Commit Graph

219 Commits

Author SHA1 Message Date
Yanbo Liang
0d90d4d613 [Dynamo] Fix NamedTuple hasattr bug (#124531)
Fixes #124402

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124531
Approved by: https://github.com/jansel
2024-04-21 04:36:22 +00:00
Jason Ansel
6bac183dc2 [dynamo] Support numpy.iinfo/finfo (#123803)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123803
Approved by: https://github.com/anijain2305
ghstack dependencies: #123700, #123705, #123786, #123790
2024-04-12 19:03:13 +00:00
Jason Ansel
6b0ba6bbd3 [dynamo] Improve constant-prop for regex/torch.__version__ (#123705)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123705
Approved by: https://github.com/anijain2305
ghstack dependencies: #123700
2024-04-12 19:03:13 +00:00
Guilherme Leobas
84658d9c4f Enable capture_func_transforms by default (#122211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122211
Approved by: https://github.com/zou3519
2024-04-05 03:29:11 +00:00
Jason Ansel
2a137f7af1 [dynamo] Support hasattr on UserDefinedClassVariable (#122564)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122564
Approved by: https://github.com/anijain2305
2024-03-29 17:34:14 +00:00
Jason Ansel
069270db60 [dynamo] Fix list comparison ops (#122559)
Fixes #122376

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122559
Approved by: https://github.com/Skylion007
2024-03-25 07:03:23 +00:00
Jason Ansel
07caea5c12 [dynamo] Refactor COMPARE_OP and comparison builtins (#122043)
This removes the duplicate handling of comparison ops between symbolic_convert and bultin and refactors the handling to use the binop infrastructure.  This change regresses overheads a bit, but this is fixed in the next PR.

New test skips are variants of `type(e) is np.ndarray` previously falling back to eager.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122043
Approved by: https://github.com/anijain2305
ghstack dependencies: #122039
2024-03-19 04:23:17 +00:00
Aaron Gokaslan
d55d803812 Add operator length hint support (#121495)
Seemed like an easy operator to squeeze into Python 2.3 . Added a simple test. Partially addresses #116396

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121495
Approved by: https://github.com/albanD
2024-03-08 19:08:33 +00:00
laith sakka
d21c6eb215 Do not wrap output with input device inside _to_copy (#119868)
Fixing https://github.com/pytorch/pytorch/issues/118790

This diff revert a small part of the code that was introduced in https://github.com/pytorch/pytorch/pull/104689

The PR above added a comment that "In case of dtype promotion, fake tensor converted into tensor"
but its not always the case that a conversion in dtype causes a fake tensor to be a tensor.

When such conversion does not happen we get the following error
```
Creating a new Tensor subclass FakeTensor but the raw Tensor object is already associated to
 a python object of type FakeTensor
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119868
Approved by: https://github.com/ezyang, https://github.com/thiagocrepaldi
2024-02-28 01:51:43 +00:00
Yanbo Liang
5a0a964444 [Dynamo] Fix guards for script_if_tracing or lru_cache fn with default args (#120390)
Fixes #120387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120390
Approved by: https://github.com/anijain2305
2024-02-26 19:40:14 +00:00
laith sakka
ea8e4fd5ac Support FunctoolsPartialVariable::get_function, fix NamedTupleVariable::as_proxy and handle call_function in get_fake_values_from_nodes (#119435)
partially address https://github.com/pytorch/pytorch/issues/118785
This diff fixes three things:
1. add get_function to FunctoolsPartialVariable note that it will be available only if all args constant otherwise,
it would throw unimplemented in the call to asPythonConstant.

2. NamedTupleVariable takes args dispatched not as list ex: NamedTuple(a, b, c) vs NamedTuple([a, b, c]),
 hence fix that by specializing asProxy.

3. A call to create_arg from within create_proxy, changes a python NamedTuple to a function call node without
associating an example value! Updated get_fake_values_from_nodes to handle such case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119435
Approved by: https://github.com/jansel, https://github.com/anijain2305
ghstack dependencies: #119314
2024-02-13 01:44:08 +00:00
Jason Ansel
74d55b0e63 [dynamo] Support torch.distributed.fsdp._flat_param._same_storage_size (#119627)
Replaces #117690

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119627
Approved by: https://github.com/Skylion007
2024-02-13 01:27:37 +00:00
laith sakka
c814d8e5c2 Fix handling random() calls encountered inside inlined code. (#119218)
Fix https://github.com/pytorch/pytorch/issues/118787

In the compiled function, calls to random() are replaced with a single function call
to a function that generates all the random variables .
The random calls encountered during compilation used to be tracked inside a variable
stored inside the instruction translator. And when there are nested translators, the tracked
calls used to get lost when the inner instructions translator popped out.

This diff fixes that by moving the tracked calla to the output graph which is shared across translators that are generating the same function.

More details about the issue and why this solution is picked are in the github issue above.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119218
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-02-06 23:48:21 +00:00
Jason Ansel
5e78c4b0f4 [dynamo] Functools partial reconstruct (#118583)
Replaces #117721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118583
Approved by: https://github.com/yanboliang
ghstack dependencies: #118901, #118616
2024-02-06 23:42:43 +00:00
laith sakka
923a7c7572 add test elipsis to dynamo test functions (#118754)
add tests to ensure the reported bug in #117563 is not failing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118754
Approved by: https://github.com/anijain2305
2024-02-01 19:05:01 +00:00
rzou
318e6ff40e Fix __name__ on a reconstructed NestedUserFunctionVariable (#118768)
```
def f():
    def g():
        return ()

    print(g.__name__)

f()
```

The following script should print `g` (with or without torch.compile),
but prints `f.<locals>.g` with torch.compile.

The problem looks like we use the co_qualname when reconstructing the
NestedUserFunctionVariable. I switched this over to use the co_name.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118768
Approved by: https://github.com/yanboliang, https://github.com/jansel
2024-02-01 18:59:01 +00:00
Yanbo Liang
4fc4f5eb06 [Dynamo] Support tensor is not tensor (#118840)
Fixes Meta internal use case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118840
Approved by: https://github.com/yf225
2024-02-01 07:32:43 +00:00
laith sakka
8455447972 Support builtin callable with object arguments in dynamo (#118678)
Fix issue #117556

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118678
Approved by: https://github.com/anijain2305
2024-01-31 17:54:08 +00:00
laith sakka
1bf9ddf130 add test_truth (#118597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118597
Approved by: https://github.com/anijain2305
2024-01-31 15:10:58 +00:00
ydwu4
fc5cde7579 [dynamo] constant fold torch.cuda.get_device_properties to avoid graph break (#118422)
Before the PR, we have a graph break for code like this,
```python
    def test_get_device_properties_tensor_device(a):
        x = a.to("cuda")
        prop = torch.cuda.get_device_properties(x.device)
        if prop.major == 8:
            return x + prop.multi_processor_count
        return x + prop.max_threads_per_multi_processor
```
This PR constant folds the torch.cuda.get_device_properties and we'll get a following dynamo graph:
```python
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]     def forward(self, L_a_ : torch.Tensor):
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         l_a_ = L_a_
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         # File: /home/yidi/local/pytorch/test/dynamo/test_functions.py:544 in test_get_device_properties_tensor_device, code: x = a.to("cuda")
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         x = l_a_.to('cuda');  l_a_ = None
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         # File: /home/yidi/local/pytorch/test/dynamo/test_functions.py:547 in test_get_device_properties_tensor_device, code: return x + prop.multi_processor_count
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         add = x + 108;  x = None
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]         return (add,)
[2024-01-26 13:28:13,253] [0/0] torch._dynamo.output_graph.__graph: [DEBUG]
```

The signature of get_device_properties is:
```python
def get_device_properties(device: _device_t) -> _CudaDeviceProperties:
```
I think it's safe to constant fold get_device_properties():
1. torch.cuda.get_device_properties(tensor.device). In this case, tensor.device.index is guarded in _check_tensor
2. torch.cuda.get_device_properties(device_int_id). We don't expect the GPU properties for a particular index changes during a torch.compile run and it make sense to specialize the properties for a concrete device_int_id.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118422
Approved by: https://github.com/yanboliang, https://github.com/jansel
2024-01-29 20:26:40 +00:00
ydwu4
5b31516008 [dynamo] inline torch.jit._unwrap_optional (#118434)
Before this pr, torch.jit._unwrap_optional is in the skipfile list thus causing a graph break. Check its implementation it's just a normal python function [here](ff8e33556e/torch/jit/_script.py (L1681-L1683)):
```python
def _unwrap_optional(x):
    assert x is not None, "Unwrapping null optional"
    return x
```
We could safely inline it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118434
Approved by: https://github.com/yanboliang
2024-01-27 02:22:14 +00:00
ydwu4
71757093c5 [dynamo] avoid graph break on torch.backends.cuda.matmul.allow_tf32 (#118236)
Before the PR, we have a graph break for the following test:
```python
    def test_cublas_allow_tf32(x):
        if torch.backends.cuda.matmul.allow_tf32:
            return x.sin() + 1

        return x.cos() - 1
```

In this PR, we first add "torch.backends.cuda" to MOD_INLINELIST to trace through the python binding and get the actual call torch._C._get_cublas_allow_tf32, where it's already a TorchInGraphVariable. Because _get_cublas_allow_tf32 is accessing the same variable as at::globalContext().allowTF32CuBLAS(), which is guarded by dynamo as a global state [here](https://github.com/pytorch/pytorch/blob/main/torch/csrc/dynamo/guards.cpp#L443), we could safely assume it returns a ConstantVariable during tracing.

After this pr, we get the following graph:
```python
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]     def forward(self, L_x_ : torch.Tensor):
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_x_ = L_x_
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: /home/yidi/local/pytorch/test/dynamo/test_functions.py:515 in test_cublas_allow_tf32, code: return x.cos() - 1
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         cos = l_x_.cos();  l_x_ = None
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sub = cos - 1;  cos = None
[2024-01-24 15:31:01,501] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         return (sub,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118236
Approved by: https://github.com/yanboliang, https://github.com/anijain2305
2024-01-25 23:40:23 +00:00
ydwu4
fae569b4f2 [dynamo] avoid graph break on tensor.element_size() (#118229)
Before this PR, for the following code, we have a graph break `torch._dynamo.exc.Unsupported: torch.* op returned non-Tensor int call_method element_size`
```python
import torch
def f(x):
  return x.sin().element_size() + x.sin()

x = torch.randn(2, 2)
torch.compile(f, backend="eager", fullgraph=True)(x)
```
After this PR, we got the following graph, where element_size() is baked in as a constant.
```python
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]     def forward(self, L_x_ : torch.Tensor):
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_x_ = L_x_
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: /home/yidi/local/pytorch/test.py:4 in f, code: return x.sin().element_size() + x.sin()
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sin = l_x_.sin()
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sin_1 = l_x_.sin();  l_x_ = None
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add = 4 + sin_1;  sin_1 = None
[2024-01-24 13:49:02,814] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         return (add,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118229
Approved by: https://github.com/yanboliang, https://github.com/jansel, https://github.com/anijain2305
2024-01-25 22:28:37 +00:00
laith sakka
b47cf4182e Fix support non tensor inputs to operator.pos function (#118251)
Fixes #118231

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118251
Approved by: https://github.com/Skylion007, https://github.com/anijain2305
2024-01-25 20:37:40 +00:00
Animesh Jain
6e4e81a9ef [dynamo] Extend LazyVariableTracker to tuples (#117426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117426
Approved by: https://github.com/lezcano, https://github.com/jansel
2024-01-18 15:51:28 +00:00
lezcano
4ba5318d3f [dynamo] Add DictView variable tracker (#108420)
This also starts a comparison pattern where we don't ask variables
what's their type, but what are their capabilities.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108420
Approved by: https://github.com/jansel
ghstack dependencies: #112252, #117630, #110524
2024-01-18 09:37:33 +00:00
Aaron Gokaslan
62496ffd0d [dynamo][easy]: Add support for operator.truth (#117463)
* This is an old builtin function equivalent to the bool constructor. it is easy enough to add support for.
* I also realized the tests were in the wrong class (the one reserved for testing default args) so I moved them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117463
Approved by: https://github.com/jansel
2024-01-14 19:08:31 +00:00
Aaron Gokaslan
bf27dd6df9 Add dynamo support for operator.abs (#117442)
A test case for operator.abs and allows for constant folding with it. Partially applies to #116396

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117442
Approved by: https://github.com/jansel, https://github.com/malfet
2024-01-13 21:38:55 +00:00
Guilherme Leobas
4f3d698cac Impl. call_hasattr for BaseUserFunctionVariable (#116049)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116049
Approved by: https://github.com/zou3519
2024-01-09 22:58:58 +00:00
Aaron Gokaslan
1dd4813328 [BE][dynamo]: Add operator is and is not tests to dynamo tests (#116397)
Adds an operator that was unit not tested in our test suite - improves coverage. Inspired by looking into https://github.com/pytorch/pytorch/pull/116397 after @XuehaiPan brought up some issues with builtins in #116389

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116397
Approved by: https://github.com/albanD, https://github.com/jansel
2024-01-09 21:13:22 +00:00
Guoliang He
0159e3abbd [dynamo] add a handler for itertools_chain_from_iterable and test (#116849)
1. add a handler for itertools_chain_from_iterable
2. a test for itertools_chain_from_iterable

Fixes #116463

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116849
Approved by: https://github.com/ezyang
2024-01-05 15:14:18 +00:00
Xuehai Pan
3149e4a667 [dynamo] fix sum() function with start argument (#116389)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116389
Approved by: https://github.com/Skylion007, https://github.com/malfet
2023-12-27 20:42:27 +00:00
PyTorch MergeBot
e0e90bc0d4 Revert "[dynamo] fix sum() function with start argument (#116389)"
This reverts commit 3c9076f070.

Reverted https://github.com/pytorch/pytorch/pull/116389 on behalf of https://github.com/kit1980 due to Breaks Meta-internal tests, but the issue could have been caught on GitHub ([comment](https://github.com/pytorch/pytorch/pull/116389#issuecomment-1870556927))
2023-12-27 19:05:55 +00:00
Oguz Ulgen
8abeacda6f Refactor user defined triton kernel tests (#116425)
I will be adding more triton tests of different types, so I'm moving them to a brand new file. While doing this, I also cleaned up some flake linting opt outs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116425
Approved by: https://github.com/aakhundov
2023-12-26 23:54:26 +00:00
Xuehai Pan
3c9076f070 [dynamo] fix sum() function with start argument (#116389)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116389
Approved by: https://github.com/Skylion007
2023-12-26 06:37:55 +00:00
Xuehai Pan
039fbeb016 [dynamo] fix functools.reduce() function with None as initial (#116398)
The `initial` argument in `functools.reduce` can be `None`.

```python
initial_missing = object()

def reduce(function, iterable, initial=initial_missing, /):
    it = iter(iterable)
    if initial is initial_missing:
        value = next(it)
    else:
        value = initial
    for element in it:
        value = function(value, element)
    return value
```

Reference:

- python/cpython#102759

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116398
Approved by: https://github.com/Skylion007
2023-12-25 21:23:28 +00:00
Tugsbayasgalan Manlaibaatar
76b1d44d57 pre_dispatch aot_export (#115188)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115188
Approved by: https://github.com/bdhirsh
2023-12-25 04:51:21 +00:00
Shunting Zhang
99f7e721fe [inductor] make inductor work with new triton compile interface (#115878)
Recent 2 triton PRs (https://github.com/openai/triton/pull/2701, https://github.com/openai/triton/pull/2756) change the interface for triton.compile, this PR added the necessary change on inductor side to work with both old and new compile API.

Also there is some simplification between compilation call in subprocess and the one in main process
- previously we pass warm_cache_only=True if the compilation happens in subprocess. But triton never use that argument in the currently used pin. So I removed that
- previously we only pass compute_capability if compilation happens in subprocess. The PR change that to always passing compute_capability to triton.compile no matter if the compilation happens in main or sub process.

Updated:
There are more interface change from triton side. E.g.
- tl.math.{min, max} now requires a propagate_nan argument
- JITFunction.run now requires a warmup argument. This affect the benchmarking phase of matmul max-autotune; on the other hand, JITFunction.run forbids stream argument now. Simply removing passing this in when benchmarking matmul triton kernel will work for both old and new version of triton.
- triton Autotuner change attribute name from 'warmup' to 'num_warmup' and from 'rep' to 'num_rep'. This cause dynamo failed to handle triton Autotuner object since dynamo TritonKernelVariable makes assumption about attribute names. It's used in some test cases that a model call triton Autotuner directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115878
Approved by: https://github.com/jansel
2023-12-22 00:09:29 +00:00
Adnan Akhundov
247f9c3de4 Preserve strides of custom Triton kernel args (#116219)
Summary: Currently, we [`clone`](19207b9183/torch/_inductor/lowering.py (L5273)) every `TensorBox` argument of custom Triton kernels while lowering them to the Inductor IR, during which the stride information of the kernel inputs is lost. This is problematic in the common case when the strides of a `torch.Tensor` argument are passed as scalars to a custom Triton kernel alongside the tensor itself (due to the underlying Triton code interpreting the tensors as raw pointers, so the contained stride semantics of the `torch.Tensor` is lost).

In this PR, we add an extended version of the existing [`clone` lowering](19207b9183/torch/_inductor/lowering.py (L2289))---`clone_preserve_reinterpret_view`---which carries over the `ir.ReinterpretVew` layers (if any) from the source `TensorBox` to the cloned one. The rationale behind adding a new function (and switching to it in the `triton_kernel_wrap` only for now) as opposed to extending the existing `clone` is keeping the semantics of the latter untouched, as it is a lowering of `torch.clone` (albeit incomplete, as the `memory_format` is currently ignored). Changing the existing `clone` would change the semantics which is not necessarily desirable in general. Open to suggestions, though.

Test Plan:

```
$ python test/dynamo/test_functions.py -k test_triton_kernel_strided_input
...
----------------------------------------------------------------------
Ran 1 test in 5.568s

OK
```

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116219
Approved by: https://github.com/jansel
2023-12-21 22:46:32 +00:00
PyTorch MergeBot
0567f71ac6 Revert " pre_dispatch aot_export (#115188)"
This reverts commit a267d67350.

Reverted https://github.com/pytorch/pytorch/pull/115188 on behalf of https://github.com/jeanschmidt due to sadly, it is required to revert this commit in order to revert https://github.com/pytorch/pytorch/pull/115454 ([comment](https://github.com/pytorch/pytorch/pull/115188#issuecomment-1866310014))
2023-12-21 14:03:18 +00:00
Tugsbayasgalan Manlaibaatar
a267d67350 pre_dispatch aot_export (#115188)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115188
Approved by: https://github.com/bdhirsh
2023-12-20 21:36:25 +00:00
Oguz Ulgen
01b979fc9a [Inductor] Fix constant folding and extern kernel mutation tracking bugs (#115908)
This PR fixes two bugs
1) Constant folding a triton kernel results in the kernel's inputs to be returned back without any modification. Disable constant folding for triton kernels. Need more investigation
2) NoneLayout buffers should not be deleted as they do not exist

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115908
Approved by: https://github.com/aakhundov, https://github.com/jansel
2023-12-19 02:06:50 +00:00
Yanbo Liang
eb3aa424ce [Reland][Dynamo] Added support for math.radians on ints with dynamic shapes (#115477)
Reland #114507

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115477
Approved by: https://github.com/larryliu0820
2023-12-09 08:58:18 +00:00
Oguz Ulgen
c9c4cdf9a9 [AOTAutograd] Do not call ctx.mark_dirty on mutations hidden from autograd (#115324)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115324
Approved by: https://github.com/bdhirsh
2023-12-09 02:23:13 +00:00
rzou
2847045ed9 Set _dynamo.config.capture_func_transforms=False (#115267)
Due to not all tests in the Dynamo shard actually running in CI, we've
started to bitrot on this implementation. Since our plan is to trace
into the functorch implementations instead of construct a HOP
(which is what capture_func_transforms=True does), let's turn off this
config by default.

Test Plan:
- Tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115267
Approved by: https://github.com/voznesenskym, https://github.com/guilhermeleobas
2023-12-07 18:42:15 +00:00
Yanbo Liang
4620170008 [Dynamo] Revert multiple PRs since they triggered compilation stuck internally (#115126)
Revert the following PRs to mitigate internal compilation stuck:
#113432
#114016
#114507
#114196
#114739
#114669

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115126
Approved by: https://github.com/xush6528
2023-12-05 22:35:37 +00:00
Jason Ansel
fe690f430a [dynamo] Fix dict.get with no default (#115048)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115048
Approved by: https://github.com/eellison, https://github.com/oulgen
ghstack dependencies: #114830, #115047
2023-12-05 01:31:33 +00:00
Xuehai Pan
3fbfa8cd0a [dynamo] support dict.copy() / OrderedDict.copy() / defaultdict.copy() (#115012)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115012
Approved by: https://github.com/jansel
ghstack dependencies: #115010, #115011
2023-12-04 01:50:10 +00:00
Xuehai Pan
917a52d2a2 [dynamo] support dict.update(seq2) / OrderedDict.update(seq2) / defaultdict.update(seq2) (#115011)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115011
Approved by: https://github.com/jansel
ghstack dependencies: #115010
2023-12-04 01:50:10 +00:00
Xuehai Pan
2e8ac5ea93 [dynamo] support dict.fromkeys() / OrderedDict.fromkeys() / defaultdict.fromkeys() (#115010)
Add support for `dict.fromkeys`, `OrderedDict.fromkeys`, and `defaultdict.fromkeys`.

Fixes #114963

- #114963

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115010
Approved by: https://github.com/jansel
2023-12-04 01:49:59 +00:00
Jason Ansel
7b3429d97c Fix error with int+SymBool (#114828)
Fixes #104797

```
  File "/home/jansel/pytorch/torch/_dynamo/utils.py", line 1486, in <lambda>
    lambda: run_node(tx.output, node, args, kwargs, nnmodule)
  File "/home/jansel/pytorch/torch/_dynamo/utils.py", line 1591, in run_node
    raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e
  File "/home/jansel/pytorch/torch/_dynamo/utils.py", line 1570, in run_node
    return node.target(*args, **kwargs)
  File "/home/jansel/conda/envs/pytorch/lib/python3.10/site-packages/einops/packing.py", line 153, in unpack
    n_unknown_composed_axes = sum(x == -1 for x in lengths_of_composed_axes)
torch._dynamo.exc.TorchRuntimeError: Failed running call_function <function unpack at 0x7f644b962710>(*(FakeTensor(..., device='cuda:0', size=(1, s0*s1, 128)), [(s0, s1)], 'b * c'), **{}):
unsupported operand type(s) for +: 'int' and 'SymBool'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114828
Approved by: https://github.com/lezcano
2023-11-30 18:30:36 +00:00
vfdev
f93ea14309 [dynamo] Added support for math ops on ints with dynamic shapes (#114507)
Fixes #114218

```
import math
import torch

def func(x, a):
    b = math.floor(a + 0.5)
    b = math.radians(a) + b
    y = x + b
    return y

cfunc = torch.compile(func, dynamic=True, fullgraph=True, backend="eager")
x = torch.tensor([0, 1, 2, 3], dtype=torch.float32)
a = 12

out = cfunc(x, a)
```

```
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG] TRACED GRAPH
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  ===== __compiled_fn_0 =====
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]     def forward(self, L_a_ : torch.SymInt, s1 : torch.SymInt, L_x_ : torch.Tensor):
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_a_ = L_a_
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_x_ = L_x_
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:7, code: b = math.floor(a + 0.5)
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add = l_a_ + 0.5
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         floor = math_floor(add);  add = None
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: /pytorch/torch/_dynamo/polyfill.py:28, code: return math.pi / 180.0 * x
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         mul = 0.017453292519943295 * l_a_;  l_a_ = None
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:9, code: b = math.radians(a) + b
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_1 = mul + floor;  mul = floor = None
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:13, code: y = x + b
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         y = l_x_ + add_1;  l_x_ = add_1 = None
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         return (y,)
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-29 18:10:08,385] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114507
Approved by: https://github.com/lezcano
2023-11-30 14:11:57 +00:00
Jon Chuang
172a103857 [dynamo] strict=True kwarg for zip (#114047)
Fixes https://github.com/pytorch/pytorch/issues/113894

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114047
Approved by: https://github.com/ezyang
2023-11-22 08:48:51 +00:00
Isuru Fernando
e4a88d9581 Convert SymInts to SymFloats with SymPy (#113683)
Fixes #109365

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113683
Approved by: https://github.com/ezyang, https://github.com/lezcano
2023-11-20 23:35:40 +00:00
Sijia Chen
7afceb9f64 [AOTI] add float support of triton (#114014)
Summary: As the title

Test Plan: buck2 test 'fbcode//mode/opt' fbcode//caffe2/test/dynamo:test_dynamo -- --exact 'caffe2/test/dynamo:test_dynamo - test_functions.py::DefaultsTests::test_triton_kernel_None_arg' --print-passing-details

Differential Revision: D51421325

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114014
Approved by: https://github.com/oulgen, https://github.com/aakhundov
2023-11-20 23:03:37 +00:00
PyTorch MergeBot
e3eca4c49f Revert "Convert SymInts to SymFloats with SymPy (#113683)"
This reverts commit 0ec66b3be5.

Reverted https://github.com/pytorch/pytorch/pull/113683 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing in trunk 0ec66b3be5, probably a landrace as this is not failing on your PR ([comment](https://github.com/pytorch/pytorch/pull/113683#issuecomment-1817759130))
2023-11-19 06:09:15 +00:00
Isuru Fernando
0ec66b3be5 Convert SymInts to SymFloats with SymPy (#113683)
Fixes #109365

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113683
Approved by: https://github.com/ezyang
2023-11-18 22:18:24 +00:00
Oguz Ulgen
11857e9a64 [Inductor] Allow autotuned argument to be anywhere in the argument list (#114002)
Prior to this PR, autotuned arguments could only be at the back of the argument list. This is an inductor limitation and not triton limitation. Fixing this allows more MRS kernels to use user defined triton kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114002
Approved by: https://github.com/aakhundov
ghstack dependencies: #113967
2023-11-18 18:19:32 +00:00
Oguz Ulgen
e0c3936843 [Inductor] Support ReinterpretView in inductor codegen (#113967)
Adding support for ReinterpretView in inductor so that jagged MRS kernels can use native triton kernels

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113967
Approved by: https://github.com/aakhundov
2023-11-18 18:19:32 +00:00
Oguz Ulgen
a450c784da [AotAutograd] Move mutations hidden from autograd in graph (#113454)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113454
Approved by: https://github.com/bdhirsh
2023-11-17 22:47:06 +00:00
vfdev-5
a56af02913 [dynamo] Added support for is_contiguous with dynamic shapes (#113645)
Description:
- Added support for `x.is_contiguous` with dynamic shapes

On `main` the following code is giving a graph break:
```python
import torch

@torch.compile(backend="eager", dynamic=True, fullgraph=True)
def f(x):
    if x.is_contiguous():
        return x
    else:
        return 0

x = torch.randn(13, 14)
f(x)
```
with the error message:
```
  File "pytorch/torch/_dynamo/variables/builder.py", line 1541, in wrap_fx_proxy_cls
    unimplemented(
  File "pytorch/torch/_dynamo/exc.py", line 193, in unimplemented
    raise Unsupported(msg)
torch._dynamo.exc.Unsupported: torch.* op returned non-Tensor bool call_method is_contiguous

from user code:
   File "check_is_contig_dynamic_true.py", line 37, in f
    if x.is_contiguous():
```

This PR fixes the issue.
```
TORCH_COMPILE_DEBUG=1 python check_is_contig_dynamic_true.py
[2023-11-14 15:49:04,399] [0/0] torch._dynamo.symbolic_convert: [INFO] Step 1: torchdynamo start tracing f check_is_contig_dynamic_true.py:34
[2023-11-14 15:49:04,403] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:34 in f ()
[2023-11-14 15:49:04,403] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]     @torch.compile(backend="eager", dynamic=True, fullgraph=True)
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:37 in f (f)
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]         if x.is_contiguous():
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x []
[2023-11-14 15:49:04,405] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_ATTR is_contiguous [LazyVariableTracker()]
[2023-11-14 15:49:04,804] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input L_x_ L['x']
[2023-11-14 15:49:04,805] [0/0] torch._dynamo.variables.builder: [DEBUG] wrap_to_fake L['x'] (5, 4) [<DimDynamic.DUCK: 1>, <DimDynamic.DUCK: 1>] [None, None]
[2023-11-14 15:49:04,839] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s0 L['x'].size()[0]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s1 L['x'].size()[1]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s2 L['x'].stride()[0]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.output_graph: [DEBUG] create_graph_input s1 L['x'].stride()[1]
[2023-11-14 15:49:04,840] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 0 [GetAttrVariable(TensorVariable(), is_contiguous)]
[2023-11-14 15:49:04,843] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE POP_JUMP_IF_FALSE 12 [ConstantVariable(bool)]
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line check_is_contig_dynamic_true.py:42 in f (f)
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert.__trace_source: [DEBUG]             return 0
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST 0 []
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.symbolic_convert: [DEBUG] TRACE RETURN_VALUE None [ConstantVariable(int)]
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.convert_frame: [DEBUG] Skipping frame because no content in function call f                     check_is_contig_dynamic_true.py 34
[2023-11-14 15:49:04,844] [0/0] torch._dynamo.convert_frame: [DEBUG] No graph captured with one_graph=True
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] TorchDynamo compilation metrics:
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] Function                           Runtimes (s)
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] -------------------------------  --------------
[2023-11-14 15:49:04,848] torch._dynamo.utils: [INFO] _compile.<locals>.compile_inner          1.2083
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113645
Approved by: https://github.com/lezcano
2023-11-17 12:32:38 +00:00
Brian Hirsh
cebad9867b graph break on intermediate leaves that require grad (#113277)
fixes https://github.com/pytorch/pytorch/issues/90552. This is a simpler fix that just detects the situation where AOTAutograd can't create a proper backward graph for the situation and graph breaks. This was technically a silent correctness issue before.

This PR tries to always graph break when we see a factory function that returns a tensor requiring grad. I check this by seeing if the op returned a `TensorVariable` in dynamo, and if one of the input arguments was a `requires_grad=True` kwarg. I think this is high-fidelity enough, and I'm also hoping that this is uncommon enough that a graph break is reasonable here.

The fix to avoid the graph break in user land is also pretty easy - just instantiate your tensor outside of the compiled region and plumb it in.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113277
Approved by: https://github.com/eellison
ghstack dependencies: #113267, #113416, #113584
2023-11-16 02:47:45 +00:00
PyTorch MergeBot
1e60174891 Revert "[dynamo] Add run_inductor_tests entrypoint (#113278)"
This reverts commit b00311ce9e.

Reverted https://github.com/pytorch/pytorch/pull/113278 on behalf of https://github.com/huydhn due to Sorry for reverting your stack, but it is failing to list test internally with buck2 ([comment](https://github.com/pytorch/pytorch/pull/113278#issuecomment-1811646325))
2023-11-15 01:19:48 +00:00
Ken Jin
70064ac416 [Dynamo] Match closures by code ID (#109427)
Closes https://github.com/pytorch/pytorch/issues/107866

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109427
Approved by: https://github.com/ezyang, https://github.com/jansel
2023-11-12 08:20:14 +00:00
Jason Ansel
b00311ce9e [dynamo] Add run_inductor_tests entrypoint (#113278)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113278
Approved by: https://github.com/yanboliang
2023-11-11 08:54:43 +00:00
Oguz Ulgen
68c4507bc2 [Inductor] Allow None values to be passed in as arguments to triton kernels (#113056)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113056
Approved by: https://github.com/jansel
ghstack dependencies: #112752, #113008, #112801
2023-11-07 05:29:42 +00:00
Oguz Ulgen
bfa717c6a6 [Inductor] Improve reinplace_scatters pass (#112801)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112801
Approved by: https://github.com/Chillee, https://github.com/jansel
ghstack dependencies: #112752, #113008
2023-11-07 05:29:42 +00:00
Oguz Ulgen
f6008be266 Move all triton related testing utils into shared file (#113008)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113008
Approved by: https://github.com/zou3519, https://github.com/jansel
ghstack dependencies: #112752
2023-11-07 05:29:29 +00:00
Oguz Ulgen
dbf44dffc9 [Inductor] Cache generated user defined triton kernels on tensor dtype and non tensor parameters (#112752)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112752
Approved by: https://github.com/jansel
2023-11-07 05:29:16 +00:00
Oguz Ulgen
001573b687 [Inductor] Support one node creating multiple mutations in scheduler (#112547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112547
Approved by: https://github.com/Chillee
2023-11-03 16:01:31 +00:00
Oguz Ulgen
13d62e28a3 [Inductor] Add Dynamic shape support to user defined triton kernels (#112523)
1) This PR moves the grid function codegen to wrapper so that we can use
   IndentBuffers as opposed to manually adding tabs for indentation.
2) In inductor, emits the grid function in the body of the kernel call so
   that it can use free symbols from dynamic shapes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112523
Approved by: https://github.com/Chillee
2023-11-02 23:58:50 +00:00
Steven Troxler
17fd4885aa [dynamo] Support custom dict constructor with kwargs (#112513)
Summary:

As of https://github.com/pytorch/pytorch/pull/103192, dynamo
supports code that creates OrderedDict instances using kwargs
for the key-value pairs rather than passing a dict literal.

But custom dicts (for example subclasses of OrderedDict) follow
a different codepath so that we can check for conditions such
as a custom `__init__` that need to force a graph break.

This commit allows kwargs for custom dict constructors - if the
args are empty and the class is not also a dataclass (which is
the case that, for example, a
`transformers.modeling_outputs.ModelOutput` instance will wind
up hitting) then treat the kwargs as the key-value pairs.

NOTE: For this to behave 100% correctly, we are relying on
the fact that python dicts behave like ordered dicts so that they
preserve the kwargs' ordering. Technically it is not guaranteed that
future versions of Python will respect this; if that behavior changes
we would need to ensure that dynamo uses OrderedDict for kwargs all
the way down in order to handle special cases like OrderedDict where
the kwargs' ordering does matter.

Test Plan:

```
pytest test/dynamo/test_functions.py
```

I also verified that the new test fails without the changes to
`dicts.py`.

Reviewers: yanboliang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112513
Approved by: https://github.com/yanboliang
2023-10-31 20:55:38 +00:00
Oguz Ulgen
219763c38d Support calling user defined triton kernels with kernel.run (#112292)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112292
Approved by: https://github.com/jansel
ghstack dependencies: #112290
2023-10-30 17:51:23 +00:00
Oguz Ulgen
1250032c2e [Inductor] Add triton.autotune support for user defined triton kernels with complex grids (#112290)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112290
Approved by: https://github.com/jansel
2023-10-30 17:48:27 +00:00
Oguz Ulgen
c14c4efc0e [Inductor] Add triton.autotune support for user defined triton kernels with constant/simple grids (#112228)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112228
Approved by: https://github.com/jansel
2023-10-28 17:30:35 +00:00
PyTorch MergeBot
8d44999183 Revert "[Inductor] Add triton.autotune support for user defined triton kernels with constant/simple grids (#112228)"
This reverts commit dbb31a2984.

Reverted https://github.com/pytorch/pytorch/pull/112228 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing ROCm test in trunk dbb31a2984 ([comment](https://github.com/pytorch/pytorch/pull/112228#issuecomment-1783660326))
2023-10-28 01:51:32 +00:00
Oguz Ulgen
dbb31a2984 [Inductor] Add triton.autotune support for user defined triton kernels with constant/simple grids (#112228)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112228
Approved by: https://github.com/jansel
2023-10-27 21:40:22 +00:00
Oguz Ulgen
a29a844938 [Inductor] Support top level constants in user defined triton kernels (#111970)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111970
Approved by: https://github.com/jansel
ghstack dependencies: #111956
2023-10-25 02:43:51 +00:00
Oguz Ulgen
bb550b25c9 [Inductor] Support user defined triton kernels calling other triton kernels and activation functions (#111956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111956
Approved by: https://github.com/jansel
2023-10-25 02:39:43 +00:00
Oguz Ulgen
ddcf9c050b [Inductor] Support calling user defined kernels with different type of arguments (#111939)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111939
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #111770, #111808
2023-10-24 19:49:48 +00:00
Jon Chuang
36d34ce951 [dynamo] support comparing LHS constant with tensor (#111492)
Fixes https://github.com/pytorch/pytorch/issues/108582

Depends on https://github.com/pytorch/pytorch/pull/111557 for fixing broken integration tests. (due to this PR unblocking an in-graph set membership)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111492
Approved by: https://github.com/Skylion007
2023-10-23 19:05:14 +00:00
Oguz Ulgen
2b2b6caf8f [inductor] Implement clone removal for user defined triton kernel via reinplace_scatters (#111627)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111627
Approved by: https://github.com/jansel
ghstack dependencies: #111434
2023-10-22 22:28:00 +00:00
Jon Chuang
c4ab229a82 [dynamo] Implement set.__contains__ for Tensor as object match of FakeTensor (#111738)
Fixes https://github.com/pytorch/pytorch/issues/111556

Dynamo implementation of `set.__contains__` previously used `__eq__` match.

But this is wrong when `__eq__` match does not imply `__hash__` match, as is the case for `torch.Tensor`, leading to inconsistent results. See: https://github.com/pytorch/pytorch/issues/111542

Hence implement as Tensor object match i.e. proxy node `'example_value'` FakeTensor match.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111738
Approved by: https://github.com/lezcano
2023-10-22 17:40:34 +00:00
Oguz Ulgen
977d3bcc46 [Inductor] Support user defined triton kernels in inductor (#111434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111434
Approved by: https://github.com/jansel
2023-10-22 17:04:19 +00:00
Jon Chuang
47eed65481 [dynamo] Add is_ support for Tensors, force get_fake_value to reuse previously computed example_value if available (#111565)
Use FakeTensor id match as equivalent to object identity match

cc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111565
Approved by: https://github.com/ezyang
2023-10-21 13:56:30 +00:00
Jon Chuang
344fc98991 [dynamo] fix: SetVariable should test Tensor identity based example_value FakeTensor, not fx.Node (#111696)
FX Node changes after in-place op. FakeTensor remains the same.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111696
Approved by: https://github.com/ezyang
2023-10-21 08:49:21 +00:00
Jon Chuang
101210e2ce [dynamo] cast single-elem tensors to float and int (#111518)
Fixes https://github.com/pytorch/pytorch/issues/109538

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111518
Approved by: https://github.com/ezyang
2023-10-20 22:53:58 +00:00
Jon Chuang
79529ef657 [dynamo] fix graph break when listlike of tensor contains const (#111572)
Fixes https://github.com/pytorch/pytorch/pull/111557#discussion_r1365620968

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111572
Approved by: https://github.com/voznesenskym, https://github.com/lezcano
2023-10-19 19:51:28 +00:00
Oguz Ulgen
4e310fd875 [Autograd] Track when mutations are for triton kernels (#111500)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111500
Approved by: https://github.com/bdhirsh
2023-10-19 15:34:34 +00:00
Oguz Ulgen
defa0d3a2d Add a side table for triton kernels to avoid using itertools.partial (#110633)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110633
Approved by: https://github.com/jansel
2023-10-08 02:01:59 +00:00
Yanbo Liang
1b1bc08557 [Dynamo] SizeVariable can be indexed by symint (#110349)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110349
Approved by: https://github.com/williamwen42
2023-10-06 20:48:07 +00:00
PyTorch MergeBot
21019620ee Revert "[Dynamo] SizeVariable can be indexed by symint (#110349)"
This reverts commit 510ec7e3c5.

Reverted https://github.com/pytorch/pytorch/pull/110349 on behalf of https://github.com/PaliC due to breaking internal tests (check diff) ([comment](https://github.com/pytorch/pytorch/pull/110349#issuecomment-1748021641))
2023-10-05 04:42:33 +00:00
Oguz Ulgen
baa9af155e Add more tests for native triton kernels (#110486)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110486
Approved by: https://github.com/jansel
ghstack dependencies: #110403
2023-10-04 18:26:45 +00:00
Oguz Ulgen
f04b1a0d27 [AOTInductor] Implement autograd eager backend for native triton kernels (#110403)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110403
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
2023-10-04 17:56:56 +00:00
Yanbo Liang
510ec7e3c5 [Dynamo] SizeVariable can be indexed by symint (#110349)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110349
Approved by: https://github.com/williamwen42
2023-10-04 03:20:18 +00:00
cdzhan
175b626216 Enable torch.promote_types in Dynamo tracing (#110358)
Fixes #109508

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110358
Approved by: https://github.com/Skylion007
2023-10-02 15:20:36 +00:00
Oguz Ulgen
f7ba3e85e2 [Dynamo] Add functional triton kernel wrapper (#110185)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110185
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/bdhirsh
ghstack dependencies: #109623
2023-09-30 04:20:20 +00:00
Oguz Ulgen
2d50a30d77 [Dynamo] Add native support for Triton Kernels to Dynamo (#109623)
This PR adds native support to Dynamo to detect Triton kernels and
create an FX graph node out of them. AOT eager and inductor modes will
be support in follow up PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109623
Approved by: https://github.com/jansel
2023-09-29 15:49:18 +00:00
Yukio Siraichi
6f48d872d0 Re-land: Break graph on manual_seed. (#109109)
Re-landing: #108647 (old #107594)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109109
Approved by: https://github.com/lezcano
2023-09-28 15:28:40 +00:00
Michael Voznesensky
e4350d6d4e Functools partial support in dynamo (#108846)
The strategy for supporting functools partials is relatively straightforward.

There are 2 cases we need to support:

**1) Functools partials as input**
In this case, we are first seeing the functools partial and it is guaranteed to have a source. As such, the args, keywords, and func of the functools partial are passed through VariableBuilder. As this is the first time we are seeing these objects (as it is an input), we re-enter VariableBuilder with a source referencing the args, keywords, and func as attributes of the input to produce:

- func: A callable VariableTracker (UDF, TorchVariable, etc) depending on the value of `func`
- args: List[VariableTracker] - note, not ListVariableTracker!
- keywords: Dict[str, VariableTracker]

A major benefit of this structure is that it very elegantly matches the args to `call_function`.

We then compose a FunctoolsPartialVariable from the VariableTrackers made above.

**2) Functools partials created within compile**
In this case, we already have all the args as known VTs, and thus just compose a FunctoolsPartialVariable as we do for case (1).

For both (1) and (2) - we propagate all guards from the func, args, and keyword VTs to the FunctoolsPartialVariable

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108846
Approved by: https://github.com/ezyang, https://github.com/jansel
2023-09-09 17:25:02 +00:00