#109581
At this point, the vanilla implementation (the default) is good.
Docs: https://docs-preview.pytorch.org/pytorch/pytorch/129905/generated/torch.optim.Adafactor.html#torch.optim.Adafactor
Specifically, the impl in this PR, which attempts to replicate the paper,
```
optim = torch.optim.Adafactor([weight])
```
is close enough to https://pytorch-optimizers.readthedocs.io/en/latest/optimizer/#pytorch_optimizer.AdaFactor
```
optim_c = AdaFactor([weight], betas=(0, 0.999), scale_parameter=False)
```
is close enough to https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adafactor
```
optim = keras.optimizers.Adafactor(learning_rate=0.01)
```
The three results respectively for the same randomly generated weights:
```
# ours
tensor([[ 0.3807594, -0.3912092],
[ 0.0762539, 0.5377805],
[ 0.2459473, 0.4662207]])
# pytorch-optimizer
tensor([[ 0.3807592, -0.3912172],
[ 0.0762507, 0.5377818],
[ 0.2459457, 0.4662213]])
# keras
array([[ 0.38076326, -0.39121315],
[ 0.0762547 , 0.5377859 ],
[ 0.24594972, 0.46622536]], dtype=float32)
```
This gives me confidence to move forward in speeding up the implementation now that a baseline has been established. If you're curious about differences:
* keras assigns step_size (rho_t in their code) to `min(lr, 1 / sqrt(step)` whereas the OG impl uses a hardcoded 0.01 instead of lr. We do the same thing as keras, but our lr default is 0.01.
* We differ from the pytorch-optimizers default in that our default will not track momentum (thus `beta1=0`) and we do not apply parameter scaling.
<details>
Keras collab: https://colab.research.google.com/drive/1i3xF8ChL7TWKJGV_5v_5nMhXKnYmQQ06?usp=sharing
My script repro:
```
import torch
from pytorch_optimizer import AdaFactor
torch.set_printoptions(precision=7)
weight = torch.tensor([[ 0.37697506, -0.39500135],
[ 0.07246649, 0.53399765],
[ 0.24216151, 0.46243715]], dtype=torch.float32)
# bias = torch.tensor([0, 0], dtype=torch.float32)
weight.grad = torch.tensor([[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838]], dtype=torch.float32)
# bias.grad = torch.tensor([-2.5027974, 1.5422692], dtype=torch.float32)
weight_c = weight.clone()
weight_c.grad = weight.grad.clone()
optim = torch.optim.Adafactor([weight])
optim.step()
print(weight)
optim_c = AdaFactor([weight_c], betas=(0, 0.999), scale_parameter=False)
optim_c.step()
print(weight_c)
```
<details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129905
Approved by: https://github.com/albanD
Fixes#130284Fixes#130653
- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
Fixes#130284Fixes#130653
- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
Summary:
Add three top level APIs for numeric debugger in pt2e flow that can log intermediate output in the model
and calculate summary for metric comparisons between nodes in two graphs
* `prepare_for_propagation_comparison`
* `extract_results_from_loggers`
* `compare_results`
Test Plan:
python test/test_quantization.py -k test_prepare_for_propagation_comparison
python test/test_quantization.py -k test_extract_results_from_loggers
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130643
Approved by: https://github.com/dulinriley, https://github.com/tarun292
# Motivation
Before this PR, device construction was `cuda` type when only a device index was given. It also returns the `PrivateUser1` type if a `PrivateUser1` type is registered.
```bash
>>> import torch
>>> device = torch.device(0)
>>> device.type
'cuda'
>>> a = torch.tensor([1, 2])
>>> b = a.to(0)
>>> b
tensor([1, 2], device='cuda:0')
```
It works well on CUDA GPU. But it will raise unexpected information and error running on XPU.
```bash
>>> import torch
>>> device = torch.device(0)
>>> device.type
'cuda'
>>> a = torch.tensor([1, 2])
>>> b = a.to(0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/xxx/pytorch/torch/cuda/__init__.py", line 302, in _lazy_init
raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled
```
With this PR, refine the logic to use the currently available device type instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129119
Approved by: https://github.com/albanD, https://github.com/gujinghui, https://github.com/EikanWang
ghstack dependencies: #129463, #129205, #129363
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet