn't actually necessary in most cases: it's only necessary for operators that **also** have a `SchemaKind.mutable` variant, where `_fused_moving_avg_obs_fq_helper` is the only op that fits that description today. So I removed the unnecessary notion of "functional" from those other ops. I also added a bunch of assertions to force this restriction.
I think that makes more sense in the long run, because it eliminates an unnecessary difference in the model. E.g. we don't have `add_.Tensor` and `add.Tensor_functional`. We just have `add_.Tensor` and `add.Tensor`.
(2) I noticed that we actually still weren't pairing up a bunch of `_foreach` operators correctly, because their input arguments were different (`self` vs. `tensors`). Since they're private API's, I went ahead and changed the argument names directly so they get matched up. Before this PR, we were generating a separate `_foreach_add` and `_foreach_add.functional` variant in a bunch of cases, that really did the same thing (but happened to have a different name for the first argument).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80556
Approved by: https://github.com/ezyang, https://github.com/albanD
Due to implicit conversion shenanigans, having both IntArrayRef
and SymIntArrayRef overloads makes {} ambiguous. While we could
fix this by making a single unified type that accepts all the overloads
we want, an easier fix was to just push the SymIntArrayRef overload
to its own name.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79281
Approved by: https://github.com/suo
Summary:
Adding a feature to allow user to specify namespaces for operator and kernels.
# Feature
There's a feature request to allow DSL to:
1. take in an operator namespace other than `aten`.
2. take in a kernel that is in a different namespace than `at::native`.
For both features, we only allow user to have a single layer of namespace for the sake of simplicity. If user specify `custom::function` as kernel, the codegen will depend on `custom::native::function` where `native` is hardcoded.
# Proposal
For feature 1, add a `namespace` attribute to data class `NativeFunction`. The namespace will be extract out by matching pattern "::" on the `func` variable. For `NativeFunctionsGroup` there's an assumption that all variants (function, inplace, out) will have the same namespace. By default (if not specified) the namespace will be "aten".
For feature 2, add a `namespace` attribute to `BackendMetadata` class, similarly match pattern "::" on the kernel field. Remove the `cpp_namespace` field from `register_dispatch_key` data class. By default (if not specified) the namespace for a kernel would be "at::native".
Test Plan:
Example yaml entries:
```
- func: custom::gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
CPU: custom::gelu_out_cpu
CUDA: custom::gelu_out_cuda
MPS: custom::gelu_out_mps
- func: custom::gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu_
- func: custom::gelu(Tensor self, *, str approximate='none') -> Tensor
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
MkldnnCPU: custom::mkldnn_gelu
QuantizedCPU: custom::gelu_quantized_cpu
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu
```
see generated code:
`RegisterCPU.cpp`:
```
TORCH_LIBRARY_IMPL(aten, CPU, m) {
...
}
TORCH_LIBRARY_IMPL(custom, CPU, m) {
m.impl("gelu", TORCH_FN(wrapper_gelu));
m.impl("gelu.out", TORCH_FN(wrapper_gelu_out_out));
m.impl("gelu_", TORCH_FN(wrapper_gelu_));
};
```
```
struct structured_gelu_out_cpu_inplace final : public custom::native::structured_gelu_out_cpu {
structured_gelu_out_cpu_inplace(Tensor& self) : outputs_{std::ref(self)} {}
void set_output_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
auto maybe_proxy = maybe_create_proxy(out, sizes, strides, options);
if (C10_UNLIKELY(maybe_proxy.has_value())) {
proxy_outputs_[output_idx] = c10::ExclusivelyOwned<Tensor>(std::move(maybe_proxy).value());
}
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
void set_output_raw_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return proxy_outputs_[output_idx].has_value() ? **proxy_outputs_[output_idx] : outputs_[output_idx].get();
}
std::array<std::reference_wrapper<Tensor>, 1> outputs_;
std::array<c10::optional<c10::ExclusivelyOwned<Tensor>>, 1> proxy_outputs_;
};
```
`RegisterSchema.cpp`
```
TORCH_LIBRARY(aten, m) {
...
}
TORCH_LIBRARY(custom, m) {
m.def("gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)");
m.def("gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)");
m.def("gelu(Tensor self, *, str approximate='none') -> Tensor");
};
```
Differential Revision: D36558459
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78015
Approved by: https://github.com/bdhirsh
Add codegen infrastructure to generate IR nodes for non-native ops.
The proposed change is to add a `non_native` key to the `{backend}_native_functions.yaml` file that contains schema definitions similar to what is found in `native_functions.yaml`. e.g.
```
non_native:
...
- func: expand(Tensor input, int[] size, bool is_scalar_expand) -> Tensor
...
```
these definitions are parsed into a `LazyIrSchema` that can be used for generating IR nodes using `GenLazyIR`.
Fixes#74628
CC: @wconstab @desertfire @henrytwo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76535
Approved by: https://github.com/wconstab