Remove most references to rockset:
* replace comments and docs with a generic "backend database"
* Delete `upload_to_rockset`, so we no longer need to install the package.
* Do not upload perf stats to rockset as well (we should be completely on DynamoDB now right @huydhn?)
According to VSCode, it went from 41 -> 7 instances of "rockset" in the repo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139922
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
This is a utility to aid the torch.compile debugging. You provide a function that returns True on success, False on failure, or do something out of process and run bisect_helper `good | bad`.
The bisector will first go through backends - `eager`, `aot_eager`, `aot_eager_decomp_partition`, `inductor` to find the first failing backend. Then, it will go through subsystems within the backend - currently limited but could be expanded - and try to find the first subsystem for which disabling fixes the problem. Once it has found the failing subsystem, it will find the number of times the subsystem is applied, and then bisect through it.
An example usage of how to hook it up for aot_eager_decomp_partition and decomposition subsystem is :
```
from torch._inductor.bisect_helper import BisectionManager
if op in CURRENT_DECOMPOSITION_TABLE:
if BisectionManager.disable_subsystem("aot_eager_decomp_partition", "decomposition", lambda: repr(op)):
return NotImplemented
```
Once it has discovered the problematic change, it will print out the associated debug info, and you can set the same limits with `TORCH_BISECT_BACKEND` `TORCH_BISECT_SUBSYSTEM` and `TORCH_BISECT_MAX`.
We could add further options as an automated way of going through a check list for checking divergence - e.g., the mode to emulate amp casts.
Fix for https://github.com/pytorch/pytorch/issues/126546
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131936
Approved by: https://github.com/ezyang
Notable changes:
1. Enable CudaGraph related tests
2. Fix UT problems
3. EXPERIMENTAL Navi31 support. User should enable Navi31 support with Env Var `TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1`
Know Problem:
1. `test/test_transformers.py` will massive failures and/or NaN outputs with `--use-pytest`
+ Update: Confirmed skip `class TestSDPAPrivateUse1Only` can fix the problem with `--use-pytest`
Note:
AOTriton 0.7b adds support to nestedtenosrs+SDPA but need more work (and consequently a separate PR) to enable it.
Fixes#133540
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134498
Approved by: https://github.com/pruthvistony, https://github.com/jeffdaily, https://github.com/malfet
This PR increases test coverage by including the tests in `test/test_nn.py` in the test suite of MPS.
Some of the tests are decorated with `@expectedFailureMPS` for various reasons. Either that the op is not implemented, or that the outputs do not align. Those tests that contain differing results should be investigated further to rule out any live bugs.
```bash
$ python test/run_test.py --mps --verbose -k TestNN
Running test batch 'tests to run' cost 84.76 seconds
```
Ref #133520
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134184
Approved by: https://github.com/albanD, https://github.com/malfet
It is possible to write to Meta's internal in-memory database Scuba via the Scribe Graph API: https://www.internalfb.com/intern/wiki/Scribe/users/Knowledge_Base/Interacting_with_Scribe_categories/Graph_API/ This is currently being used by pytorch/benchmark repo to upload torchbench performance results.
I want to make this API generally available to all jobs running on CI in a semi-trusted context. To talk to Scribe, you need a secret access token. I have initially configured an environment prod-branch-main which contains `SCRIBE_GRAPHQL_ACCESS_TOKEN`, and switched a single class of jobs (linux-test) to use this environment when they are running on the main branch. Because we require approvals for running CI on untrusted contributions, we could potentially allow all jobs to run in this environment, including jobs on PRs, but I don't need this for my use case (per-PR benchmark result reporting, and miscellaneous statistics on main.)
If this works, I'll push out this environment to the rest of our test jobs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133536
Approved by: https://github.com/xuzhao9, https://github.com/malfet, https://github.com/albanD
Counting `elapsed_time` immediately after `start_time`, not reflect real execution time of `test_batch`.
Move `elapsed_time` and print method after `run_tests` method call to fix it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133199
Approved by: https://github.com/clee2000
Add a new label `ci-test-showlocals` and add it to test config filter.
If the PR is labeled with `ci-test-showlocals` or "ci-test-showlocals"
present in the PR comment, the test config filter will set a environment
variable `TEST_SHOWLOCALS`. Then `pytest` will show local variables on
failures for better debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131981
Approved by: https://github.com/malfet
ghstack dependencies: #131151
------
As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.
Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.
Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361
```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000
@classmethod
def eval(cls, base, divisor):
# python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
# Assert triggered by inequality solver
# assert base.is_integer, base
# assert divisor.is_integer, divisor
# We don't provide the same error message as in Python because SymPy
# makes it difficult to check the types.
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
int_oo,
-int_oo,
sympy.oo,
-sympy.oo,
):
return sympy.nan
if base is sympy.nan or divisor is sympy.nan:
return sympy.nan
if base.is_zero:
return sympy.S.Zero
if base.is_integer and divisor == 1:
return base
if base.is_integer and divisor == -1:
return sympy.Mul(base, -1)
if (
isinstance(base, sympy.Number)
and isinstance(divisor, sympy.Number)
and (
base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
)
):
r = float(base) / float(divisor)
if r == math.inf:
return int_oo
elif r == -math.inf:
return -int_oo
elif math.isnan(r):
return sympy.nan
else:
return sympy.Integer(math.floor(r))
if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
return sympy.Integer(int(base) // int(divisor))
if isinstance(base, FloorDiv):
return FloorDiv(base.args[0], base.args[1] * divisor)
# Expands (x + y) // b into x // b + y // b.
# This only works if floor is an identity, i.e. x / b is an integer.
for term in sympy.Add.make_args(base):
quotient = term / divisor
if quotient.is_integer and isinstance(divisor, sympy.Integer):
# NB: this is correct even if the divisor is not an integer, but it
# creates rational expressions that cause problems with dynamic
# shapes.
return FloorDiv(base - term, divisor) + quotient
try:
gcd = sympy.gcd(base, divisor)
if gcd != 1:
> return FloorDiv(
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
)
base = -1.00000000000000
cls = FloorDiv
divisor = -1.00000000000000
gcd = 1.00000000000000
quotient = 1.00000000000000
term = -1.00000000000000
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}
@wraps(func)
def wrapper(*args, **kwargs):
try:
> retval = cfunc(*args, **kwargs)
E RecursionError: maximum recursion depth exceeded in comparison
E
E To execute this test, run the following from the base repo dir:
E python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
args = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func = <function Function.__new__ at 0x7fc530317280>
kwargs = {}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
Add a new label `ci-test-showlocals` and add it to test config filter.
If the PR is labeled with `ci-test-showlocals` or "ci-test-showlocals"
present in the PR comment, the test config filter will set a environment
variable `TEST_SHOWLOCALS`. Then `pytest` will show local variables on
failures for better debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131981
Approved by: https://github.com/malfet
------
As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.
Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.
Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361
```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000
@classmethod
def eval(cls, base, divisor):
# python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
# Assert triggered by inequality solver
# assert base.is_integer, base
# assert divisor.is_integer, divisor
# We don't provide the same error message as in Python because SymPy
# makes it difficult to check the types.
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
int_oo,
-int_oo,
sympy.oo,
-sympy.oo,
):
return sympy.nan
if base is sympy.nan or divisor is sympy.nan:
return sympy.nan
if base.is_zero:
return sympy.S.Zero
if base.is_integer and divisor == 1:
return base
if base.is_integer and divisor == -1:
return sympy.Mul(base, -1)
if (
isinstance(base, sympy.Number)
and isinstance(divisor, sympy.Number)
and (
base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
)
):
r = float(base) / float(divisor)
if r == math.inf:
return int_oo
elif r == -math.inf:
return -int_oo
elif math.isnan(r):
return sympy.nan
else:
return sympy.Integer(math.floor(r))
if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
return sympy.Integer(int(base) // int(divisor))
if isinstance(base, FloorDiv):
return FloorDiv(base.args[0], base.args[1] * divisor)
# Expands (x + y) // b into x // b + y // b.
# This only works if floor is an identity, i.e. x / b is an integer.
for term in sympy.Add.make_args(base):
quotient = term / divisor
if quotient.is_integer and isinstance(divisor, sympy.Integer):
# NB: this is correct even if the divisor is not an integer, but it
# creates rational expressions that cause problems with dynamic
# shapes.
return FloorDiv(base - term, divisor) + quotient
try:
gcd = sympy.gcd(base, divisor)
if gcd != 1:
> return FloorDiv(
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
)
base = -1.00000000000000
cls = FloorDiv
divisor = -1.00000000000000
gcd = 1.00000000000000
quotient = 1.00000000000000
term = -1.00000000000000
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}
@wraps(func)
def wrapper(*args, **kwargs):
try:
> retval = cfunc(*args, **kwargs)
E RecursionError: maximum recursion depth exceeded in comparison
E
E To execute this test, run the following from the base repo dir:
E python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
args = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func = <function Function.__new__ at 0x7fc530317280>
kwargs = {}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
------
As per the title, add argument `--locals` for `unittest` and `--showlocals --tb=long` for `pytest` in CI.
Some failures cannot be reproduced on the local machine but exist on cloud CI. This change allows us to investigate the test failure more easily.
Example output: https://github.com/pytorch/pytorch/actions/runs/9961546996/job/27523888353?pr=130710#step:20:3361
```text
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/sympy/core/function.py:307:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
cls = FloorDiv, base = -1.00000000000000, divisor = -1.00000000000000
@classmethod
def eval(cls, base, divisor):
# python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
# Assert triggered by inequality solver
# assert base.is_integer, base
# assert divisor.is_integer, divisor
# We don't provide the same error message as in Python because SymPy
# makes it difficult to check the types.
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if base in (int_oo, -int_oo, sympy.oo, -sympy.oo) and divisor in (
int_oo,
-int_oo,
sympy.oo,
-sympy.oo,
):
return sympy.nan
if base is sympy.nan or divisor is sympy.nan:
return sympy.nan
if base.is_zero:
return sympy.S.Zero
if base.is_integer and divisor == 1:
return base
if base.is_integer and divisor == -1:
return sympy.Mul(base, -1)
if (
isinstance(base, sympy.Number)
and isinstance(divisor, sympy.Number)
and (
base in (int_oo, -int_oo, sympy.oo, -sympy.oo)
or divisor in (int_oo, -int_oo, sympy.oo, -sympy.oo)
)
):
r = float(base) / float(divisor)
if r == math.inf:
return int_oo
elif r == -math.inf:
return -int_oo
elif math.isnan(r):
return sympy.nan
else:
return sympy.Integer(math.floor(r))
if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
return sympy.Integer(int(base) // int(divisor))
if isinstance(base, FloorDiv):
return FloorDiv(base.args[0], base.args[1] * divisor)
# Expands (x + y) // b into x // b + y // b.
# This only works if floor is an identity, i.e. x / b is an integer.
for term in sympy.Add.make_args(base):
quotient = term / divisor
if quotient.is_integer and isinstance(divisor, sympy.Integer):
# NB: this is correct even if the divisor is not an integer, but it
# creates rational expressions that cause problems with dynamic
# shapes.
return FloorDiv(base - term, divisor) + quotient
try:
gcd = sympy.gcd(base, divisor)
if gcd != 1:
> return FloorDiv(
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
)
base = -1.00000000000000
cls = FloorDiv
divisor = -1.00000000000000
gcd = 1.00000000000000
quotient = 1.00000000000000
term = -1.00000000000000
/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/utils/_sympy/functions.py:159:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (FloorDiv, -1.00000000000000, -1.00000000000000), kwargs = {}
@wraps(func)
def wrapper(*args, **kwargs):
try:
> retval = cfunc(*args, **kwargs)
E RecursionError: maximum recursion depth exceeded in comparison
E
E To execute this test, run the following from the base repo dir:
E python test/test_sympy_utils.py -k TestValueRanges.test_binary_ref_fn_floordiv_dtype_float
E
E This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
args = (FloorDiv, -1.00000000000000, -1.00000000000000)
cfunc = <functools._lru_cache_wrapper object at 0x7fc5303173a0>
func = <function Function.__new__ at 0x7fc530317280>
kwargs = {}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131151
Approved by: https://github.com/ezyang
Rerun the failing test singly with the env var set. If it succeeds, start a new process without the cpp stack traces env var
We don't want to waste time generating these if we don't have to
They can also show up in assertion errors, which may cause unexpected failures if a test wants to check these
Adds new --rs (run single) to be used the same way --scs and --sc are. It will only run the single test in the step current file
https://hud.pytorch.org/pytorch/pytorch/pull/129004?sha=2c349d3557d399020bf1f6a8b7045e2e4957ba46 has some examples of logs
In the above:
* test_checkpoint_valid failed, then passed in another subprocess. The testing continued in a different new subprocess from the test right after it (test_checkpointing_without_reentrant_early_free)
* test_format_traceback_short failed consistently, but it continued to run because keep-going was set
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129004
Approved by: https://github.com/PaliC
Do not inherit parser from common_utils
* I don't think we use any variables in run_test that depend on those, and I think all tests except doctests run in a subprocess so they will parse the args in common_utils and set the variables. I don't think doctests wants any of those variables?
Parse known args, add the extra args as extra, pass the extra ones along to the subprocess
Removes the first instance of `--`
I think I will miss run_test telling me if an arg is valid or not
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126709
Approved by: https://github.com/ZainRizvi, https://github.com/huydhn, https://github.com/Flamefire
Looking at the unrelated Windows timeout failure on https://github.com/pytorch/pytorch/pull/125199, it looks like we don't have a timeout value set for C++ tests atm. In this case, a C++ test on Windows timed out after 2+ hours.
```
2024-05-02T23:35:34.0639067Z Running cpp/c10_TypeList_test 1/1 ... [2024-05-02 23:35:34.059021]
2024-05-02T23:35:34.0641108Z Executing ['pytest', 'C:\\actions-runner\\_work\\pytorch\\pytorch\\build\\win_tmp\\build\\torch\\test\\c10_TypeList_test.exe', '-m', 'not serial', '-v', '-vv', '-rfEX', '-n', '2', '--junit-xml-reruns', 'test-reports\\python-pytest\\test\\run_test\\test\\run_test-c898ddeff8f33cbf.xml', '-x', '--reruns=2'] ... [2024-05-02 23:35:34.062137]
2024-05-03T02:45:33.7862004Z Process SpawnPoolWorker-2:
2024-05-03T02:45:33.7927201Z Traceback (most recent call last):
2024-05-03T02:45:33.7928032Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\process.py", line 315, in _bootstrap
2024-05-03T02:45:33.7928722Z self.run()
2024-05-03T02:45:33.7929722Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\process.py", line 108, in run
2024-05-03T02:45:33.7931639Z self._target(*self._args, **self._kwargs)
2024-05-03T02:45:33.7932435Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\pool.py", line 114, in worker
2024-05-03T02:45:33.7933338Z task = get()
2024-05-03T02:45:33.7933946Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\queues.py", line 365, in get
2024-05-03T02:45:33.7935219Z res = self._reader.recv_bytes()
2024-05-03T02:45:33.7935897Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\connection.py", line 221, in recv_bytes
2024-05-03T02:45:33.7936609Z buf = self._recv_bytes(maxlength)
2024-05-03T02:45:33.7937302Z File "C:\Jenkins\Miniconda3\lib\multiprocessing\connection.py", line 310, in _recv_bytes
2024-05-03T02:45:33.7938316Z waitres = _winapi.WaitForMultipleObjects(
2024-05-03T02:45:33.7938766Z KeyboardInterrupt
```
Retrying was working, but it was already too late to finish the job. I'm setting the same default `THRESHOLD * 3` timeout value here for C++ tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125517
Approved by: https://github.com/clee2000
You can trigger ciflow tags on main branch commits, so we should be more conservative when checking to see if a workflow is a PR/on the main branch.
get_pr_number checks for the pr number based on the PR_NUMBER env var or a tag of the for `ciflow/workflow/pr number`
If we fail to find something like this, then assume it is on the main branch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125485
Approved by: https://github.com/huydhn
yolo
Also
* Ensure that at least 1 test always gets run (`//` does truncation which results in 0 if you have too few tests discovered)
* Don't run test removal on slow tests - I'm not touching that yet
I am avoid everything other than pull + trunk workflows, so not doing this on windows CUDA, which runs on periodic
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125049
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
Test the generic torch.Stream/Event with fake device gurad and hooks. Since we added a fake device backend, it is mutual exclusive to other backends. Tests will be skipped if TEST_CUDA or TEST_ROCM is true.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123614
Approved by: https://github.com/albanD
ghstack dependencies: #123611, #123612
Add serial marker for individual tests so the test file can be removed from the ci serial list
Run serial marked tests first in serial
Run all other tests afterwards in parallel
Slowly reduce list and mark individual tests as serial instead
Hope # of serial tests is small so sharding evenness doesn't get too messed up
Hopefully can do 3 procs for sm86 and cpu?
serial no longer looks like a real word to me
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124085
Approved by: https://github.com/seemethere, https://github.com/malfet
Our prior approach to epilogue fusion was to select from a choice from a set of triton templates and extern calls based on benchmarking inputs, then unconditionally fuse epilogues. This can be sub-optimal in following ways:
- We select an extern kernel, however an epilogue like relu() exists such that choosing a triton template + relu would have been faster
- We select a triton template, epilogue fuse, and register spilling occurs causing it to be slower than not epilogue fusing.
In this PR we wait to select either the Triton Template or Extern Kernel based on benchmarking results from the kernel itself and its epilogue. As soon as a successful fusion occurs where a fused Triton Template + epilogue is faster than the unfused choice we finalize the MultiTemplateBuffer as a specific template. If no fusion occurs we'll finalize the MultiTemplateBuffer after fusion.
Note: if there are multiple epilogue fusions (not super likely), even though we select a template after the first fusion, we will still benchmark to see if subsequent epilogue are worth fusing. We could potentially defer choosing template in this case in a follow up at expense of compile time.
Gives 4% HF training win, 10% TIMM inference win. Increases compilation time which I will be trying to address more in follow up prs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120275
Approved by: https://github.com/jansel
ghstack dependencies: #121996
Make a test that fails on purpose to trigger retries. Check the opposite of success (that env vars exist)
It's bit hacky because I want it to fail on the normal flow in order to trigger reruns but I don't want to expose the failures to users since it's confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120519
Approved by: https://github.com/huydhn
Make a test that fails on purpose to trigger retries. Check the opposite of success (that env vars exist)
It's bit hacky because I want it to fail on the normal flow in order to trigger reruns but I don't want to expose the failures to users since it's confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120519
Approved by: https://github.com/huydhn
Give TD it's own job so that each shard can get the results from this one job artifact and they will always be in sync with each other/no longer need to worry about consistently issues
* Move test discovery to its own file that is not dependent on torch so it can be run without building torch
* Cannot do cpp test discovery before building pytorch
* Move TD calculation to own file that will create a json file with the final results
* TD is now job/build env agnostic
* TD will rank all tests, including those that test jobs may not want to run (ex it will rank distributed tests along with default tests, even though these tests are never run on the same machine together)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118250
Approved by: https://github.com/huydhn
Current threshold is to cut the bottom 75% of test files, which results in 13 min of tests getting cut.
test_ops, functorch/test_ops, and test_decomp and other really long running test files are not getting cut and make the top 25% to take really long (still 90+ min)
The original plan was to test on rocm but I'm worried about queuing given that cutting 75% of test files only cuts off 13 min, and crossref is rarely referenced by others and people keep talking about getting rid of it, so it's a good alternative
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119426
Approved by: https://github.com/huydhn
Convert from a list/bucket based TD system to just a numbers based TD system. Looks like a massive change but a decent amount of it is tests and removing code.
Main file of interest is interface.py, which Github is collapsing by default due to size
The test files pretty much got rewritten entirely since a lot of the old tests are no longer relevant.
Other notable changes:
* Use Frozenset to make TestRun hashable
* Adds tools/test/heuristics/__init__.py to ensure that unittest can discover the tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119901
Approved by: https://github.com/osalpekar, https://github.com/huydhn
Changes sharding to attempt to put all serial tests on as few shards as possible. Parallel tests are then distributed across all shards, with most of which likely ending up on the non serial shards
Example: 8 minutes of serial tests, 20 minutes of parallel tests, 2 proc per machine, 6 machines
-> 8 + 20/2 = 18 total minutes of tests
-> 18 / 6 machines = 3 min per machine
-> all serial tests should fit on 3 machines (3min, 3 min, 2min)
-> majority of parallel tests should go on last 4 machines, one of which is shared with the serial tests
Move serial tests to run first
If I want to move to a purely numbers based sharding, this ensures that parallel tests are run with parallel tests as much as possible instead of interleaving serial + parallel tests, which decreases effectiveness of parallelization, while also ensuring that test reordering is still mostly effective.
See 73e816ee80 for example logs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119078
Approved by: https://github.com/huydhn
env=None (which is the default) inherits the env from the calling process. Explicitly set the env to the calling process env so that things can be added to it later
Tested in: e7b4d8ec88
Checked that test-reports (which depend on the CI env var) get made.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120251
Approved by: https://github.com/huydhn
Changes sharding to attempt to put all serial tests on as few shards as possible. Parallel tests are then distributed across all shards, with most of which likely ending up on the non serial shards
Example: 8 minutes of serial tests, 20 minutes of parallel tests, 2 proc per machine, 6 machines
-> 8 + 20/2 = 18 total minutes of tests
-> 18 / 6 machines = 3 min per machine
-> all serial tests should fit on 3 machines (3min, 3 min, 2min)
-> majority of parallel tests should go on last 4 machines, one of which is shared with the serial tests
Move serial tests to run first
If I want to move to a purely numbers based sharding, this ensures that parallel tests are run with parallel tests as much as possible instead of interleaving serial + parallel tests, which decreases effectiveness of parallelization, while also ensuring that test reordering is still mostly effective.
See 73e816ee80 for example logs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119078
Approved by: https://github.com/huydhn
* The TODOs in `test/test_nestedtensor.py` has been mitigated, I keep the issue for reference.
* ~~The TODOs in `test/test_ops_fwd_gradients.py` doesn't apply anymore~~
* The TODOs in `run_test.py` to support disabling C++ tests is probably not going to happen. I have never seen a flaky C++ test that needs to be disabled before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119113
Approved by: https://github.com/kit1980
Everyday I move closer and closer to just using numbers
* number of heuristics that marked it as high, probable, low, none etc
* order of heuristics in the `__init__` file as well as how the heuristic ordered the tests
* put heuristics historical edited files and profiling as not trial mode
* briefly sanity checked that all shards of the larger test files (ex test_ops) exist and there are no dups
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118029
Approved by: https://github.com/huydhn
Moves test discovery into a file that doesn't have import torch so test listing can be done without having torch installed.
Helpful when you don't have torch installed (aka me when I'm feeling lazy)
I want to move TD into it's own job that doesn't need to wait for build to finish, so this is part of that.
The first commit is a nothing more than a copy paste of the selected functions/vars into a new file, the second commit has various changes that should be checked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118574
Approved by: https://github.com/huydhn
when doing print(f.read().decode etc etc) it prints an extra new line, so manually splitlines and strip to see if that helps
My guess is windows line ending differences
Also always save log file regardless of success or failure
See 476b81a9bf for what it looks like now
Swapped to opening in text mode instead of binary, seems to be ok now.
42483193bf024983060a234dc0262f4840aef4b8 for example
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118124
Approved by: https://github.com/huydhn
Test [ci-verbose-test-logs] (this worked, the test logs printing while running and interleaved and are really long)
Settings for no timeout (step timeout still applies, only gets rid of ~30 min timeout for shard of test file) and no piping logs/extra verbose test logs (good for debugging deadlocks but results in very long and possibly interleaved logs).
Also allows these to be set via pr body if the label name is in brackets ex [label name] or the test above.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117668
Approved by: https://github.com/huydhn
* custom pytest-shard so I can control the verbosity (also index by 1 since it's confusing)
* normal runs (not keep-going) always rerun each failed test 9 times (3 per process, 3 processes). Previously it would only run the entire test file 3 times, so if a test before you segfaulted, you only got 2 tries
Example of quieter log https://github.com/pytorch/pytorch/actions/runs/7481334046/job/20363147497
"items in shard" only gets printed once at the beginning, and the reruns just say how many got skipped.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117069
Approved by: https://github.com/huydhn