Commit Graph

733 Commits

Author SHA1 Message Date
Catherine Lee
0db21a6b23 Remove most rockset references (#139922)
Remove most references to rockset:
* replace comments and docs with a generic "backend database"
* Delete `upload_to_rockset`, so we no longer need to install the package.
* Do not upload perf stats to rockset as well (we should be completely on DynamoDB now right @huydhn?)

According to VSCode, it went from 41 -> 7 instances of "rockset" in the repo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139922
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-11-12 21:17:43 +00:00
Catherine Lee
cc93c1e5e4 Upload artifacts during test run (#125799)
Zip and upload artifacts while run_test is running
Upgrade boto3 because I get errors about not having `botocore.vendored.six.move` if I don't
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125799
Approved by: https://github.com/huydhn
2024-10-22 16:48:57 +00:00
Will Feng
e4ad02892f Upgrade distributed test to g4dn instances (T4 GPUs) (#137161)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137161
Approved by: https://github.com/seemethere, https://github.com/eqy, https://github.com/yf225

Co-authored-by: Will Feng <yf225@cornell.edu>
2024-10-20 23:48:54 +00:00
PyTorch MergeBot
24ee4af86b Revert "Upgrade distributed test to g4dn instances (T4 GPUs) (#137161)"
This reverts commit 2b7c7a20b9.

Reverted https://github.com/pytorch/pytorch/pull/137161 on behalf of https://github.com/kwen2501 due to breaking trunk ([comment](https://github.com/pytorch/pytorch/pull/137161#issuecomment-2417833666))
2024-10-16 20:05:38 +00:00
Catherine Lee
f173623bb2 [td] try catch exception, do not run td if not results (#138087)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138087
Approved by: https://github.com/wdvr
2024-10-16 18:04:25 +00:00
Ke Wen
2b7c7a20b9 Upgrade distributed test to g4dn instances (T4 GPUs) (#137161)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137161
Approved by: https://github.com/seemethere, https://github.com/eqy
2024-10-16 16:42:57 +00:00
PyTorch MergeBot
78632b97b1 Revert "Upgrade distributed test to g4dn instances (T4 GPUs) (#137161)"
This reverts commit f43c4d28b8.

Reverted https://github.com/pytorch/pytorch/pull/137161 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it seems another failure showing up after the upgrade ([comment](https://github.com/pytorch/pytorch/pull/137161#issuecomment-2415941159))
2024-10-16 07:26:34 +00:00
Ke Wen
f43c4d28b8 Upgrade distributed test to g4dn instances (T4 GPUs) (#137161)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137161
Approved by: https://github.com/seemethere, https://github.com/eqy
2024-10-16 05:03:08 +00:00
Ke Wen
56cc22eb01 [CI][Distributed] Not to test distributed_test.py with UCC (#137932)
Some UCC tests became unstable recently, with or without the M60 to T4 upgrade.
See for example: #137855 (without upgrade), #137161 (with upgrade).
So I am extracting the disablement from #137161 here.

Failure signature:
```
RuntimeError: [/var/lib/jenkins/workspace/torch/csrc/distributed/c10d/ProcessGroupUCC.cpp:496] [Rank 0][ProcessGroupUCC-0][READY]failed to post triggered collective, error code -6: Unhandled error, system error code 0
```

Earlier discussed here:
https://github.com/pytorch/pytorch/pull/137161/files#r1797353294

Cc: @Aidyn-A @eqy
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137932
Approved by: https://github.com/fduwjj, https://github.com/malfet, https://github.com/eqy
2024-10-15 07:22:57 +00:00
Jagadish Krishnamoorthy
674d59359d [ROCm] Enable dist sharded_tensor test suites (#137724)
Following test suites are enabled on ROCm
test_sharded_tensor
test_sharded_tensor_reshard
test_sharding_plan

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137724
Approved by: https://github.com/jithunnair-amd, https://github.com/pruthvistony, https://github.com/malfet
2024-10-14 20:20:57 +00:00
eellison
47af7cc962 Add compiler bisector (#131936)
This is a utility to aid the torch.compile debugging. You provide a function that returns True on success, False on failure, or do something out of process and run bisect_helper `good | bad`.

The bisector will first go through backends - `eager`, `aot_eager`, `aot_eager_decomp_partition`, `inductor` to find the first failing backend. Then, it will go through subsystems within the backend - currently limited but could be expanded - and try to find the first subsystem for which disabling fixes the problem. Once it has found the failing subsystem, it will find the number of times the subsystem is applied, and then bisect through it.

An example usage of how to hook it up for aot_eager_decomp_partition and decomposition subsystem is :

```
    from torch._inductor.bisect_helper import BisectionManager
    if op in CURRENT_DECOMPOSITION_TABLE:
        if BisectionManager.disable_subsystem("aot_eager_decomp_partition", "decomposition", lambda: repr(op)):
            return NotImplemented
```

Once it has discovered the problematic change, it will print out the associated debug info, and you can set the same limits with `TORCH_BISECT_BACKEND` `TORCH_BISECT_SUBSYSTEM` and `TORCH_BISECT_MAX`.

We could add further options as an automated way of going through a check list for checking divergence - e.g., the mode to emulate amp casts.

Fix for https://github.com/pytorch/pytorch/issues/126546

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131936
Approved by: https://github.com/ezyang
2024-10-09 20:34:11 +00:00
Siddharth Kotapati
e27c0048db Enable additional tests for MPS CI runs (#134356)
As part of the follow up for https://github.com/pytorch/pytorch/issues/133520, adapting existing unused tests for use in MPS CI runs. Focusing on nhwc & other memory formatting tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134356
Approved by: https://github.com/malfet, https://github.com/eqy, https://github.com/huydhn
2024-10-04 21:52:38 +00:00
Sergii Dymchenko
a619ced5ed Revert "Update run_test.py"
This reverts commit 193073b491.
2024-09-26 17:34:52 -07:00
Sergii Dymchenko
193073b491
Update run_test.py 2024-09-26 16:56:29 -07:00
Xinya Zhang
74fd1bf965 [ROCm] Update to AOTriton 0.7b (#134498)
Notable changes:
1. Enable CudaGraph related tests
2. Fix UT problems
3. EXPERIMENTAL Navi31 support. User should enable Navi31 support with Env Var `TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1`

Know Problem:
1. `test/test_transformers.py` will massive failures and/or NaN outputs with `--use-pytest`
    + Update: Confirmed skip `class TestSDPAPrivateUse1Only` can fix the problem with `--use-pytest`

Note:
AOTriton 0.7b adds support to nestedtenosrs+SDPA but need more work (and consequently a separate PR) to enable it.

Fixes #133540

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134498
Approved by: https://github.com/pruthvistony, https://github.com/jeffdaily, https://github.com/malfet
2024-09-11 20:34:01 +00:00
Bo Li
16b8146c9e Exclude test_transformers and unit tests which require recent GPU arch (#132895)
This PR is to exclude test_transformers on ROCm temporarily and skip some unit tests which require recent GPU arch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132895
Approved by: https://github.com/jithunnair-amd, https://github.com/pruthvistony, https://github.com/malfet
2024-08-27 20:40:53 +00:00
Roy Hvaara
1565940114 [MPS] Add test/test_nn.py to test suite (#134184)
This PR increases test coverage by including the tests in `test/test_nn.py` in the test suite of MPS.

Some of the tests are decorated with `@expectedFailureMPS` for various reasons. Either that the op is not implemented, or that the outputs do not align. Those tests that contain differing results should be investigated further to rule out any live bugs.

```bash
$ python test/run_test.py --mps --verbose -k TestNN
Running test batch 'tests to run' cost 84.76 seconds
```

Ref #133520

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134184
Approved by: https://github.com/albanD, https://github.com/malfet
2024-08-26 23:48:23 +00:00
Aidyn-A
28a4db84f2 [ARM] Fix infinite recursion in unwind (#134387)
Fixes #119905

The `TORCH_SHOW_CPP_STACKTRACES=1` setting on ARM causes infinite recursive unwind because on failure a `StackTraceFetcher` attempts to unwind the <ins>failed instruction</ins>: 5ad759ca33/torch/csrc/profiler/combined_traceback.cpp (L25)
then the unwind itself fails:
5ad759ca33/torch/csrc/profiler/unwind/unwind.cpp (L10-L12)
and it causes another attempt to unwind the failure in `unwind()`...

In summary, the executed instruction is equivalent to:
```C++
std::vector<void*> unwind() {
  // some instructions ...
  return unwind();
}
```
This PR replaces `TORCH_CHECK` by `TORCH_WARN_ONCE` as it will not cause an uncontrolled recursion. The only side effect would be an empty back-trace.

Huge thanks to @nWEIdia who found the root cause!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134387
Approved by: https://github.com/eqy, https://github.com/nWEIdia, https://github.com/malfet
2024-08-26 21:02:31 +00:00
Edward Z. Yang
99cf567714 Make SCRIBE_GRAPHQL_ACCESS_TOKEN available to test jobs running on main (#133536)
It is possible to write to Meta's internal in-memory database Scuba via the Scribe Graph API: https://www.internalfb.com/intern/wiki/Scribe/users/Knowledge_Base/Interacting_with_Scribe_categories/Graph_API/ This is currently being used by pytorch/benchmark repo to upload torchbench performance results.

I want to make this API generally available to all jobs running on CI in a semi-trusted context. To talk to Scribe, you need a secret access token. I have initially configured an environment prod-branch-main which contains `SCRIBE_GRAPHQL_ACCESS_TOKEN`, and switched a single class of jobs (linux-test) to use this environment when they are running on the main branch. Because we require approvals for running CI on untrusted contributions, we could potentially allow all jobs to run in this environment, including jobs on PRs, but I don't need this for my use case (per-PR benchmark result reporting, and miscellaneous statistics on main.)

If this works, I'll push out this environment to the rest of our test jobs.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133536
Approved by: https://github.com/xuzhao9, https://github.com/malfet, https://github.com/albanD
2024-08-15 19:53:17 +00:00
hippocookie
a6ad834fa8 Fix counting execution time in run_test.py (#133199)
Counting `elapsed_time` immediately after `start_time`, not reflect real execution time of `test_batch`.

Move `elapsed_time` and print method after `run_tests` method call to fix it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133199
Approved by: https://github.com/clee2000
2024-08-15 15:29:44 +00:00
chuanqiw
72f2b29bb0 [CI] disable xpu kineto build (#133069)
Due to the xpu kineto support PR https://github.com/pytorch/pytorch/pull/130811 landed, but the xpu ci infra not ready for now. Disable kineto build as a temp WA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133069
Approved by: https://github.com/seemethere
2024-08-09 23:58:50 +00:00
Xuehai Pan
4226ed1585 [BE] Format uncategorized Python files with ruff format (#132576)
Remove patterns `**`, `test/**`, and `torch/**` in `tools/linter/adapters/pyfmt_linter.py` and run `lintrunner`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132576
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #132574
2024-08-04 17:13:31 +00:00
Xuehai Pan
5cc34f61d1 [CI] add new test config label ci-test-showlocals to control test log verbosity (#131981)
Add a new label `ci-test-showlocals` and add it to test config filter.
If the PR is labeled with `ci-test-showlocals` or "ci-test-showlocals"
present in the PR comment, the test config filter will set a environment
variable `TEST_SHOWLOCALS`. Then `pytest` will show local variables on
failures for better debugging.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131981
Approved by: https://github.com/malfet
ghstack dependencies: #131151
2024-07-29 18:53:14 +00:00
Xuehai Pan
4694ee1ad2 [BE][tests] show local variables on failure in tests (#131151)
------

As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.

Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.

Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361

```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000

    @classmethod
    def eval(cls, base, divisor):
        # python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
        # Assert triggered by inequality solver
        # assert base.is_integer, base
        # assert divisor.is_integer, divisor

        # We don't provide the same error message as in Python because SymPy
        # makes it difficult to check the types.
        if divisor.is_zero:
            raise ZeroDivisionError("division by zero")
        if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
            int_oo,
            -int_oo,
            sympy.oo,
            -sympy.oo,
        ):
            return sympy.nan
        if base is sympy.nan or divisor is sympy.nan:
            return sympy.nan

        if base.is_zero:
            return sympy.S.Zero
        if base.is_integer and divisor == 1:
            return base
        if base.is_integer and divisor == -1:
            return sympy.Mul(base, -1)
        if (
            isinstance(base, sympy.Number)
            and isinstance(divisor, sympy.Number)
            and (
                base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
                or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
            )
        ):
            r = float(base) / float(divisor)
            if r == math.inf:
                return int_oo
            elif r == -math.inf:
                return -int_oo
            elif math.isnan(r):
                return sympy.nan
            else:
                return sympy.Integer(math.floor(r))
        if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
            return sympy.Integer(int(base) // int(divisor))
        if isinstance(base, FloorDiv):
            return FloorDiv(base.args[0], base.args[1] * divisor)

        # Expands (x + y) // b into x // b + y // b.
        # This only works if floor is an identity, i.e. x / b is an integer.
        for term in sympy.Add.make_args(base):
            quotient = term / divisor
            if quotient.is_integer and isinstance(divisor, sympy.Integer):
                # NB: this is correct even if the divisor is not an integer, but it
                # creates rational expressions that cause problems with dynamic
                # shapes.
                return FloorDiv(base - term, divisor) + quotient

        try:
            gcd = sympy.gcd(base, divisor)
            if gcd != 1:
>               return FloorDiv(
                    sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
                )

base       = -1.00000000000000
cls        = FloorDiv
divisor    = -1.00000000000000
gcd        = 1.00000000000000
quotient   = 1.00000000000000
term       = -1.00000000000000

/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}

    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
>           retval = cfunc(*args, **kwargs)
E           RecursionError: maximum recursion depth exceeded in comparison
E
E           To execute this test, run the following from the base repo dir:
E               python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E           This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0

args       = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc      = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func       = <function Function.__new__ at 0x7fc530317280>
kwargs     = {}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
2024-07-29 18:53:14 +00:00
PyTorch MergeBot
c35f21e5fc Revert "[BE][tests] show local variables on failure in tests (#131151)"
This reverts commit 14158d892a.

Reverted https://github.com/pytorch/pytorch/pull/131151 on behalf of https://github.com/atalman due to Broke CI: test_testing.py::TestTestingCUDA::test_cuda_assert_should_stop_common_device_type_test_suite_cuda [GH job link](https://github.com/pytorch/pytorch/actions/runs/10131415299/job/28014665693) [HUD commit link](14158d892a) ([comment](https://github.com/pytorch/pytorch/pull/131151#issuecomment-2255921015))
2024-07-29 13:19:38 +00:00
PyTorch MergeBot
06fe99a097 Revert "[CI] add new test config label ci-test-showlocals to control test log verbosity (#131981)"
This reverts commit dfa18bf3f3.

Reverted https://github.com/pytorch/pytorch/pull/131981 on behalf of https://github.com/atalman due to Sorry, need to revert bottom PR, which broke CI: https://github.com/pytorch/pytorch/pull/131151 ([comment](https://github.com/pytorch/pytorch/pull/131981#issuecomment-2255892628))
2024-07-29 13:09:41 +00:00
Xuehai Pan
dfa18bf3f3 [CI] add new test config label ci-test-showlocals to control test log verbosity (#131981)
Add a new label `ci-test-showlocals` and add it to test config filter.
If the PR is labeled with `ci-test-showlocals` or "ci-test-showlocals"
present in the PR comment, the test config filter will set a environment
variable `TEST_SHOWLOCALS`. Then `pytest` will show local variables on
failures for better debugging.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131981
Approved by: https://github.com/malfet
2024-07-29 07:40:42 +00:00
Xuehai Pan
14158d892a [BE][tests] show local variables on failure in tests (#131151)
------

As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.

Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.

Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361

```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000

    @classmethod
    def eval(cls, base, divisor):
        # python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
        # Assert triggered by inequality solver
        # assert base.is_integer, base
        # assert divisor.is_integer, divisor

        # We don't provide the same error message as in Python because SymPy
        # makes it difficult to check the types.
        if divisor.is_zero:
            raise ZeroDivisionError("division by zero")
        if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
            int_oo,
            -int_oo,
            sympy.oo,
            -sympy.oo,
        ):
            return sympy.nan
        if base is sympy.nan or divisor is sympy.nan:
            return sympy.nan

        if base.is_zero:
            return sympy.S.Zero
        if base.is_integer and divisor == 1:
            return base
        if base.is_integer and divisor == -1:
            return sympy.Mul(base, -1)
        if (
            isinstance(base, sympy.Number)
            and isinstance(divisor, sympy.Number)
            and (
                base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
                or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
            )
        ):
            r = float(base) / float(divisor)
            if r == math.inf:
                return int_oo
            elif r == -math.inf:
                return -int_oo
            elif math.isnan(r):
                return sympy.nan
            else:
                return sympy.Integer(math.floor(r))
        if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
            return sympy.Integer(int(base) // int(divisor))
        if isinstance(base, FloorDiv):
            return FloorDiv(base.args[0], base.args[1] * divisor)

        # Expands (x + y) // b into x // b + y // b.
        # This only works if floor is an identity, i.e. x / b is an integer.
        for term in sympy.Add.make_args(base):
            quotient = term / divisor
            if quotient.is_integer and isinstance(divisor, sympy.Integer):
                # NB: this is correct even if the divisor is not an integer, but it
                # creates rational expressions that cause problems with dynamic
                # shapes.
                return FloorDiv(base - term, divisor) + quotient

        try:
            gcd = sympy.gcd(base, divisor)
            if gcd != 1:
>               return FloorDiv(
                    sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
                )

base       = -1.00000000000000
cls        = FloorDiv
divisor    = -1.00000000000000
gcd        = 1.00000000000000
quotient   = 1.00000000000000
term       = -1.00000000000000

/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}

    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
>           retval = cfunc(*args, **kwargs)
E           RecursionError: maximum recursion depth exceeded in comparison
E
E           To execute this test, run the following from the base repo dir:
E               python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E           This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0

args       = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc      = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func       = <function Function.__new__ at 0x7fc530317280>
kwargs     = {}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
2024-07-27 19:39:40 +00:00
PyTorch MergeBot
0f9bf208ec Revert "[BE][tests] show local variables on failure in tests (#131151)"
This reverts commit 054d214c50.

Reverted https://github.com/pytorch/pytorch/pull/131151 on behalf of https://github.com/jbschlosser due to pollutes test failure output for OpInfo tests ([comment](https://github.com/pytorch/pytorch/pull/131151#issuecomment-2253310448))
2024-07-26 19:03:10 +00:00
Xuehai Pan
054d214c50 [BE][tests] show local variables on failure in tests (#131151)
------

As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.

Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.

Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361

```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000

    @classmethod
    def eval(cls, base, divisor):
        # python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
        # Assert triggered by inequality solver
        # assert base.is_integer, base
        # assert divisor.is_integer, divisor

        # We don't provide the same error message as in Python because SymPy
        # makes it difficult to check the types.
        if divisor.is_zero:
            raise ZeroDivisionError("division by zero")
        if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
            int_oo,
            -int_oo,
            sympy.oo,
            -sympy.oo,
        ):
            return sympy.nan
        if base is sympy.nan or divisor is sympy.nan:
            return sympy.nan

        if base.is_zero:
            return sympy.S.Zero
        if base.is_integer and divisor == 1:
            return base
        if base.is_integer and divisor == -1:
            return sympy.Mul(base, -1)
        if (
            isinstance(base, sympy.Number)
            and isinstance(divisor, sympy.Number)
            and (
                base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
                or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
            )
        ):
            r = float(base) / float(divisor)
            if r == math.inf:
                return int_oo
            elif r == -math.inf:
                return -int_oo
            elif math.isnan(r):
                return sympy.nan
            else:
                return sympy.Integer(math.floor(r))
        if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
            return sympy.Integer(int(base) // int(divisor))
        if isinstance(base, FloorDiv):
            return FloorDiv(base.args[0], base.args[1] * divisor)

        # Expands (x + y) // b into x // b + y // b.
        # This only works if floor is an identity, i.e. x / b is an integer.
        for term in sympy.Add.make_args(base):
            quotient = term / divisor
            if quotient.is_integer and isinstance(divisor, sympy.Integer):
                # NB: this is correct even if the divisor is not an integer, but it
                # creates rational expressions that cause problems with dynamic
                # shapes.
                return FloorDiv(base - term, divisor) + quotient

        try:
            gcd = sympy.gcd(base, divisor)
            if gcd != 1:
>               return FloorDiv(
                    sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
                )

base       = -1.00000000000000
cls        = FloorDiv
divisor    = -1.00000000000000
gcd        = 1.00000000000000
quotient   = 1.00000000000000
term       = -1.00000000000000

/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}

    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
>           retval = cfunc(*args, **kwargs)
E           RecursionError: maximum recursion depth exceeded in comparison
E
E           To execute this test, run the following from the base repo dir:
E               python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E           This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0

args       = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc      = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func       = <function Function.__new__ at 0x7fc530317280>
kwargs     = {}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
2024-07-25 10:10:58 +00:00
Xuehai Pan
ba48cf6535 [BE][Easy][6/19] enforce style for empty lines in import segments in test/ (#129757)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129757
Approved by: https://github.com/ezyang
2024-07-17 06:42:37 +00:00
Xuehai Pan
4d7bf72d93 [BE][Easy] fix ruff rule needless-bool (SIM103) (#130206)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130206
Approved by: https://github.com/malfet
2024-07-14 08:17:52 +00:00
Yuanhao Ji
312652c325 [RFC] Add support for device extension autoloading (#127074)
Fixes #122468

- Load device extensions at the end of `torch/__init__.py`
- Enabled by default, or you can disable it with `TORCH_DEVICE_BACKEND_AUTOLOAD=0`

run test:

```python
python test/run_test.py -i test_autoload_enable
python test/run_test.py -i test_autoload_disable
```

doc:

https://docs-preview.pytorch.org/pytorch/pytorch/127074/miscellaneous_environment_variables.html

co-author:  @jgong5 @bsochack @bkowalskiINTEL @jczaja @FFFrog @hipudding

Co-authored-by: albanD <desmaison.alban@gmail.com>
Co-authored-by: Jiong Gong <jiong.gong@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127074
Approved by: https://github.com/albanD, https://github.com/jgong5
2024-07-09 06:14:13 +00:00
Catherine Lee
91a8376d47 run_test: Unset cpp stacktraces after reruns (#129004)
Rerun the failing test singly with the env var set.  If it succeeds, start a new process without the cpp stack traces env var

We don't want to waste time generating these if we don't have to

They can also show up in assertion errors, which may cause unexpected failures if a test wants to check these

Adds new --rs (run single) to be used the same way --scs and --sc are.  It will only run the single test in the step current file

https://hud.pytorch.org/pytorch/pytorch/pull/129004?sha=2c349d3557d399020bf1f6a8b7045e2e4957ba46 has some examples of logs

In the above:
* test_checkpoint_valid failed, then passed in another subprocess.  The testing continued in a different new subprocess from the test right after it (test_checkpointing_without_reentrant_early_free)
* test_format_traceback_short failed consistently, but it continued to run because keep-going was set

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129004
Approved by: https://github.com/PaliC
2024-07-03 01:50:15 +00:00
Xuehai Pan
4ee1cb9b95 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-30 01:36:07 +00:00
PyTorch MergeBot
2effbcfcd8 Revert "[BE][Easy] replace import pathlib with from pathlib import Path (#129426)"
This reverts commit 6d75604ef1.

Reverted https://github.com/pytorch/pytorch/pull/129426 on behalf of https://github.com/XuehaiPan due to recognize `Path` as new exported API ([comment](https://github.com/pytorch/pytorch/pull/129426#issuecomment-2198371625))
2024-06-29 23:24:06 +00:00
Xuehai Pan
6d75604ef1 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-29 15:42:09 +00:00
Catherine Lee
8892ddaacc [TD] Test removal on sm86 (#127131)
Yolo

I'm excited to break CI :')
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127131
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-06-07 20:19:18 +00:00
Howard Huang
baaa914bf7 [small] test clean up (#128079)
remove unnecessary line: https://github.com/pytorch/pytorch/issues/123733
add main so test can be run `python ...`: https://github.com/pytorch/pytorch/issues/124906

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128079
Approved by: https://github.com/awgu
2024-06-06 21:21:40 +00:00
chuanqiw
627d2cd87d [CI] disable td for xpu ci test by default (#127611)
Due to the xpu ci test has been enabled td by default, a lot of test cases (75%) have been skipped in CI tests. It caused some ci failures escaped from the ci tests, for example issue #127539. This PR depends on PR #127595 landed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127611
Approved by: https://github.com/etaf, https://github.com/atalman
2024-06-04 17:15:10 +00:00
Catherine Lee
a31a60d85b Change run_test.py arg parsing to handle additional args better (#126709)
Do not inherit parser from common_utils
* I don't think we use any variables in run_test that depend on those, and I think all tests except doctests run in a subprocess so they will parse the args in common_utils and set the variables.  I don't think doctests wants any of those variables?

Parse known args, add the extra args as extra, pass the extra ones along to the subprocess
Removes the first instance of `--`

I think I will miss run_test telling me if an arg is valid or not

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126709
Approved by: https://github.com/ZainRizvi, https://github.com/huydhn, https://github.com/Flamefire
2024-05-23 21:08:12 +00:00
Catherine Lee
ac2c547838 [TD] Upload names of failures to s3 for pytest cache (#126315)
Some tests don't get run through pytest and pytest crashes when a test segfaults, so in both caess, the pytest cache won't have an entry (similar to https://github.com/pytorch/test-infra/pull/5205).

Instead, manually upload/download an extra file that lists the failing test files

Technically this would be more general than the pytest cache
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126315
Approved by: https://github.com/ZainRizvi
2024-05-21 16:29:31 +00:00
PyTorch MergeBot
8bca0847c2 Revert "[TD] Upload names of failures to s3 for pytest cache (#126315)"
This reverts commit 655038687a.

Reverted https://github.com/pytorch/pytorch/pull/126315 on behalf of https://github.com/clee2000 due to broke inductor ([comment](https://github.com/pytorch/pytorch/pull/126315#issuecomment-2121133045))
2024-05-20 20:15:08 +00:00
Catherine Lee
655038687a [TD] Upload names of failures to s3 for pytest cache (#126315)
Some tests don't get run through pytest and pytest crashes when a test segfaults, so in both caess, the pytest cache won't have an entry (similar to https://github.com/pytorch/test-infra/pull/5205).

Instead, manually upload/download an extra file that lists the failing test files

Technically this would be more general than the pytest cache
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126315
Approved by: https://github.com/ZainRizvi
2024-05-20 17:36:30 +00:00
drisspg
762ce6f062 Add Lowering for FlexAttention Backwards (#125515)
# Summary
#### What does this PR do?
It enables Inductor to actually generate the fused flex attention kernel for the backwards

I did some other things along the way:
- Abstract out the 'build_subgraph_buffer' subroutine and make it reusable between flex attention and flex_attention backwards. In total we need too build 3 subgraphs for fwd + bwd. 1 for the fwd graph and then 2 in the bwd. The FAv2 algorithm recomputes the parts of the forward (more efficiently since we already have the row_max via logsumexp), therefore we need to inline both the fwd graph and the joint graph in the bwds kernel.
- The version of the backwards kernel is from a somewhat older version of the triton tutorial implementation. I think that we should update in a follow up to a newer version. Notably the blocks need to be square for this to work as currently implemented. I am sure there are many opportunities for optimization.
- I didnt correctly register the decomp table + IndexMode when I landed: https://github.com/pytorch/pytorch/pull/123902, this remedies that.
- The rel_bias helper func was reversed in terms of causality. I updated and then add a test specific for "future causal" attention.
- This PRs but the main point that I think still needs to be worked out is the store_output call. I have it hacked up to be 'fake' but I dont think we want to land that and likely want to just have a mutated 'dq' and a stored_output 'dk'
- I also needed to update the `TritonTemplateKernel` to actually accept multiple subgraphs (modifications)
- I updated the benchmark to also profile bwds performance

### Benchmark Numbers:
_The current implementation is not parallelizing over ctx length in the bwd_
FWD Speedups

| Type    |   Speedup | shape              | score_mod   | dtype          |
|---------|-----------|--------------------|-------------|----------------|
| Average |     0.991 |                    |             |                |
| Max     |     1.182 | (16, 16, 4096, 64) | noop        | torch.bfloat16 |
| Min     |     0.796 | (2, 16, 512, 256)  | head_bias   | torch.bfloat16 |

BWD Speedups

| Type    |   Speedup | shape              | score_mod   | dtype          |
|---------|-----------|--------------------|-------------|----------------|
| Average |     0.291 |                    |             |                |
| Max     |     0.652 | (8, 16, 512, 64)   | head_bias   | torch.bfloat16 |
| Min     |     0.073 | (2, 16, 4096, 128) | head_bias   | torch.bfloat16 |

<details>

<summary>Full Data</summary>

| shape               | score_mod     | dtype          |   fwd_eager_time |   fwd_compiled_time |   bwd_eager_time |   bwd_compiled_time |   fwd_speedup |   bwd_speedup |
|---------------------|---------------|----------------|------------------|---------------------|------------------|---------------------|---------------|---------------|
| (2, 16, 512, 64)    | noop          | torch.bfloat16 |           19.936 |              19.092 |           57.851 |             193.564 |         1.044 |         0.299 |
| (2, 16, 512, 64)    | causal_mask   | torch.bfloat16 |           19.955 |              19.497 |           57.662 |             206.278 |         1.024 |         0.280 |
| (2, 16, 512, 64)    | relative_bias | torch.bfloat16 |           19.455 |              21.297 |           57.674 |             195.219 |         0.913 |         0.295 |
| (2, 16, 512, 64)    | head_bias     | torch.bfloat16 |           19.958 |              21.289 |           57.674 |             193.859 |         0.938 |         0.298 |
| (2, 16, 512, 128)   | noop          | torch.bfloat16 |           28.157 |              28.615 |           82.831 |             454.211 |         0.984 |         0.182 |
| (2, 16, 512, 128)   | causal_mask   | torch.bfloat16 |           28.154 |              28.444 |           83.091 |             432.083 |         0.990 |         0.192 |
| (2, 16, 512, 128)   | relative_bias | torch.bfloat16 |           28.722 |              27.897 |           83.175 |             446.789 |         1.030 |         0.186 |
| (2, 16, 512, 128)   | head_bias     | torch.bfloat16 |           28.299 |              27.673 |           83.052 |             459.179 |         1.023 |         0.181 |
| (2, 16, 512, 256)   | noop          | torch.bfloat16 |           41.167 |              50.504 |          175.019 |            1083.545 |         0.815 |         0.162 |
| (2, 16, 512, 256)   | causal_mask   | torch.bfloat16 |           41.656 |              51.933 |          175.078 |            1171.176 |         0.802 |         0.149 |
| (2, 16, 512, 256)   | relative_bias | torch.bfloat16 |           41.697 |              50.722 |          175.159 |            1097.312 |         0.822 |         0.160 |
| (2, 16, 512, 256)   | head_bias     | torch.bfloat16 |           41.690 |              52.387 |          175.184 |            1097.336 |         0.796 |         0.160 |
| (2, 16, 1024, 64)   | noop          | torch.bfloat16 |           39.232 |              37.454 |          127.847 |             612.430 |         1.047 |         0.209 |
| (2, 16, 1024, 64)   | causal_mask   | torch.bfloat16 |           39.930 |              39.599 |          127.755 |             665.359 |         1.008 |         0.192 |
| (2, 16, 1024, 64)   | relative_bias | torch.bfloat16 |           39.417 |              41.304 |          127.902 |             614.990 |         0.954 |         0.208 |
| (2, 16, 1024, 64)   | head_bias     | torch.bfloat16 |           39.965 |              42.034 |          127.953 |             613.273 |         0.951 |         0.209 |
| (2, 16, 1024, 128)  | noop          | torch.bfloat16 |           63.964 |              71.024 |          226.510 |            1637.669 |         0.901 |         0.138 |
| (2, 16, 1024, 128)  | causal_mask   | torch.bfloat16 |           63.843 |              72.451 |          226.750 |            1558.949 |         0.881 |         0.145 |
| (2, 16, 1024, 128)  | relative_bias | torch.bfloat16 |           64.301 |              70.487 |          226.651 |            1610.063 |         0.912 |         0.141 |
| (2, 16, 1024, 128)  | head_bias     | torch.bfloat16 |           64.033 |              71.394 |          226.676 |            1668.511 |         0.897 |         0.136 |
| (2, 16, 1024, 256)  | noop          | torch.bfloat16 |          129.348 |             141.390 |          507.337 |            4405.175 |         0.915 |         0.115 |
| (2, 16, 1024, 256)  | causal_mask   | torch.bfloat16 |          129.538 |             145.680 |          507.178 |            4768.874 |         0.889 |         0.106 |
| (2, 16, 1024, 256)  | relative_bias | torch.bfloat16 |          129.438 |             142.782 |          507.004 |            4401.002 |         0.907 |         0.115 |
| (2, 16, 1024, 256)  | head_bias     | torch.bfloat16 |          129.058 |             146.242 |          507.547 |            4434.251 |         0.883 |         0.114 |
| (2, 16, 4096, 64)   | noop          | torch.bfloat16 |          481.606 |             409.120 |         1440.890 |           14147.269 |         1.177 |         0.102 |
| (2, 16, 4096, 64)   | causal_mask   | torch.bfloat16 |          480.227 |             438.847 |         1434.419 |           14973.386 |         1.094 |         0.096 |
| (2, 16, 4096, 64)   | relative_bias | torch.bfloat16 |          480.831 |             458.104 |         1432.935 |           14193.253 |         1.050 |         0.101 |
| (2, 16, 4096, 64)   | head_bias     | torch.bfloat16 |          480.749 |             452.497 |         1437.040 |           14084.869 |         1.062 |         0.102 |
| (2, 16, 4096, 128)  | noop          | torch.bfloat16 |          872.534 |             848.275 |         2600.895 |           35156.849 |         1.029 |         0.074 |
| (2, 16, 4096, 128)  | causal_mask   | torch.bfloat16 |          872.647 |             868.279 |         2587.581 |           31919.531 |         1.005 |         0.081 |
| (2, 16, 4096, 128)  | relative_bias | torch.bfloat16 |          871.484 |             827.644 |         2593.989 |           34805.634 |         1.053 |         0.075 |
| (2, 16, 4096, 128)  | head_bias     | torch.bfloat16 |          871.422 |             856.437 |         2602.482 |           35708.591 |         1.017 |         0.073 |
| (2, 16, 4096, 256)  | noop          | torch.bfloat16 |         1904.497 |            1758.183 |         6122.416 |           66754.593 |         1.083 |         0.092 |
| (2, 16, 4096, 256)  | causal_mask   | torch.bfloat16 |         1911.174 |            1762.821 |         6113.207 |           72759.392 |         1.084 |         0.084 |
| (2, 16, 4096, 256)  | relative_bias | torch.bfloat16 |         1911.254 |            1727.108 |         6123.530 |           66577.988 |         1.107 |         0.092 |
| (2, 16, 4096, 256)  | head_bias     | torch.bfloat16 |         1916.977 |            1801.804 |         6118.158 |           67359.680 |         1.064 |         0.091 |
| (8, 16, 512, 64)    | noop          | torch.bfloat16 |           44.984 |              43.974 |          170.276 |             262.259 |         1.023 |         0.649 |
| (8, 16, 512, 64)    | causal_mask   | torch.bfloat16 |           45.001 |              46.265 |          170.509 |             274.893 |         0.973 |         0.620 |
| (8, 16, 512, 64)    | relative_bias | torch.bfloat16 |           45.466 |              48.211 |          170.606 |             262.759 |         0.943 |         0.649 |
| (8, 16, 512, 64)    | head_bias     | torch.bfloat16 |           45.481 |              48.435 |          170.267 |             261.265 |         0.939 |         0.652 |
| (8, 16, 512, 128)   | noop          | torch.bfloat16 |           72.565 |              74.736 |          313.220 |             773.126 |         0.971 |         0.405 |
| (8, 16, 512, 128)   | causal_mask   | torch.bfloat16 |           72.015 |              75.755 |          313.311 |             775.513 |         0.951 |         0.404 |
| (8, 16, 512, 128)   | relative_bias | torch.bfloat16 |           72.105 |              74.189 |          313.806 |             769.238 |         0.972 |         0.408 |
| (8, 16, 512, 128)   | head_bias     | torch.bfloat16 |           72.005 |              74.364 |          313.509 |             775.237 |         0.968 |         0.404 |
| (8, 16, 512, 256)   | noop          | torch.bfloat16 |          138.656 |             165.453 |          663.707 |            2672.067 |         0.838 |         0.248 |
| (8, 16, 512, 256)   | causal_mask   | torch.bfloat16 |          139.096 |             172.613 |          663.593 |            2926.538 |         0.806 |         0.227 |
| (8, 16, 512, 256)   | relative_bias | torch.bfloat16 |          139.500 |             168.417 |          663.938 |            2658.629 |         0.828 |         0.250 |
| (8, 16, 512, 256)   | head_bias     | torch.bfloat16 |          139.776 |             173.549 |          662.920 |            2667.266 |         0.805 |         0.249 |
| (8, 16, 1024, 64)   | noop          | torch.bfloat16 |          134.883 |             125.004 |          484.706 |            1195.254 |         1.079 |         0.406 |
| (8, 16, 1024, 64)   | causal_mask   | torch.bfloat16 |          134.297 |             132.875 |          485.420 |            1234.953 |         1.011 |         0.393 |
| (8, 16, 1024, 64)   | relative_bias | torch.bfloat16 |          134.839 |             139.231 |          485.470 |            1198.556 |         0.968 |         0.405 |
| (8, 16, 1024, 64)   | head_bias     | torch.bfloat16 |          133.822 |             136.449 |          485.608 |            1189.198 |         0.981 |         0.408 |
| (8, 16, 1024, 128)  | noop          | torch.bfloat16 |          235.470 |             234.765 |          886.094 |            2662.944 |         1.003 |         0.333 |
| (8, 16, 1024, 128)  | causal_mask   | torch.bfloat16 |          236.305 |             241.382 |          886.293 |            2646.984 |         0.979 |         0.335 |
| (8, 16, 1024, 128)  | relative_bias | torch.bfloat16 |          236.414 |             233.980 |          885.250 |            2642.178 |         1.010 |         0.335 |
| (8, 16, 1024, 128)  | head_bias     | torch.bfloat16 |          237.176 |             239.040 |          885.754 |            2665.242 |         0.992 |         0.332 |
| (8, 16, 1024, 256)  | noop          | torch.bfloat16 |          504.445 |             517.855 |         1978.956 |            9592.906 |         0.974 |         0.206 |
| (8, 16, 1024, 256)  | causal_mask   | torch.bfloat16 |          502.428 |             536.002 |         1978.611 |           10607.342 |         0.937 |         0.187 |
| (8, 16, 1024, 256)  | relative_bias | torch.bfloat16 |          503.396 |             523.960 |         1977.993 |            9539.284 |         0.961 |         0.207 |
| (8, 16, 1024, 256)  | head_bias     | torch.bfloat16 |          503.818 |             536.014 |         1980.131 |            9576.262 |         0.940 |         0.207 |
| (8, 16, 4096, 64)   | noop          | torch.bfloat16 |         1970.139 |            1674.930 |         5750.940 |           16724.134 |         1.176 |         0.344 |
| (8, 16, 4096, 64)   | causal_mask   | torch.bfloat16 |         1959.036 |            1775.056 |         5780.512 |           17390.350 |         1.104 |         0.332 |
| (8, 16, 4096, 64)   | relative_bias | torch.bfloat16 |         1947.198 |            1773.869 |         5780.643 |           16779.699 |         1.098 |         0.345 |
| (8, 16, 4096, 64)   | head_bias     | torch.bfloat16 |         1963.935 |            1829.502 |         5780.018 |           16703.259 |         1.073 |         0.346 |
| (8, 16, 4096, 128)  | noop          | torch.bfloat16 |         3582.711 |            3362.623 |        10436.069 |           36415.565 |         1.065 |         0.287 |
| (8, 16, 4096, 128)  | causal_mask   | torch.bfloat16 |         3581.504 |            3499.472 |        10346.869 |           36164.959 |         1.023 |         0.286 |
| (8, 16, 4096, 128)  | relative_bias | torch.bfloat16 |         3589.779 |            3337.849 |        10529.621 |           36261.696 |         1.075 |         0.290 |
| (8, 16, 4096, 128)  | head_bias     | torch.bfloat16 |         3602.265 |            3436.444 |        10458.660 |           36507.790 |         1.048 |         0.286 |
| (8, 16, 4096, 256)  | noop          | torch.bfloat16 |         7695.923 |            7126.275 |        24643.009 |          140949.081 |         1.080 |         0.175 |
| (8, 16, 4096, 256)  | causal_mask   | torch.bfloat16 |         7679.939 |            7186.252 |        24538.105 |          157156.067 |         1.069 |         0.156 |
| (8, 16, 4096, 256)  | relative_bias | torch.bfloat16 |         7681.374 |            6994.832 |        24549.713 |          140077.179 |         1.098 |         0.175 |
| (8, 16, 4096, 256)  | head_bias     | torch.bfloat16 |         7679.822 |            7212.278 |        24627.823 |          140675.003 |         1.065 |         0.175 |
| (16, 16, 512, 64)   | noop          | torch.bfloat16 |           80.126 |              78.291 |          333.719 |             541.165 |         1.023 |         0.617 |
| (16, 16, 512, 64)   | causal_mask   | torch.bfloat16 |           80.065 |              81.696 |          333.779 |             551.113 |         0.980 |         0.606 |
| (16, 16, 512, 64)   | relative_bias | torch.bfloat16 |           80.138 |              86.715 |          333.364 |             542.118 |         0.924 |         0.615 |
| (16, 16, 512, 64)   | head_bias     | torch.bfloat16 |           80.415 |              85.204 |          333.294 |             536.840 |         0.944 |         0.621 |
| (16, 16, 512, 128)  | noop          | torch.bfloat16 |          134.964 |             138.025 |          607.093 |            1333.102 |         0.978 |         0.455 |
| (16, 16, 512, 128)  | causal_mask   | torch.bfloat16 |          134.192 |             141.523 |          606.269 |            1424.318 |         0.948 |         0.426 |
| (16, 16, 512, 128)  | relative_bias | torch.bfloat16 |          135.711 |             138.639 |          606.283 |            1327.974 |         0.979 |         0.457 |
| (16, 16, 512, 128)  | head_bias     | torch.bfloat16 |          135.552 |             140.555 |          607.107 |            1347.370 |         0.964 |         0.451 |
| (16, 16, 512, 256)  | noop          | torch.bfloat16 |          275.113 |             315.144 |         1301.583 |            5268.153 |         0.873 |         0.247 |
| (16, 16, 512, 256)  | causal_mask   | torch.bfloat16 |          274.867 |             328.106 |         1302.513 |            5770.594 |         0.838 |         0.226 |
| (16, 16, 512, 256)  | relative_bias | torch.bfloat16 |          276.052 |             321.770 |         1302.904 |            5241.920 |         0.858 |         0.249 |
| (16, 16, 512, 256)  | head_bias     | torch.bfloat16 |          271.409 |             328.839 |         1302.142 |            5266.037 |         0.825 |         0.247 |
| (16, 16, 1024, 64)  | noop          | torch.bfloat16 |          260.489 |             237.463 |          955.884 |            1817.558 |         1.097 |         0.526 |
| (16, 16, 1024, 64)  | causal_mask   | torch.bfloat16 |          262.378 |             254.350 |          955.280 |            1843.807 |         1.032 |         0.518 |
| (16, 16, 1024, 64)  | relative_bias | torch.bfloat16 |          261.338 |             268.253 |          956.038 |            1820.036 |         0.974 |         0.525 |
| (16, 16, 1024, 64)  | head_bias     | torch.bfloat16 |          262.153 |             264.156 |          956.023 |            1810.076 |         0.992 |         0.528 |
| (16, 16, 1024, 128) | noop          | torch.bfloat16 |          476.475 |             461.413 |         1760.578 |            4306.521 |         1.033 |         0.409 |
| (16, 16, 1024, 128) | causal_mask   | torch.bfloat16 |          473.794 |             479.178 |         1761.277 |            4619.439 |         0.989 |         0.381 |
| (16, 16, 1024, 128) | relative_bias | torch.bfloat16 |          473.839 |             463.282 |         1758.692 |            4290.562 |         1.023 |         0.410 |
| (16, 16, 1024, 128) | head_bias     | torch.bfloat16 |          472.979 |             472.896 |         1763.086 |            4367.931 |         1.000 |         0.404 |
| (16, 16, 1024, 256) | noop          | torch.bfloat16 |         1014.184 |            1026.764 |         3922.997 |           19104.147 |         0.988 |         0.205 |
| (16, 16, 1024, 256) | causal_mask   | torch.bfloat16 |         1013.217 |            1039.046 |         3928.382 |           21086.281 |         0.975 |         0.186 |
| (16, 16, 1024, 256) | relative_bias | torch.bfloat16 |         1008.519 |            1015.278 |         3922.133 |           18980.652 |         0.993 |         0.207 |
| (16, 16, 1024, 256) | head_bias     | torch.bfloat16 |         1011.360 |            1047.542 |         3931.245 |           19069.172 |         0.965 |         0.206 |
| (16, 16, 4096, 64)  | noop          | torch.bfloat16 |         3929.850 |            3325.667 |        11411.704 |           23344.280 |         1.182 |         0.489 |
| (16, 16, 4096, 64)  | causal_mask   | torch.bfloat16 |         3885.262 |            3581.544 |        11390.515 |           23725.639 |         1.085 |         0.480 |
| (16, 16, 4096, 64)  | relative_bias | torch.bfloat16 |         3865.737 |            3537.308 |        11489.901 |           23406.330 |         1.093 |         0.491 |
| (16, 16, 4096, 64)  | head_bias     | torch.bfloat16 |         3880.530 |            3665.249 |        11484.411 |           23299.496 |         1.059 |         0.493 |
| (16, 16, 4096, 128) | noop          | torch.bfloat16 |         7030.306 |            6745.715 |        20621.264 |           57464.096 |         1.042 |         0.359 |
| (16, 16, 4096, 128) | causal_mask   | torch.bfloat16 |         7095.414 |            7034.385 |        20410.656 |           61660.511 |         1.009 |         0.331 |
| (16, 16, 4096, 128) | relative_bias | torch.bfloat16 |         7084.779 |            6686.497 |        20315.161 |           57243.969 |         1.060 |         0.355 |
| (16, 16, 4096, 128) | head_bias     | torch.bfloat16 |         7075.367 |            6863.305 |        20494.385 |           58481.953 |         1.031 |         0.350 |
| (16, 16, 4096, 256) | noop          | torch.bfloat16 |        15612.741 |           14297.482 |        55306.847 |          281161.865 |         1.092 |         0.197 |
| (16, 16, 4096, 256) | causal_mask   | torch.bfloat16 |        15326.592 |           14263.878 |        55227.806 |          313063.232 |         1.075 |         0.176 |
| (16, 16, 4096, 256) | relative_bias | torch.bfloat16 |        15297.963 |           14007.379 |        54558.029 |          279529.175 |         1.092 |         0.195 |
| (16, 16, 4096, 256) | head_bias     | torch.bfloat16 |        15216.160 |           14276.027 |        55081.581 |          280996.826 |         1.066 |         0.196 |

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125515
Approved by: https://github.com/Chillee
2024-05-17 00:41:55 +00:00
Jithun Nair
14d8e3aec0 Add distributed/_tensor/test_attention to ROCM_BLOCKLIST (#126336)
Fixes #125504
Fixes #126252
Fixes #126296
Fixes #126330

This PR doesn't really fix the RingAttentionTest tests for ROCm, but explicitly adds the whole test file to ROCM_BLOCKLIST to get a clean signal on ROCm distributed CI. We will enable these tests in a follow-up PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126336
Approved by: https://github.com/huydhn, https://github.com/pruthvistony
2024-05-16 16:38:09 +00:00
Catherine Lee
48f98bcdfc [TD] Enable test removal on most default configs + distributed CUDA for everyone (#125931)
yolo

Add the longest jobs in pull:
* default cpu configs
* non sm86 cuda
* distributed cuda for everyone

Still excluding
* slow, inductor, rocm, onnx, mac, dynamo
* distributed cpu
* windows cuda
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125931
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-05-14 17:35:12 +00:00
Catherine Lee
6f619cc727 [ez] functorch/test_vmap and test_dataloader to run in parallel (#125597)
Also mark test_svd serial in linalg to see if it helps with the flakiness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125597
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-05-08 15:37:29 +00:00
Huy Do
0e57bbb6d7 Set timeout for C++ tests (#125517)
Looking at the unrelated Windows timeout failure on https://github.com/pytorch/pytorch/pull/125199, it looks like we don't have a timeout value set for C++ tests atm.  In this case, a C++ test on Windows timed out after 2+ hours.

```
2024-05-02T23:35:34.0639067Z Running cpp/c10_TypeList_test 1/1 ... [2024-05-02 23:35:34.059021]
2024-05-02T23:35:34.0641108Z Executing ['pytest', 'C:\\actions-runner\\_work\\pytorch\\pytorch\\build\\win_tmp\\build\\torch\\test\\c10_TypeList_test.exe', '-m', 'not serial', '-v', '-vv', '-rfEX', '-n', '2', '--junit-xml-reruns', 'test-reports\\python-pytest\\test\\run_test\\test\\run_test-c898ddeff8f33cbf.xml', '-x', '--reruns=2'] ... [2024-05-02 23:35:34.062137]
2024-05-03T02:45:33.7862004Z Process SpawnPoolWorker-2:
2024-05-03T02:45:33.7927201Z Traceback (most recent call last):
2024-05-03T02:45:33.7928032Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\process.py", line 315, in _bootstrap
2024-05-03T02:45:33.7928722Z     self.run()
2024-05-03T02:45:33.7929722Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\process.py", line 108, in run
2024-05-03T02:45:33.7931639Z     self._target(*self._args, **self._kwargs)
2024-05-03T02:45:33.7932435Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\pool.py", line 114, in worker
2024-05-03T02:45:33.7933338Z     task = get()
2024-05-03T02:45:33.7933946Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\queues.py", line 365, in get
2024-05-03T02:45:33.7935219Z     res = self._reader.recv_bytes()
2024-05-03T02:45:33.7935897Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\connection.py", line 221, in recv_bytes
2024-05-03T02:45:33.7936609Z     buf = self._recv_bytes(maxlength)
2024-05-03T02:45:33.7937302Z   File "C:\Jenkins\Miniconda3\lib\multiprocessing\connection.py", line 310, in _recv_bytes
2024-05-03T02:45:33.7938316Z     waitres = _winapi.WaitForMultipleObjects(
2024-05-03T02:45:33.7938766Z KeyboardInterrupt
```

Retrying was working, but it was already too late to finish the job.  I'm setting the same default `THRESHOLD * 3` timeout value here for C++ tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125517
Approved by: https://github.com/clee2000
2024-05-07 16:41:38 +00:00
Catherine Lee
848fce35b5 [CI][ez] Don't retry when it says don't retry (#125643)
default arg for retry_shell is retries=1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125643
Approved by: https://github.com/huydhn
2024-05-07 16:20:00 +00:00
Catherine Lee
1b3fd83ab2 [TD] Enable TD on AVX related configs (#125482)
On test configs `nogpu_AVX512` and `nogpu_NO_AVX2`, which are the next longest jobs on trunk after windows
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125482
Approved by: https://github.com/huydhn
2024-05-06 22:02:16 +00:00
Catherine Lee
d4727fd4eb [TD][ez] Better check for is pr or not (#125485)
You can trigger ciflow tags on main branch commits, so we should be more conservative when checking to see if a workflow is a PR/on the main branch.

get_pr_number checks for the pr number based on the PR_NUMBER env var or a tag of the for `ciflow/workflow/pr number`

If we fail to find something like this, then assume it is on the main branch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125485
Approved by: https://github.com/huydhn
2024-05-04 03:08:44 +00:00
Catherine Lee
e16f1ee4cc [ez][CI] Move test_modules and test_schema_check off CI_SERIAL_LIST (#125193)
* Related https://github.com/pytorch/pytorch/pull/124085

As in title, move test_modules and test_schema_check off CI_SERIAL_LIST
If things fail, they can get the serialTest decorator instead
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125193
Approved by: https://github.com/huydhn
2024-05-01 15:48:48 +00:00
PyTorch MergeBot
e7631d6eae Revert "CI: add aarch64 linux workflow (#121284)"
This reverts commit 32cf04cb7f.

Reverted https://github.com/pytorch/pytorch/pull/121284 on behalf of https://github.com/malfet due to Test only changes has not been reverted ([comment](https://github.com/pytorch/pytorch/pull/121284#issuecomment-2083925890))
2024-04-30 00:24:11 +00:00
Catherine Lee
4d717cd7c3 [TD] Enable td on cpu windows (#125049)
yolo

Also
* Ensure that at least 1 test always gets run (`//` does truncation which results in 0 if you have too few tests discovered)
* Don't run test removal on slow tests - I'm not touching that yet

I am avoid everything other than pull + trunk workflows, so not doing this on windows CUDA, which runs on periodic
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125049
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-04-29 23:39:54 +00:00
Catherine Lee
faee0e5ee8 [ez][CI] Move test_linalg and test_sparse_csr off CI_SERIAL_LIST (#125068)
* https://github.com/pytorch/pytorch/pull/124649 for context

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125068
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-04-29 21:22:35 +00:00
Sunita Nadampalli
32cf04cb7f CI: add aarch64 linux workflow (#121284)
aarch64 linux workflow is triggered for ciflow/aarch64 tags.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121284
Approved by: https://github.com/atalman, https://github.com/malfet
2024-04-29 18:25:40 +00:00
egienvalue
8461e7ed9e Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks. Since we added a fake device backend, it is mutual exclusive to other backends. Tests will be skipped if TEST_CUDA or TEST_ROCM is true.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-26 16:17:54 +00:00
PyTorch MergeBot
4a1299cc0e Revert "Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)"
This reverts commit 355dc34f86.

Reverted https://github.com/pytorch/pytorch/pull/123614 on behalf of https://github.com/jeffdaily due to this PR broke ROCm with message RuntimeError: Cannot have MTIA with other devices ([comment](https://github.com/pytorch/pytorch/pull/123612#issuecomment-2077649762))
2024-04-25 16:06:46 +00:00
Catherine Lee
4f29103749 [ez][CI] Move test_cuda off CI_SERIAL_LIST (#124649)
Tag test cases with large tensor with serial, also tag a few more that failed on a previous iteration of this PR

Move test_cuda and test_cuda_expandable_segments off the serial list
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124649
Approved by: https://github.com/ZainRizvi
2024-04-24 22:04:23 +00:00
egienvalue
355dc34f86 Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks.

Differential Revision: [D56443358](https://our.internmc.facebook.com/intern/diff/D56443358)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-24 20:51:20 +00:00
Catherine Lee
8fe0b8b6a8 No CPP or xdist process level reruns (#124798)
xdist doesn't play well with current process level rerun scheme
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124798
Approved by: https://github.com/huydhn
2024-04-24 19:44:51 +00:00
PyTorch MergeBot
52da03edeb Revert "Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)"
This reverts commit b6f0159db0.

Reverted https://github.com/pytorch/pytorch/pull/123614 on behalf of https://github.com/jeffdaily due to This broke ROCm. see test_overrides.py ([comment](https://github.com/pytorch/pytorch/pull/123611#issuecomment-2067363780))
2024-04-19 22:44:26 +00:00
egienvalue
b6f0159db0 Add test_cpp_extensions tests for stream_and_event and mita_backend (#123614)
Test the generic torch.Stream/Event with fake device gurad and hooks.
@exported-using-ghexport

Differential Revision: [D55902506](https://our.internmc.facebook.com/intern/diff/D55902506/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
2024-04-18 17:40:13 +00:00
Catherine Lee
025387f4dd [ez][CI] Reduce CI_SERIAL_LIST pt2 (#124298)
#124085

Add @serialTest() to some tests

slow gradcheck already runs serially

Doing this slowly so its easier to check flaky issues that might get made

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124298
Approved by: https://github.com/kit1980
2024-04-18 00:13:36 +00:00
Catherine Lee
0abd3f60fd [CI] Reduce CI_SERIAL_LIST list (#124085)
Add serial marker for individual tests so the test file can be removed from the ci serial list
Run serial marked tests first in serial
Run all other tests afterwards in parallel

Slowly reduce list and mark individual tests as serial instead

Hope # of serial tests is small so sharding evenness doesn't get too messed up

Hopefully can do 3 procs for sm86 and cpu?

serial no longer looks like a real word to me

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124085
Approved by: https://github.com/seemethere, https://github.com/malfet
2024-04-17 00:23:47 +00:00
Catherine Lee
946b50c788 [ez][TD] Increase logging (#124082)
increase logging during td
generate an artifact that says which tests got excluded
fix minor bug where filter test configs couldnt get commit messages

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124082
Approved by: https://github.com/seemethere, https://github.com/malfet
2024-04-17 00:18:28 +00:00
Catherine Lee
3cd06f56b1 [ez] test_profiler in serial (#123665)
Add test_profiler to the serial list since we keep needing to reopen disable issues and I think its due to being incompatible with parallelism
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123665
Approved by: https://github.com/ZainRizvi, https://github.com/huydhn
2024-04-11 20:24:47 +00:00
William Wen
4bee4c7c25 [3.12] enable inductor unittests (#123654)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123654
Approved by: https://github.com/jansel
2024-04-10 20:51:43 +00:00
Catherine Lee
61be8843c9 [TD] Use label to configure td on distributed for rollout (#122976)
Gate TD on distributed behind label

TODO:
auto add label to certain people's prs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122976
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2024-04-08 15:53:55 +00:00
William Wen
d59c5d7353 [dynamo, 3.12] enable dynamo on 3.12, enable most dynamo unittests on 3.12 (#123216)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123216
Approved by: https://github.com/jansel, https://github.com/malfet
2024-04-04 20:00:54 +00:00
Catherine Lee
b5bef9bbfd Fix cpp tests not running + failing to surface (#122845)
The comment in the code should have the information
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122845
Approved by: https://github.com/huydhn
2024-03-29 22:41:45 +00:00
Catherine Lee
03184a82dd [TD] TD on ASAN PR jobs (#122332)
Low impact CPU jobs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122332
Approved by: https://github.com/huydhn
2024-03-22 22:32:51 +00:00
eellison
cbbed46377 Defer selection of triton template (#120275)
Our prior approach to epilogue fusion was to select from a choice from a set of triton templates and extern calls based on benchmarking inputs, then unconditionally fuse epilogues. This can be sub-optimal in following ways:

- We select an extern kernel, however an epilogue like relu() exists such that choosing a triton template + relu would have been faster
- We select a triton template, epilogue fuse, and register spilling occurs causing it to be slower than not epilogue fusing.

In this PR we wait to select either the Triton Template or Extern Kernel based on benchmarking results from the kernel itself and its epilogue. As soon as a successful fusion occurs where a fused Triton Template + epilogue is faster than the unfused choice we finalize the MultiTemplateBuffer as a specific template. If no fusion occurs we'll finalize the MultiTemplateBuffer after fusion.

Note: if there are multiple epilogue fusions (not super likely), even though we select a template after the first fusion, we will still benchmark to see if subsequent epilogue are worth fusing. We could potentially defer choosing template in this case in a follow up at expense of compile time.

Gives 4% HF training win, 10% TIMM inference win. Increases compilation time which I will be trying to address more in follow up prs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120275
Approved by: https://github.com/jansel
ghstack dependencies: #121996
2024-03-20 01:40:33 +00:00
Kai Londenberg
a5ec45f2ec [Inductor Cutlass backend] Move tests to separate file (#121489)
Move Cutlass backend related tests to test/inductor/test_cutlass_backend.py - no changes to the tests themselves.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121489
Approved by: https://github.com/jansel
2024-03-12 21:59:48 +00:00
Catherine Lee
fac06a12c8 CI sanity check test for env vars (#120519)
Make a test that fails on purpose to trigger retries.  Check the opposite of success (that env vars exist)

It's bit hacky because I want it to fail on the normal flow in order to trigger reruns but I don't want to expose the failures to users since it's confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120519
Approved by: https://github.com/huydhn
2024-03-11 15:35:45 +00:00
PyTorch MergeBot
2c2d6ce515 Revert "CI sanity check test for env vars (#120519)"
This reverts commit f43b9c56c5.

Reverted https://github.com/pytorch/pytorch/pull/120519 on behalf of https://github.com/clee2000 due to broken on slow d27509c384 https://github.com/pytorch/pytorch/actions/runs/8208843198/job/22453617568 ([comment](https://github.com/pytorch/pytorch/pull/120519#issuecomment-1986480624))
2024-03-08 22:01:35 +00:00
Catherine Lee
f43b9c56c5 CI sanity check test for env vars (#120519)
Make a test that fails on purpose to trigger retries.  Check the opposite of success (that env vars exist)

It's bit hacky because I want it to fail on the normal flow in order to trigger reruns but I don't want to expose the failures to users since it's confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120519
Approved by: https://github.com/huydhn
2024-03-08 20:28:50 +00:00
Catherine Lee
06b52dd103 TD outside of test job (#118250)
Give TD it's own job so that each shard can get the results from this one job artifact and they will always be in sync with each other/no longer need to worry about consistently issues

* Move test discovery to its own file that is not dependent on torch so it can be run without building torch
  * Cannot do cpp test discovery before building pytorch
* Move TD calculation to own file that will create a json file with the final results
* TD is now job/build env agnostic
* TD will rank all tests, including those that test jobs may not want to run (ex it will rank distributed tests along with default tests, even though these tests are never run on the same machine together)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118250
Approved by: https://github.com/huydhn
2024-03-01 23:08:10 +00:00
Catherine Lee
0290fe65bd Test TD (test removal) on crossref (#119426)
Current threshold is to cut the bottom 75% of test files, which results in 13 min of tests getting cut.
test_ops, functorch/test_ops, and test_decomp and other really long running test files are not getting cut and make the top 25% to take really long (still 90+ min)

The original plan was to test on rocm but I'm worried about queuing given that cutting 75% of test files only cuts off 13 min, and crossref is rarely referenced by others and people keep talking about getting rid of it, so it's a good alternative

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119426
Approved by: https://github.com/huydhn
2024-02-29 18:53:43 +00:00
albanD
30625ae582 Add cpp stack traces to our own reruns (#119408)
Note that I'm not sure why we both have pytest rerun the failing test twice via 81abc2b249/test/run_test.py (L966) before our own logic retries it as well?

The failing test is only here to make sure it works as expected in the CI env. Will remove before landing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119408
Approved by: https://github.com/huydhn
2024-02-26 22:21:14 +00:00
Catherine Lee
c39bbd6def Numbers based TD (#119901)
Convert from a list/bucket based TD system to just a numbers based TD system.  Looks like a massive change but a decent amount of it is tests and removing code.

Main file of interest is interface.py, which Github is collapsing by default due to size

The test files pretty much got rewritten entirely since a lot of the old tests are no longer relevant.

Other notable changes:
* Use Frozenset to make TestRun hashable
* Adds tools/test/heuristics/__init__.py to ensure that unittest can discover the tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119901
Approved by: https://github.com/osalpekar, https://github.com/huydhn
2024-02-26 17:01:19 +00:00
Catherine Lee
cfddfce0d3 Alternate sharding (#119078)
Changes sharding to attempt to put all serial tests on as few shards as possible.  Parallel tests are then distributed across all shards, with most of which likely ending up on the non serial shards

Example: 8 minutes of serial tests, 20 minutes of parallel tests, 2 proc per machine, 6 machines
-> 8 + 20/2 = 18 total minutes of tests
-> 18 / 6 machines = 3 min per machine
-> all serial tests should fit on 3 machines (3min, 3 min, 2min)
-> majority of parallel tests should go on last 4 machines, one of which is shared with the serial tests

Move serial tests to run first

If I want to move to a purely numbers based sharding, this ensures that parallel tests are run with parallel tests as much as possible instead of interleaving serial + parallel tests, which decreases effectiveness of parallelization, while also ensuring that test reordering is still mostly effective.

See 73e816ee80 for example logs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119078
Approved by: https://github.com/huydhn
2024-02-21 16:40:27 +00:00
Catherine Lee
af765dbdfd [ez] Explicit env for run_test (#120251)
env=None (which is the default) inherits the env from the calling process.  Explicitly set the env to the calling process env so that things can be added to it later

Tested in: e7b4d8ec88
Checked that test-reports (which depend on the CI env var) get made.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120251
Approved by: https://github.com/huydhn
2024-02-21 00:40:19 +00:00
PyTorch MergeBot
dfb83df889 Revert "Add cpp stack traces to our own reruns (#119408)"
This reverts commit 47182a8f4b.

Reverted https://github.com/pytorch/pytorch/pull/119408 on behalf of https://github.com/clee2000 due to iirc the default setting of env to None causes it to inherit the env of the calling process, I'll make a PR that makes it so that the old env vars don't disappear, and then re merge this on top of it.  Reverting this because I think some important env vars are disappearing (specifically CI) ([comment](https://github.com/pytorch/pytorch/pull/119408#issuecomment-1955128676))
2024-02-20 21:28:13 +00:00
PyTorch MergeBot
9b38ee2343 Revert "Alternate sharding (#119078)"
This reverts commit 861acda205.

Reverted https://github.com/pytorch/pytorch/pull/119078 on behalf of https://github.com/clee2000 due to failing 861acda205 ([comment](https://github.com/pytorch/pytorch/pull/119078#issuecomment-1946583857))
2024-02-15 16:59:50 +00:00
Catherine Lee
861acda205 Alternate sharding (#119078)
Changes sharding to attempt to put all serial tests on as few shards as possible.  Parallel tests are then distributed across all shards, with most of which likely ending up on the non serial shards

Example: 8 minutes of serial tests, 20 minutes of parallel tests, 2 proc per machine, 6 machines
-> 8 + 20/2 = 18 total minutes of tests
-> 18 / 6 machines = 3 min per machine
-> all serial tests should fit on 3 machines (3min, 3 min, 2min)
-> majority of parallel tests should go on last 4 machines, one of which is shared with the serial tests

Move serial tests to run first

If I want to move to a purely numbers based sharding, this ensures that parallel tests are run with parallel tests as much as possible instead of interleaving serial + parallel tests, which decreases effectiveness of parallelization, while also ensuring that test reordering is still mostly effective.

See 73e816ee80 for example logs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119078
Approved by: https://github.com/huydhn
2024-02-15 01:32:44 +00:00
atalman
244b124bb8 Add linux cpu test for 3.12 (#117853)
This is continuation of work: https://github.com/pytorch/pytorch/pull/113987

Co-authored-by: albanD <desmaison.alban@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117853
Approved by: https://github.com/albanD
2024-02-14 20:52:23 +00:00
albanD
47182a8f4b Add cpp stack traces to our own reruns (#119408)
Note that I'm not sure why we both have pytest rerun the failing test twice via 81abc2b249/test/run_test.py (L966) before our own logic retries it as well?

The failing test is only here to make sure it works as expected in the CI env. Will remove before landing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119408
Approved by: https://github.com/huydhn
2024-02-14 18:40:23 +00:00
Catherine Lee
5d6e323549 No TD (test removal) option in CI (#118808)
It currently doesn't do anything, but I will want these env vars later.  Maybe I should start using ghstack

Intention: --enable-td actually gets rid of tests

I am open to better names
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118808
Approved by: https://github.com/huydhn, https://github.com/osalpekar
2024-02-09 16:42:27 +00:00
PyTorch MergeBot
8182fce769 Revert "Add cpp stack traces to our own reruns (#119408)"
This reverts commit fbe6f6236e.

Reverted https://github.com/pytorch/pytorch/pull/119408 on behalf of https://github.com/malfet due to Looks like it introduced intermittent crashes see https://github.com/pytorch/pytorch/actions/runs/7823402867/job/21344456540 for example, testing the theory ([comment](https://github.com/pytorch/pytorch/pull/119408#issuecomment-1934589057))
2024-02-08 17:20:39 +00:00
albanD
fbe6f6236e Add cpp stack traces to our own reruns (#119408)
Note that I'm not sure why we both have pytest rerun the failing test twice via 81abc2b249/test/run_test.py (L966) before our own logic retries it as well?

The failing test is only here to make sure it works as expected in the CI env. Will remove before landing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119408
Approved by: https://github.com/huydhn
2024-02-08 00:54:16 +00:00
Huy Do
3ed9df36a9 Clean up some obsolete TODOs in run_test and several test files (#119113)
* The TODOs in `test/test_nestedtensor.py` has been mitigated, I keep the issue for reference.
* ~~The TODOs in `test/test_ops_fwd_gradients.py` doesn't apply anymore~~
* The TODOs in `run_test.py` to support disabling C++ tests is probably not going to happen.  I have never seen a flaky C++ test that needs to be disabled before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119113
Approved by: https://github.com/kit1980
2024-02-03 23:54:30 +00:00
Joel Schlosser
3b41793412 Purge redundant module init tests (#119028)
Fixes #118784

This test file is old and redundant; coverage is maintained in `test_modules.py` via the `test_factory_kwargs` set of tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119028
Approved by: https://github.com/zou3519
2024-02-02 20:17:00 +00:00
Catherine Lee
8b729fb826 [ez] Fix CI log file piping error (#118807)
Fixes https://github.com/pytorch/pytorch/issues/118764

Example log https://github.com/pytorch/pytorch/actions/runs/7737363970/job/21097159160
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118807
Approved by: https://github.com/huydhn, https://github.com/malfet, https://github.com/seemethere
2024-02-02 03:07:56 +00:00
Catherine Lee
9391af9796 Merging heuristics (#118029)
Everyday I move closer and closer to just using numbers

* number of heuristics that marked it as high, probable, low, none etc
* order of heuristics in the `__init__` file as well as how the heuristic ordered the tests
* put heuristics historical edited files and profiling as not trial mode
* briefly sanity checked that all shards of the larger test files (ex test_ops) exist and there are no dups
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118029
Approved by: https://github.com/huydhn
2024-01-31 20:00:10 +00:00
Catherine Lee
2eefbc02a0 [ez] Discover tests without importing torch (#118574)
Moves test discovery into a file that doesn't have import torch so test listing can be done without having torch installed.

Helpful when you don't have torch installed (aka me when I'm feeling lazy)
I want to move TD into it's own job that doesn't need to wait for build to finish, so this is part of that.

The first commit is a nothing more than a copy paste of the selected functions/vars into a new file, the second commit has various changes that should be checked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118574
Approved by: https://github.com/huydhn
2024-01-30 03:02:29 +00:00
Catherine Lee
84251d1d71 [ez] Windows log printing + save successful test logs (#118124)
when doing print(f.read().decode etc etc) it prints an extra new line, so manually splitlines and strip to see if that helps

My guess is windows line ending differences

Also always save log file regardless of success or failure

See 476b81a9bf for what it looks like now

Swapped to opening in text mode instead of binary, seems to be ok now.

42483193bf024983060a234dc0262f4840aef4b8 for example
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118124
Approved by: https://github.com/huydhn
2024-01-26 21:14:25 +00:00
Catherine Lee
de9ddd19a5 Various CI settings (#117668)
Test [ci-verbose-test-logs] (this worked, the test logs printing while running and interleaved and are really long)

Settings for no timeout (step timeout still applies, only gets rid of ~30 min timeout for shard of test file) and no piping logs/extra verbose test logs (good for debugging deadlocks but results in very long and possibly interleaved logs).

Also allows these to be set via pr body if the label name is in brackets ex [label name] or the test above.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117668
Approved by: https://github.com/huydhn
2024-01-26 00:17:29 +00:00
Catherine Lee
364728b27b Reduce pytest prints (#117069)
* custom pytest-shard so I can control the verbosity (also index by 1 since it's confusing)
* normal runs (not keep-going) always rerun each failed test 9 times (3 per process, 3 processes).  Previously it would only run the entire test file 3 times, so if a test before you segfaulted, you only got 2 tries

Example of quieter log https://github.com/pytorch/pytorch/actions/runs/7481334046/job/20363147497
"items in shard" only gets printed once at the beginning, and the reruns just say how many got skipped.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117069
Approved by: https://github.com/huydhn
2024-01-23 18:39:30 +00:00