## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## How does this work
The format for the checkpoint is as such
```
archive_name/
|_ data.pkl
|_.format_version
|_byteorder
|_data/
|_ 0
|_ 1
|_ 2
|_ ...
|_
```
Each `data/i` record represents a storage, where storages are written in the order that the Pickler encounters them.
For each storage, our `persistent_load` logic saves the following metadata to the pickle file `dtype, numel, key, location` where `numel` is the number of bytes in the storage.
Note that we always use `miniz` writer in the zip64 mode per [here](7796e308d0/caffe2/serialize/inline_container.cc (L701)) A zipfile record written by miniz looks as such
```
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
| 30 byte header | n byte filename | zip64_extra_data | m byte padding | storage | 16 or 24 byte local dir footer |
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
```
- The header size (30) is given by [`MZ_ZIP_LOCAL_DIR_HEADER_SIZE`](https://github.com/pytorch/pytorch/blob/main/third_party/miniz-3.0.2/miniz.c?fbclid=IwZXh0bgNhZW0CMTEAAR2O8Vysd--UoSCxW70gabXIS1dbz733oHwuUQ5_Ff1hY2WU6PL2i6CSH4A_aem_J9oaU2HpDeWtJKOU9EnVqw#L3290)
- filename will be `"{archive_name}/{filepath}"`
- `zip64_extra_data` is determined by [`mz_zip_writer_create_zip64_extra_data`](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6202)). Note that [we only create zip64_extra_data if storage_size >= 0xFFFFFFFF or the offset of the start of the header >= 0xFFFFFFFF](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6519-L6524))
- `m` is determined by [`getPadding`](7796e308d0/caffe2/serialize/inline_container.cc (L254)), which accounts for filename, zip64_extra_data to determine `m` such that the start of `storage` is aligned to 64 bytes. The `m` bytes will always start with `F B padding_size" as the first 4 bytes
- The local dir footer size is determined based on [this snippet ](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6610-L6632)): if the buffer size is 0 it is skipped. If the zip64_extra_data was created, it is 24, otherwise it is 16.
When `torch.utils.serialization.config.load.calculate_storage_offsets` is set we do the following
- We keep track of where the "cursor" is in the file using `current_offset`, after each persistent_load call, it will be at the offset where the header for the next record starts
- for the 0th storage, "data/0", we use the regular get_record_offset to determine the start of the storage
- for any other storage, (where the storages will be in order encountered by the unpickler, 0, 1, 2, 3, ...) we use `get_record_offset_no_read`, which re-uses the `getPadding` logic to determine the offset of the storage
- Note that `load_tensor` will only ever be called again with the same key if the storage's `._data_ptr()` is 0 [[pointer1](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1917-L1918)][[pointer2](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1936-L1937)], so we cache the offsets for this edge case
- After each storage, if the storage is non-zero, we account for the local dir footer based on the logic described above
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
Consolidate
- get/set_default_load_endianness
- get/set_default_mmap_options
- get/set_crc32_options
into one global dynamo-style config + allow global setting of mmap. The existing APIs are not removed and will get/set from the config (as they can't be removed for BC)
In #143459 I add the local (argument style) config
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143324
Approved by: https://github.com/albanD
At line 205, I believe the code `x = self.activations[act](x)` should be indented so that it is in the body of the for loop. Otherwise, applying the four linear modules has the same effect as applying a single linear module, in the sense that it is still just a linear map so there is no point in having four of them. In other words, each layer of this network should have a nonlinearity.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139667
Approved by: https://github.com/malfet
Summary: Currently we process events in the regular allocation path and we call cudaEventQuery to check on the events and this path can take some locks in libcuda driver. Its not entirely needed to do process events in the allocation path, we could move this to a background thread and keep processing events regularly and put the freed block to the free list.
Differential Revision: D62396585
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135524
Approved by: https://github.com/zyan0
Summary:
This diff adds an option to round the non-split blocks in caching allocator so that they can be reused without causing lots of fragmentation for large memory segments.
For example, if we specify max_split memory size as 400MB, then all allocations more than 400MB will not be split. Lets say, we allocated some 1024MB blocks and these are cached in the allocator blocks. If we request a new 500MB block, we round it to nearest power-2-division, thats 512MB, we add default kLargeBuffer of 20MB, that will be 532MB and since 532MB is less than existing 1024MB block, the 1024MB will not be used for this allocation, instead a new 512MB block will be created. In this diff, we provide an option to cofigure the kLargeBuffer for rounding and expose as a configurable option, so 512MB + max_non_split_rounding_size and if thats greater than 1024MB, we will use te 1024MB and we wont create a new 512MB block using cudaMalloc. This option is added so that we can pre-allocate some large blocks so that we can reuse them as much as possible and we dont stall on calling cudaMalloc.
Differential Revision: D62758758
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136174
Approved by: https://github.com/zyan0
## Semantic
The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).
```python
import torch
import torch.nn as nn
sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```
(2) With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)
```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode
with FakeTensorMode():
m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')
sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])
```
## Follow Ups
- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)
Differential Revision: [D62238610](https://our.internmc.facebook.com/intern/diff/D62238610)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
## Semantic
The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).
```python
import torch
import torch.nn as nn
sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```
(2) With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)
```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode
with FakeTensorMode():
m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')
sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])
```
## Follow Ups
- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
## Semantic
The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).
```python
import torch
import torch.nn as nn
sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```
(2) With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)
```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode
with FakeTensorMode():
m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')
sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])
```
## Follow Ups
- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
We create a new landing page for PyTorch custom ops (suggested by
jansel). All of our error messages will link here, and I'll work with
the docs team to see if we can boost SEO for this page.
NB: the landing page links some non-searchable webpages. Two of those
(the Python custom ops tutorial and C++ custom ops tutorial) will turn
into actual webpages when PyTorch 2.4 comes around. I'll make the third one
(the Custom Operators Manual) once it stabilizes (we continously add new
things to it and the length means that we might want to create a custom
website for it to make the presentation more ingestable).
Test Plan:
- view docs preview.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127400
Approved by: https://github.com/jansel
ghstack dependencies: #127291, #127292
#### Conditions for allowlisting tensor subclasses
We allow tensor subclasses types that
(1) Do not override `__setstate__`, `__getattr__`, `__setattr__`, `__get__`, `__set__` or `__getattribute__` of `torch.Tensor` (`torch.Tensor` does not have a definition of `__getattr__`, `__get__` or `__set__` so we check that these are `None`)
(2) Use the generic `tp_alloc`
(3) Are in a module that *has been imported by the user*
to be pushed onto the stack as strings by `GLOBAL` instructions, while storing the type in a dict
The strings will be converted to the classes as appropriate when executing `REBUILD` with `_rebuild_from_type_v2`
*Note that we use `inspect.getattr_static(sys.modules[module], name)` to get the class/function as this method claims to have no code execution.
The rationale for the 3 conditions above is as follows:
The rebuild func provided by `Tensor.__reduce_ex__` is `torch._tensor._rebuild_from_type_v2`, which is defined as such (note the call to `getattr`, `Tensor.__setstate__` and the call to `as_subclass` as well as the call to `_set_obj_state` which calls `setattr`)
4e66aaa010/torch/_tensor.py (L57-L71)
`as_subclass` is implemented with a call to `THPVariable_NewWithVar`
that will eventually call `tp_alloc` here
4e66aaa010/torch/csrc/autograd/python_variable.cpp (L2053)
The `func` arg to `_rebuild_from_type_v2` for wrapper subclasses is `Tensor.rebuild_wrapper_subclass`, which will similarly call into `THPVariable_NewWithVar` and hit the above `tp_alloc`
**Note that we do not call `tp_init` or `tp_new` (i.e. `cls.__init__` or `cls.__new__`) when unpickling**
### How do we check something is a tensor subclass/constraints around imports
In order to check whether `bla` is a tensor subclass in the bytecode `GLOBAL module.name`, we need to do an `issubclass` check, which entails converting the global string to the appropriate type. We *do not* arbitrarily import modules but will perform this check as long as the given subclass (given by `module.name`) has already been imported by the user (i.e. `module in sys.modules` and `issubclass(getattr(sys[modules], name), torch.Tensor)`
This PR also allowlisted `torch._utils._rebuild_wrapper_subclass` and `torch.device` (used by `_rebuild_wrapper_subclass`)
### API for allow listing
This PR also added `torch.serialization.{add/get/clear}_safe_globals` that enables user to allowlist globals they have deemed safe and manipulate this list (for example they could allowlist a tensor subclass with a custom `__setstate__` if they have checked that this is safe).
Next steps:
- Add testing and allowlist required classes for all in-core tensor subclasses (e.g. `DTensor`, `FakeTensor` etc.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124331
Approved by: https://github.com/albanD
Fixes#124528
Going over the options for our MapAllocator and what they do, I don't think any other of them need to be piped up to `torch.load`
4f29103749/aten/src/ATen/MapAllocator.h (L8-L16)
~However, I wonder if this `MmapVisibility(Enum)` is a good way to represent "or-ing" together of `mmap` flags if we want to extend it in the future. I looked over the flags for [`mmap(2)`](https://man7.org/linux/man-pages/man2/mmap.2.html), and could not immediately see how most of them would be useful for `torch.load` (would maybe `MAP_LOCKED` (like `mlock`) or `MAP_HUGE` ever be worthwhile?)~
Using the flags provided by the python `mmap` library so that we can extend the allowed flags and pipe them down to the cpp `mmap` call if there is a need for other flags in the future
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124889
Approved by: https://github.com/albanD
See #113541
The PR allows for registering and controlling multiple RNG states using indices, ensuring cudagraph-safe operations, and includes both C++ and Python API changes to support this functionality.
cc @eellison @anijain2305 @jansel @ezyang @ptrblck @csarofeen @mcarilli
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114068
Approved by: https://github.com/ezyang
As discussed on [slack](https://pytorch.slack.com/archives/C3PDTEV8E/p1703699711772289) adding Andrew Gu's advanced FSDP design notes with a few additions from myself based on our discussion.
I hope I did the RST right, I haven't done RST in a while.
- The first section is Andrew's words verbatim + formatting
- The second section is Andrew's words verbatim + formatting + a few of my additions that were confirmed by Andrew, and which hopefully should help understand the process better.
tagging @albanD as requested.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117323
Approved by: https://github.com/awgu
As discussed on [slack](https://pytorch.slack.com/archives/C3PDTEV8E/p1703699711772289) adding Andrew Gu's advanced FSDP design notes with a few additions from myself based on our discussion.
I hope I did the RST right, I haven't done RST in a while.
- The first section is Andrew's words verbatim + formatting
- The second section is Andrew's words verbatim + formatting + a few of my additions that were confirmed by Andrew, and which hopefully should help understand the process better.
tagging @albanD as requested.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117323
Approved by: https://github.com/albanD, https://github.com/awgu
The following subjects are not in this PR and will be done in a follow up:
- Go through torch_function section and update to the latest phrasing and link to the proper new sections
- Go through torch.library and custom device docs to add links to the new sections as appropriate
- Top level explanations on which component should be used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102087
Approved by: https://github.com/janeyx99
Adding to the docs for now, hopefully we can move to `cudaMallocAsync`-backed cuBLAS workspaces soon which should alleviate the recent confusion around `cuBLAS` "leaking" memory through workspaces.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100919
Approved by: https://github.com/ngimel
Fixes https://github.com/pytorch/pytorch/issues/97260
We got some feedback that the page reads like "in order to save an input
for backward, you must return it as an output of the
autograd.Function.forward".
Doing so actually raises an error (on master and as of 2.1), but results
in an ambiguous situation on 2.0.0. To avoid more users running into
this, we clarify the documentation so it doesn't read like the above
and clearly mentions that you can save things from the inputs or
outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98020
Approved by: https://github.com/soulitzer, https://github.com/kshitij12345
This PR:
- changes generate_vmap_rule to either be True or False. Previously it
could be True, False, or not set. This simplifies the implementation a
bit.
- changes the vmap staticmethod to always be on the autograd.Function
rather than sometimes defined.
This is how the other staticmethod (forward, backward, jvp) are
implemented and allows us to document it.
There are 4 possible states for the autograd.Function w.r.t. to the
above:
- generate_vmap_rule is True, vmap staticmethod overriden. This raises
an error when used with vmap.
- generate_vmap_rule is False, vmap staticmethod overriden. This is
valid.
- generate_vmap_rule is True, vmap staticmethod not overriden. This is
valid.
- generate_vmap_rule is False, vmap staticmethod not overriden. This
raises an error when used with vmap.
Future:
- setup_context needs the same treatment, but that's a bit tricker to
implement.
Test Plan:
- new unittest
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91787
Approved by: https://github.com/soulitzer