As in the title.
The `masked_grad` kw argument is required for `to_dense` backward to distinguish the expected semantics of sparse tensors. `masked_grad=True` means that the `to_dense` backward will apply a mask to the returned gradient where the mask is defined by the input indices. The default semantics implies `masked_grad==True` for BC but see the [comment](https://github.com/pytorch/pytorch/pull/96095/files#diff-d4df180433a09071e891d552426911c227b30ae9b8a8e56da31046e7ecb1afbeR501-R513) in `to_dense_backward`.
As a consequence, existing code that is run through autograd engine must replace `.to_dense()` calls with `.to_dense(masked_grad=False)`. For example,
```python
torch.autograd.gradcheck(lambda x: torch.sum(x, [0]).to_dense())
torch.autograd.gradcheck(lambda x: torch.sparse.sum(x, [0]).to_dense())
```
(recall, gradcheck has `masked=False` as default) must be updated to
```python
torch.autograd.gradcheck(lambda x: torch.sum(x, [0]).to_dense(masked_grad=False))
torch.autograd.gradcheck(lambda x: torch.sparse.sum(x, [0]).to_dense(masked_grad=True), masked=True)
```
Fixes https://github.com/pytorch/pytorch/issues/95550
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96095
Approved by: https://github.com/cpuhrsch
As in the title. The bug was reported in https://github.com/pytorch/pytorch/pull/94728#discussion_r1108892366 and has the following reproducer:
```python
>>> import torch
>>> check_ctx = torch.sparse.check_sparse_tensor_invariants(True)
>>> no_check_ctx = torch.sparse.check_sparse_tensor_invariants(False)
>>> with check_ctx:
... assert torch.sparse.check_sparse_tensor_invariants.is_enabled()
... with no_check_ctx:
... assert not torch.sparse.check_sparse_tensor_invariants.is_enabled()
... assert torch.sparse.check_sparse_tensor_invariants.is_enabled()
...
Traceback (most recent call last):
File "<stdin>", line 5, in <module>
AssertionError
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95372
Approved by: https://github.com/cpuhrsch
I applied some flake8 fixes and enabled checking for them in the linter. I also enabled some checks for my previous comprehensions PR.
This is a follow up to #94323 where I enable the flake8 checkers for the fixes I made and fix a few more of them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94601
Approved by: https://github.com/ezyang
Follow-up of #89582 to drop flags like `CUDA11OrLater` in tests. Note that in some places it appears that `TEST_WITH_ROCM` is _implicitly_ guarded against via the `CUDA11OrLater` version check, based on my best-guess of how `torch.version.cuda` would behave in ROCM builds, so I've added `not TEST_WITH_ROCM` in cases where ROCM wasn't previously explicitly allowed.
CC @ptrblck @malfet @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92605
Approved by: https://github.com/ngimel
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.
The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.
`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR fixes https://github.com/pytorch/pytorch/issues/90833
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR also fixes https://github.com/pytorch/pytorch/issues/90833
# Main issue
*The following content is outdated after merging the PRs in this ghstack but kept for the record.*
The importance of this feature is that when enabling the invariants checks by default, say, via
<details>
```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:
# Populate magic methods on SymInt and SymFloat
import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```
</details>
a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:
```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"
RuntimeError: CUDA error: device-side assert triggered
RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.
RuntimeError: expected col_indices to be a strided and contiguous tensor
RuntimeError: expected row_indices to be a strided and contiguous tensor
RuntimeError: expected values to be a strided and contiguous tensor
RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered
RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
This reverts commit 9945a78a94.
Reverted https://github.com/pytorch/pytorch/pull/90463 on behalf of https://github.com/ZainRizvi due to This is causing test failures: FAILED inductor/test_torchinductor_opinfo.py::TestInductorOpInfoCUDA::test_comprehensive_linalg_pinv_singular_cuda_float64 - RuntimeError: unexpected success linalg.pinv.singular, torch.float64, cuda
This PR extends the `Tensor.to_sparse()` method to `Tensor.to_sparse(layout=None, blocksize=None)` in a BC manner (`layout=None` means `layout=torch.sparse_coo`).
In addition, the PR adds support for the following conversions:
- non-hybrid/hybrid COO tensor to CSR or CSC or a COO tensor
- short, bool, byte, char, bfloat16, int, long, half CSR tensor to a BSR tensor
and fixes the following conversions:
- hybrid COO to COO tensor
- non-batch/batch hybrid BSR to BSR or BSC tensor
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89502
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
A longstanding confusion in the implementation of fake tensor and proxy tensor is what to do about torch.ops.aten.sym_sizes and related calls. In particular, when you have a tensor that (1) has symbolic shapes and (2) has a `__torch_dispatch__` call, previously, you would always get `__torch_dispatch__` calls for sizes/strides query, *even if you didn't request it* via the dispatch kwargs in `make_wrapper_subclass`.
The reason for this is because we were previously mixing several concepts: "I want to dispatch to Python", "I want to call a virtual method" and "I have dynamic shapes". A single boolean variable controlled all of these things, and so it was not possible to understand inside TensorImpl what the user had actually originally requested.
In this PR, we track each of these concepts individually so that we can preserve user intent. Then, we combine these into a single "policy" variable that controls whether or not we can use the fastpath or not. For the policy to trigger, we only need one of the exceptional cases to be true.
Billing of changes:
* Rename `set_sizes_strides_policy` to `set_custom_sizes_strides`; in general, you cannot DIRECTLY set policy; you have to indirectly set it by the public functions.
* Some helpers for sizes and strides, since it's more complicated (as it is an enum, rather than just bools as is the case for device and layout). `matches_python_custom` is used to test the Python dispatch user ask. `matches_policy` does the policy test (only used in the user facing functions.)
* I reorged the accessor methods so that they are more logical. This makes the diff bad, so I recommend reading the final code directly.
* The default custom implementations now more reliably call their default() implementations
* As bonus refactor, I devirtualized some functions that don't need to be virtual
* `set_sym_sizes_and_strides` is renamed to `set_sizes_and_strides` to make it easier to use in template contexts; it optionally takes a storage offset now so you can set all three values at the same time. If you use the SymInt overload but there are no symbolic integers, we give you a normal resize.
* This adds `sym_storage_offset` since we had that in the symbolic shapes branch and there's no reason not to put it in (and it reduces merge conflicts)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84641
Approved by: https://github.com/wconstab
Previously, we would trace through the following with no error:
```
from torch.fx.experimental.proxy_tensor import make_fx
import torch
def f(x, y):
return x[0, y:]
```
Even though the output shape is dependent on the data of `y`. Now, throw on the conversion of `y` to an integer.
It would be nice to not break on constant tensors but I'll do that as the next PR (Edit: done with https://github.com/pytorch/pytorch/pull/84387). Sketching out how that would work (and keep in mind this is applicable Dynamo tracing and not just AOT Autograd)
I think to do that you would need to :
- hold strong refs to a set of constant tensors, and only allow them to be captured from `lift_fresh.copy`
- when you run a mutable op, either remove it from the set of constant tensors or run the operator for real
- limit to small constant tensors
Anything else ?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83567
Approved by: https://github.com/ezyang
Enables:
test_bmm_cuda_float64
test_bmm_deterministic_cuda_float64
test_csr_matvec_cuda_complex128
test_csr_matvec_cuda_complex64
test_csr_matvec_cuda_float32
test_csr_matvec_cuda_float64
To enable the above tests had to add some more hip mappings for the hipification process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78939
Approved by: https://github.com/pruthvistony, https://github.com/malfet
Make it so that it is valid to set metadata after detach calls, like `x.detach().resize_(...)`.
This technically lifts some restrictions around `.data`. This PR means that you can now technically call `x.data.resize_(...)`, which can now directly resize `x` instead of erroring.
My understanding: Before the tensor-variable merge, when `x` and `x.data` were really different tensors, you could resize `x.data` independently of `x`, and during the merge, this error was added to avoid silent confusing behavior changes.
It was agreed that this error has been around long enough (several years) that it's acceptable to drop. cc @albanD @ezyang.
(Ed already had a prototype PR [here](https://github.com/pytorch/pytorch/pull/83545) - I ended up making one to try to slog through test failures).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83590
Approved by: https://github.com/ezyang
Add support for sparse fake tensors.
- The testing strategy is to run a fake tensor cross ref test on `test_sparse.py`. This is necessary because OpInfo sparse coverage is completely nonexistent. We could have tried to turn on cross ref testing globally for all files, but that would be very time consuming and the tests I'm interested in are mostly in this file. There are some exclusions in testing for things that don't work.
- I make fake tensor converter raise a UnsupportedFakeTensorException if the meta converter fails to do a conversion (which can happen in a relatively large number of situations).
- I relax fake tensor invariants so that you can make a fake tensor from a meta tensor. This is useful because in the cross ref test sometimes we operate on meta tensors.
- Fake tensor wrapping is improved to handle the case when a function doesn't return any tensors
- Meta converter is taught how to convert sparse tensors to meta
There's still a little more cleanup that needs to be done, but this is good for review.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82172
Approved by: https://github.com/eellison
Similar to [scipy.sparse.spdiags](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy-sparse-spdiags)
Part of #70926
In other functions (ie (torch.diagonal)[https://pytorch.org/docs/stable/generated/torch.diagonal.html#torch.diagonal]) diagonals of a tensor are referenced using the offset and the two dimensions that the diagonal is taken with respect to.
Here the reference implementation from scipy is only considering matrix output, so even if we only support 2-d output at first. It may be useful to consider how the dimensions corresponding to each diagonal would be specified for higher dimensional output.
The proposed torch signature implies that all offsets refer to the diagonals with respect to the only two dimensions of the output:
```
torch.sparse.spdiags(Tensor diagonals, IntTensor offsets, int[] shape, Layout? layout=None) -> SparseTensor
```
Above it is required that: `diagonals.ndimension() == 2`, `offsets.ndimensions() == 1`, `offsets.shape[0] == diagonals.shape[0]` and `len(shape) == 2`.
This would need to be altered for the case where `len(shape)` > 2. One options is:
```
torch.sparse.spdiags(Tensor[] diagonals, IntTensor[] offsets, IntTensor dims, int[] shape, Layout? layout=None) -> SparseTensor
```
Here `offsets` and `diagonals` becomes lists of tensors, and the `IntTensor dims` argument is introduced. This would require that `len(diagonals) == len(offsets) == dims.shape[0]`, `dims.ndimension() == 2` and `dims.shape[1] == 2` also the same restrictions as the 2d case above apply to the elements of `diagonals` and `offsets` pairwise (that is `diagonals[i].ndimension() == 2`, `offsets[i].ndimension() == 1` and `offsets[i].shape[0] == diagonals[i].shape[0]` for all i). This form of the signature would construct the sparse result by placing the values from `diagonals[i][j]` into the diagonal with offset `offset[i][j]` taken with respect to dimensions `dims[i]`. The specialization back to the original signature for the 2d case could be seen as allowing the single row of dims to default to `[0, 1]` when there is only one `diagonals`, `offsets` provided, and shape is `2-d`. This option allows the rows of an input element `diagonals[i]` to have a different length which may be appropriate as the max length of a diagonal along different dimension pairs will be different.
Another option is to specify the dimensions the diagonal is taken with respect to for each offset. This signature would look like:
```
torch.sparse.spdiags(Tensor diagonals, IntTensor offsets, IntTensor dims, int[] shape, Layout? layout=None) -> SparseTensor
```
Here, `diagonals` is still 2-D with dimension 0 matching the length of 1-D `offsets` and the tensor input `dims` is also 2-D with dimension 0 matching the length of 1-D `offsets` and the second dimension being fixed at `2` in this case the sparse result is constructed by placing the elements from `diagonals[i]` into the output diagonal `output.diagonal(offset[i], dim0=dims[i][0], dim1=dims[i][1])` (with some additional consideration that makes it more complicated than simply asigning to that view). The specialization from this back to the 2-D form could be seen as assuming `dims = [[0, 1], [0, 1]... len(offsets) times ]` when `len shape==2`.
In both proposed signatures for the N-D case the specialization back to the 2-D signature is a bit of a stretch for your typical default arguments logic, however I think the first is better choice as it offers more flexibility.
I think some discussion is required about:
- [x] Should the N-D output case be implemented from the outset
- [x] If not, should the future addition of the N-D output case be considered when designing the interface.
- [x] Other thoughts on the signature which includes the `dims` information for the N-D output case.
**Resolution**: Since no one has offered a request for N-D output support, I think is fine to restrict this to sparse matrix generation. Should a request for N-D support come later, an overload accepting the additional `dims` could be added.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78439
Approved by: https://github.com/nikitaved, https://github.com/cpuhrsch, https://github.com/pearu
Similar to [scipy.sparse.spdiags](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy-sparse-spdiags)
Part of #70926
In other functions (ie (torch.diagonal)[https://pytorch.org/docs/stable/generated/torch.diagonal.html#torch.diagonal]) diagonals of a tensor are referenced using the offset and the two dimensions that the diagonal is taken with respect to.
Here the reference implementation from scipy is only considering matrix output, so even if we only support 2-d output at first. It may be useful to consider how the dimensions corresponding to each diagonal would be specified for higher dimensional output.
The proposed torch signature implies that all offsets refer to the diagonals with respect to the only two dimensions of the output:
```
torch.sparse.spdiags(Tensor diagonals, IntTensor offsets, int[] shape, Layout? layout=None) -> SparseTensor
```
Above it is required that: `diagonals.ndimension() == 2`, `offsets.ndimensions() == 1`, `offsets.shape[0] == diagonals.shape[0]` and `len(shape) == 2`.
This would need to be altered for the case where `len(shape)` > 2. One options is:
```
torch.sparse.spdiags(Tensor[] diagonals, IntTensor[] offsets, IntTensor dims, int[] shape, Layout? layout=None) -> SparseTensor
```
Here `offsets` and `diagonals` becomes lists of tensors, and the `IntTensor dims` argument is introduced. This would require that `len(diagonals) == len(offsets) == dims.shape[0]`, `dims.ndimension() == 2` and `dims.shape[1] == 2` also the same restrictions as the 2d case above apply to the elements of `diagonals` and `offsets` pairwise (that is `diagonals[i].ndimension() == 2`, `offsets[i].ndimension() == 1` and `offsets[i].shape[0] == diagonals[i].shape[0]` for all i). This form of the signature would construct the sparse result by placing the values from `diagonals[i][j]` into the diagonal with offset `offset[i][j]` taken with respect to dimensions `dims[i]`. The specialization back to the original signature for the 2d case could be seen as allowing the single row of dims to default to `[0, 1]` when there is only one `diagonals`, `offsets` provided, and shape is `2-d`. This option allows the rows of an input element `diagonals[i]` to have a different length which may be appropriate as the max length of a diagonal along different dimension pairs will be different.
Another option is to specify the dimensions the diagonal is taken with respect to for each offset. This signature would look like:
```
torch.sparse.spdiags(Tensor diagonals, IntTensor offsets, IntTensor dims, int[] shape, Layout? layout=None) -> SparseTensor
```
Here, `diagonals` is still 2-D with dimension 0 matching the length of 1-D `offsets` and the tensor input `dims` is also 2-D with dimension 0 matching the length of 1-D `offsets` and the second dimension being fixed at `2` in this case the sparse result is constructed by placing the elements from `diagonals[i]` into the output diagonal `output.diagonal(offset[i], dim0=dims[i][0], dim1=dims[i][1])` (with some additional consideration that makes it more complicated than simply asigning to that view). The specialization from this back to the 2-D form could be seen as assuming `dims = [[0, 1], [0, 1]... len(offsets) times ]` when `len shape==2`.
In both proposed signatures for the N-D case the specialization back to the 2-D signature is a bit of a stretch for your typical default arguments logic, however I think the first is better choice as it offers more flexibility.
I think some discussion is required about:
- [x] Should the N-D output case be implemented from the outset
- [x] If not, should the future addition of the N-D output case be considered when designing the interface.
- [x] Other thoughts on the signature which includes the `dims` information for the N-D output case.
**Resolution**: Since no one has offered a request for N-D output support, I think is fine to restrict this to sparse matrix generation. Should a request for N-D support come later, an overload accepting the additional `dims` could be added.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78439
Approved by: https://github.com/nikitaved, https://github.com/cpuhrsch, https://github.com/pearu
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74963
This is a re-land of D35192346 (9872a06d77) and D35192317 (a9216cde6c), which together are a diff that changes the internal representation of `DispatchKeySet` in pytorch core to free up the number of dispatch keys that we have available. See a more detailed description of the design in the original PR: https://github.com/pytorch/pytorch/pull/69633.
The original PR broke Milan workflows, which use a pytorch mobile build, and manifested as a memory corruption bug inside of `liboacrmerged.so`.
**Background: Existing Mobile Optimization**
Pytorch mobile builds have an existing optimization (here cc23725e89/c10/core/DispatchKey.h (L382) and here cc23725e89/aten/src/ATen/core/dispatch/OperatorEntry.h (L214)), which works as follows:
Every operator in pytorch has a "dispatch table" of function pointers, corresponding to all of the (up to 64) different kernels that we might dispatch to when we run an operator in pytorch (autograd, cpu, cuda, complex number support, etc).
In mobile builds, the size of that table is shrunk from 64 to 8 to save a bunch of space, because mobile doesn't end up using the functionality associated with most dispatch keys.
The dispatcher also has a notion of "fallback kernels", which are kernels that you can register to a particular dispatch key, but should be able to work for "any operator". The array of fallback kernels is defined here: cc23725e89/aten/src/ATen/core/dispatch/Dispatcher.h (L294).
The mobile-optimization currently does **not** extend to this array (it wouldn't be that useful anyway because there is only one array of fallback kernels globally - vs. there is a separate dispatch table of function pointers per operator). So the per-operator tables on mobile are size 8, while the fallback table is size 64.
**The Bug**
This PR actually makes it difficult to enable that optimization separately for the per-operator arrays vs. the fallback array, and incidentally shrunk the size of the fallback array from 64 to 8 for mobile (that happened on this line: https://github.com/pytorch/pytorch/pull/69633/files#diff-f735cd7aa68f15b624100cbc4bb3b5ea76ffc7c9d3bec3b0ccabaa09609e5319R294).
That isn't a problem by itself (since mobile doesn't actually use any of the fallbacks that can no longer be stored). However, pytorch core will still register all of those fallback kernels on startup in mobile builds, even if they aren't used. When we tried to register one of those fallbacks on startup, it would try to dump the kernel somewhere in memory past the bounds of the (now smaller) array inside of the `Dispatcher` object, `backendFallbackKernels_`.
**Why didn't this problem show up in OSS CI? Why didn't it break other internal mobile workflows aside from Milan?**
Ideally, this failure would show up as part of the OSS signal on GitHub, since we already have mobile OSS builds. Given that it was another memory corruption issue that only affected Milan (subset of mobile), I'm not sure what's specific about Milan's builds that caused it only to manifest there. dreiss I wonder if there's another flavor of mobile builds we could run in OSS CI that could potentially help catch this?
**The debugging experience was pretty difficult**
Debugging the Milan-specific failure was made difficult by the following:
(1) lack of CI
- the original Milan failure didn't surface on my original diff, because the Milan job(s) that failed weren't triggered to run on pytorch changes. There's probably a balance to strike here, since those jobs will only be useful if they aren't flaky, and if they can produce reliable failure logs for debugging.
(2) It's difficult to get a repro.
- my work laptop doesn't have the right specs to run the Milan development workflow (not enough disk space)
- There is an existing OnDemand workflow for Milan, but it appears to be relatively new, and after a bunch of help from MarcioPorto, we ran into issues forwarding the log output from Milan tests on the emulator back to the terminal (see the original discussion here: https://fb.workplace.com/groups/OnDemandFRL/permalink/1424937774645433/)
(3) Lack of stack-traces.
- Most Milan failures didn't include actionable stack traces. phding generously helped me debug by running my suggested patches locally, and reporting back if there were any failures. The failing test didn't include a stack trace though (just the line where the crash appeared), so I ended up making some educated guesses about what the issue was based on the area of the crash.
ghstack-source-id: 152688542
Test Plan: Confirmed with phding that the broken Milan workflow from the previous version of this diff is now passing.
Reviewed By: phding, albanD
Differential Revision: D35222806
fbshipit-source-id: 0ad115a0f768bc8ea5d4c203b2990254c7092d30
(cherry picked from commit 002b91966f11fd55ab3fa3801b636fa39a6dd12c)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72402
The original PR had an array-out-of-bounds access in `DispatchKeyExtractor.cpp`, that wasn't caught by ASAN and appeared to only manifest in a subset of android internal tests. After fixing the OOB access (and adding more asserts), I confirmed that the android internal test passes.
Reland of D33255193 (20b8653dfa)
ghstack-source-id: 148830728
Test Plan:
Steps to test:
(1) connect to a mobile OD
(2) run `one_world android emulator android-29` in a terminal to start the android emulator
(3) In a separate terminal, run the test: `buck test //fbandroid/instrumentation_tests/com/facebook/pytorch/bi_xray:instrumentation_test -c test.external_runner=tpx -- --regex 'testBIXRayModel.*PyTorchBIXRayInstrumentationTest' --force-remote-execution --run-disabled`
I also ran `buck test fbandroid/mode/dbg //fbandroid/instrumentation_tests/com/facebook/pytorch/bi_xray:instrumentation_test`, which failed before and passed after the PR.
Reviewed By: albanD
Differential Revision: D34034848
fbshipit-source-id: 9677ee2c0a1afd1183896f7055009445712523c5
(cherry picked from commit 9ab9b12d35)
Summary: I think this diff stack broke all the related tasks below.
Test Plan:
For our failing tests:
buck test //fbandroid/instrumentation_tests/com/facebook/pytorch/bi_xray:instrumentation_test -c test.external_runner=tpx -- --regex 'testBIXRayModel.*PyTorchBIXRayInstrumentationTest' --force-remote-execution --run-disabled
For the ubn:
Not really sure what to do, trying to build the app and see if I can use an effect?
Reviewed By: shoumikhin
Differential Revision: D34018849
fbshipit-source-id: 3571718cb6621931af931b494e0a70d6e0164e65
(cherry picked from commit 3cc63cb2ea)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71091
Fixes https://github.com/pytorch/pytorch/issues/65394
The masked sum on a full input tensor (of any layout) with an all-true mask is the same as the sum on the strided input tensor (after applying `to_dense` to sparse inputs).
Since masked sum uses `torch.sparse.sum` then, for the simplicity of masked reductions implementations, its reduction behavior ought to be defined by the behavior of the `torch.sum`. This PR implements the behavioral connection with respect to the directional summation of empty sparse tensors that correspond to all-zero strided tensors.
cc nikitaved pearu cpuhrsch
Test Plan: Imported from OSS
Reviewed By: davidberard98
Differential Revision: D33651750
Pulled By: cpuhrsch
fbshipit-source-id: 703891bff88c8da6270b4272f5d2da81688db67d
(cherry picked from commit 53f97e80f7)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68887Closes#46988, closes#46987, closes#46761
By "simple" I mean operators that map 0->0 so we can implement it by
just re-dispatching on the values tensor. That does mean we have `sin`
but not `cos` for example, but without fill value support this is the
best that can be done.
Most of these don't support autograd because the derivative formulas
use unsupported operators.
cc nikitaved pearu cpuhrsch IvanYashchuk
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32734911
Pulled By: cpuhrsch
fbshipit-source-id: 203ab105799f3d2d682b01ca3d6b18e7c994776a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68887Closes#46988, closes#46987, closes#46761
By "simple" I mean operators that map 0->0 so we can implement it by
just re-dispatching on the values tensor. That does mean we have `sin`
but not `cos` for example, but without fill value support this is the
best that can be done.
Most of these don't support autograd because the derivative formulas
use unsupported operators.
cc nikitaved pearu cpuhrsch IvanYashchuk
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32706197
Pulled By: cpuhrsch
fbshipit-source-id: 65e1acb3645737ca7bdb7f2db739d8e118906f4b
Summary:
Fixes https://github.com/pytorch/pytorch/issues/67904.
- Create a sparse tensor when the sparse layout is given even if the input tensor is not sparse.
cc nikitaved pearu cpuhrsch IvanYashchuk
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68108
Reviewed By: anjali411
Differential Revision: D32316269
Pulled By: cpuhrsch
fbshipit-source-id: 923dbd4dc7c74f51f7cdbafb2375a30271a6a886
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64181
This PR replaces all the calls to:
- `transpose(-2, -1)` or `transpose(-1, -2)` by `mT()` in C++ and `mT` in Python
- `conj().transpose(-2, -1)` or `transpose(-2, -1).conj()` or `conj().transpose(-1, -2)` or `transpose(-1, -2).conj()` by `mH()` in C++ and `mH` in Python.
It also simplifies two pieces of code, and fixes one bug where a pair
of parentheses were missing in the function `make_symmetric_matrices`.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D31692896
Pulled By: anjali411
fbshipit-source-id: e9112c42343663d442dc5bd53ff2b492094b434a
Summary:
This PR enables Half, BFloat16, ComplexFloat, and ComplexDouble support for matrix-matrix multiplication of COO sparse matrices.
The change is applied only to CUDA 11+ builds.
`cusparseSpGEMM` also supports `CUDA_C_16F` (complex float16) and `CUDA_C_16BF` (complex bfloat16). PyTorch also supports the complex float16 dtype (`ScalarType::ComplexHalf`), but there is no convenient dispatch, so this dtype is omitted in this PR.
cc nikitaved pearu cpuhrsch IvanYashchuk ezyang anjali411 dylanbespalko mruberry Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59980
Reviewed By: ngimel
Differential Revision: D30994115
Pulled By: cpuhrsch
fbshipit-source-id: 4f55b99e8e25079d6273b4edf95ad6fa85aeaf24
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63554
Following https://github.com/pytorch/pytorch/pull/61840#issuecomment-884087809, this deprecates all the dtype getters publicly exposed in the `torch.testing` namespace. The reason for this twofold:
1. If someone is not familiar with the C++ dispatch macros PyTorch uses, the names are misleading. For example `torch.testing.floating_types()` will only give you `float32` and `float64` skipping `float16` and `bfloat16`.
2. The dtype getters provide very minimal functionality that can be easily emulated by downstream libraries.
We thought about [providing an replacement](https://gist.github.com/pmeier/3dfd2e105842ad0de4505068a1a0270a), but ultimately decided against it. The major problem is BC: by keeping it, either the namespace is getting messy again after a new dtype is added or we need to somehow version the return values of the getters.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D30662206
Pulled By: mruberry
fbshipit-source-id: a2bdb10ab02ae665df1b5b76e8afa9af043bbf56
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60548
`Tensor.__floordiv__` was indirectly deprecated by deprecation of `torch.floor_divide` (see https://github.com/pytorch/pytorch/issues/43874). Deprecating it directly provides clearer feedback.
Repro:
```
import torch
x = torch.tensor(0)
x // 1
```
Before this change, a deprecation warning was triggered within the C++ implementation of floor_divide:
```
UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:571.)
return torch.floor_divide(self, other)
```
After this change, the warning instead cites the user's offending line of Python code:
```
UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
x // 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64034
Reviewed By: mruberry
Differential Revision: D30658010
Pulled By: saketh-are
fbshipit-source-id: b0e6c5008d741897509d102f4a89efb47de4aa2a
Summary:
This PR enables Half, BFloat16, ComplexFloat, and ComplexDouble support for matrix-matrix multiplication of COO sparse matrices.
The change is applied only to CUDA 11+ builds.
`cusparseSpGEMM` also supports `CUDA_C_16F` (complex float16) and `CUDA_C_16BF` (complex bfloat16). PyTorch also supports the complex float16 dtype (`ScalarType::ComplexHalf`), but there is no convenient dispatch, so this dtype is omitted in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59980
Reviewed By: ngimel
Differential Revision: D29699456
Pulled By: cpuhrsch
fbshipit-source-id: 407ae53392acb2f92396a62a57cbaeb0fe6e950b
Summary:
Fixes https://github.com/pytorch/pytorch/issues/59916
This fixes two problems with sparse multiplication
- 0d-dense * sparse was creating a non-sparse output and failing.
- dense * sparse or sparse * dense is not supported, but would emit an unhelpful error message
<details>
<summary> unhelpful error message </summary>
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: Could not run 'aten::_nnz' with arguments from the 'CPU' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'aten::_nnz' is only available for these backends: [SparseCPU, SparseCUDA, SparseCsrCPU, SparseCsrCUDA, BackendSelect, Python, Named, Conjugate, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, AutogradXPU, AutogradMLC, AutogradHPU, AutogradNestedTensor, AutogradPrivateUse1, AutogradPrivateUse2, AutogradPrivateUse3, Tracer, UNKNOWN_TENSOR_TYPE_ID, Autocast, Batched, VmapMode].
SparseCPU: registered at aten/src/ATen/RegisterSparseCPU.cpp:961 [kernel]
SparseCUDA: registered at aten/src/ATen/RegisterSparseCUDA.cpp:1092 [kernel]
SparseCsrCPU: registered at aten/src/ATen/RegisterSparseCsrCPU.cpp:202 [kernel]
SparseCsrCUDA: registered at aten/src/ATen/RegisterSparseCsrCUDA.cpp:229 [kernel]
BackendSelect: fallthrough registered at ../aten/src/ATen/core/BackendSelectFallbackKernel.cpp:3 [backend fallback]
Python: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:38 [backend fallback]
Named: registered at ../aten/src/ATen/core/NamedRegistrations.cpp:7 [backend fallback]
Conjugate: registered at ../aten/src/ATen/ConjugateFallback.cpp:118 [backend fallback]
ADInplaceOrView: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:60 [backend fallback]
AutogradOther: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradCPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradCUDA: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradXLA: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradXPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradMLC: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradHPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradNestedTensor: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradPrivateUse1: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradPrivateUse2: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
AutogradPrivateUse3: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:11202 [autograd kernel]
Tracer: registered at ../torch/csrc/autograd/generated/TraceType_2.cpp:10254 [kernel]
UNKNOWN_TENSOR_TYPE_ID: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:446 [backend fallback]
Autocast: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:285 [backend fallback]
Batched: registered at ../aten/src/ATen/BatchingRegistrations.cpp:1016 [backend fallback]
VmapMode: fallthrough registered at ../aten/src/ATen/VmapModeRegistrations.cpp:33 [backend fallback]
</details>
Also added tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61723
Reviewed By: ezyang
Differential Revision: D29962639
Pulled By: cpuhrsch
fbshipit-source-id: 5455680ddfa91d5cc9925174d0fd3107c40f5b06
Summary:
The `ops` decorator provides a way to parameterize a test across a given list of ops. This would be useful for modules as well (e.g. a `modules` decorator), but the mechanism by which this is accomplished is specific to ops. In the details, the `ops` decorator tags a test function with the metadata needed (list of ops, `dtypes`) and the actual tests are generated according to this metadata during the call to `instantiate_device_type_tests()`.
This PR makes this mechanism more generic, allowing for test parameterization across arbitrary dimensions. This makes a `modules` decorator (or any similar type of decorator) straightforward to implement without changes to the device-specific test instantiation logic.
One caveat is that, since this is implemented where the old `ops` decorator was (within `instantiate_device_type_tests()`), this only works for tests instantiated using the device-specific instantiation logic. Longer term, even device-specific test instantiation could be treated as an optional parameterization across device types, but this PR takes a low-risk approach for now. In practice, this just means that a `device` kwarg is required for all test signatures used with the mechanism.
The `ops` decorator has been refactored to use the generic mechanism and works the same as before, with one difference: when `OpDTypes.none` is specified, the test signature no longer needs an unused `dtype` kwarg. This is a nice bonus that demonstrates the added flexibility of a generic parameterization mechanism. The refactored form also has the bonus that all op-specific test generation logic is contained within the `ops` decorator class, improving readability.
Behind the scenes, the generic mechanism is a base decorator class (`_TestParameterizer`) from which `ops` derives. The core functionality is in the `_parameterize_test()` method, which takes in a test function and returns a generator that produces parameterized tests, including names and parameter kwargs to pass to them. Using the `ops` decorator results in a set of op-specific tests from a given generic test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60233
Reviewed By: iramazanli
Differential Revision: D29494995
Pulled By: jbschlosser
fbshipit-source-id: a14446488c106094fafcaa75ccf8e9e3faf33bfc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59553
Added a test for 0x0 sparse coo input for sparse_unary_ufuncs.
This test fails for `conj` on master.
Modified `unsupportedTypes` for test_sparse_consistency, complex dtypes
pass, but float16 doesn't pass for `conj` because `to_dense()` doesn't
work with float16.
Fixes https://github.com/pytorch/pytorch/issues/59549
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D28968215
Pulled By: anjali411
fbshipit-source-id: 44e99f0ce4aa45b760d79995a021e6139f064fea
Summary:
Resubmit of https://github.com/pytorch/pytorch/issues/58811, Closes gh-24745
The existing PR (gh-50655) has been stalled because `TensorIterator` doesn't guarantee iteration order in the same way that `TH_TENSOR_APPLY` does. For contiguous test cases this isn't an issue; but it breaks down for example with channels last format. I resolve this by adding a new `TensorIteratorConfig` parameter, `enforce_linear_iteration`, which disables dimension reordering. I've also added a test case for non-contiguous tensors to verify this works.
This PR also significantly improves performance by adding multithreading support to the algorithm. As part of this, I wrote a custom `count_nonzero` that gives per-thread counts which is necessary to write the outputs in the right location.
| Shape | Before | After (1 thread) | After (8 threads) |
|:----------:|--------:|-----------------:|------------------:|
| 256,128,32 | 2610 us | 2150 us | 551 us |
| 128,128,32 | 1250 us | 1020 us | 197 us |
| 64,128,32 | 581 us | 495 us | 99 us |
| 32,128,32 | 292 us | 255 us | 83 us |
| 16,128,32 | 147 us | 126 us | 75 us |
| 8,128,32 | 75 us | 65 us | 65 us |
| 4,128,32 | 39 us | 33 us | 33 us |
| 2,128,32 | 20 us | 18 us | 18 us |
| 1,128,32 | 11 us | 9 us | 9 us |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59149
Reviewed By: mruberry
Differential Revision: D28817466
Pulled By: ngimel
fbshipit-source-id: f08f6c003c339368fd53dabd28e9ada9e59de732
Summary:
Closes gh-24745
The existing PR (gh-50655) has been stalled because `TensorIterator` doesn't guarantee iteration order in the same way that `TH_TENSOR_APPLY` does. For contiguous test cases this isn't an issue; but it breaks down for example with channels last format. I resolve this by adding a new `TensorIteratorConfig` parameter, `enforce_linear_iteration`, which disables dimension reordering. I've also added a test case for non-contiguous tensors to verify this works.
This PR also significantly improves performance by adding multithreading support to the algorithm. As part of this, I wrote a custom `count_nonzero` that gives per-thread counts which is necessary to write the outputs in the right location.
| Shape | Before | After (1 thread) | After (8 threads) |
|:----------:|--------:|-----------------:|------------------:|
| 256,128,32 | 2610 us | 2220 us | 496 us |
| 128,128,32 | 1250 us | 976 us | 175 us |
| 64,128,32 | 581 us | 486 us | 88 us |
| 32,128,32 | 292 us | 245 us | 80 us |
| 16,128,32 | 147 us | 120 us | 71 us |
| 8,128,32 | 75 us | 61 us | 61 us |
| 4,128,32 | 39 us | 32 us | 32 us |
| 2,128,32 | 20 us | 17 us | 17 us |
| 1,128,32 | 11 us | 9 us | 9 us |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58811
Reviewed By: anjali411
Differential Revision: D28700259
Pulled By: ngimel
fbshipit-source-id: 9b279ca7c36d8e348b7e5e4be0dd159e05aee159