Commit Graph

215 Commits

Author SHA1 Message Date
Jiyan Yang
33f421027c Allow recency weight pooling for fp16 (#20506)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20506

as titled

Reviewed By: alex1o1o7cloud

Differential Revision: D15342758

fbshipit-source-id: 89e7cb6d7b9511ef6c70611359736328571d7fc0
2019-05-14 20:13:38 -07:00
Jiyan Yang
6c3b8a24ff Make sure reducer=None is not used when fp16 embedding is enabled
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20349

Reviewed By: hyuen

Differential Revision: D15291545

fbshipit-source-id: fa5fd0b97aeca6e5f45866908f3f205b701c931b
2019-05-13 11:53:14 -07:00
Xue Feng
1129b3344a move DistillBatchLRLoss Layer from open source to fb
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20291

Reviewed By: chocjy

Differential Revision: D15272181

fbshipit-source-id: 2e0964fa1b1031607134548bb87c4e103c5b1383
2019-05-10 17:46:04 -07:00
Jiyan Yang
714344a976 Specify to use Float16UniformFill if necessary in sparse lookup layer (#18499)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18499

If the init op is not fp16 compatible, it should throw.
However, in the special case where the original init op is UniformFill,
we replace it with Float16UniformFill

Reviewed By: kennyhorror

Differential Revision: D14627209

fbshipit-source-id: eb427772874a732ca8b3a25d06670d119ce8ac14
2019-04-23 10:14:08 -07:00
Jiyan Yang
deadf3ba89 Add assertion to make sure init op is always fp16 compatible in fp16 training
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18498

Reviewed By: kennyhorror

Differential Revision: D14626755

fbshipit-source-id: d8a0b3c02920ab3835911a21bf05e8956853fcd7
2019-04-21 23:43:13 -07:00
Xing Wang
b6f130aa70 try to enable uncertainty for lr loss (#17236)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17236

Following the paper in https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf, approximate the classification case with the regression formulation. For the LRLoss, add penalty based on the variance and regularization on the variance with a tunable parameter lambda.

Reviewed By: chocjy

Differential Revision: D14077106

fbshipit-source-id: 4405d8995cebdc7275a0dd07857d32a8915d78ef
2019-04-11 07:35:19 -07:00
Huan Gui
d3fcd0d798 add dropout during eval (#17549)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17549

Currently Dropout is only enabled in training, we enable the option of having dropout in Eval.

This is to follow [1]. This functionality would be used for uncertainty estimation in exploration project.

[1] Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." international conference on machine learning. 2016.

Reviewed By: Wakeupbuddy

Differential Revision: D14216216

fbshipit-source-id: 87c8c9cc522a82df467b685805f0775c86923d8b
2019-02-28 23:21:29 -08:00
Junjie Bai
52135e9b12 Revert D13551909: [fbcode] logdevice for generic feature type
Differential Revision:
D13551909

Original commit changeset: 807830c50bee

fbshipit-source-id: 48cacf4ec1765253a9be9d78f4b28cc48330be59
2019-01-25 00:33:06 -08:00
Qin Huang
11a2b3799b logdevice for generic feature type (#16191)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16191

logdevice related modifications for generic feature type

we directly convert the generic feature structures to json strings, which corresponds to the column input in offline and dper

Reviewed By: itomatik

Differential Revision: D13551909

fbshipit-source-id: 807830c50bee569de202530bc3700374757793a2
2019-01-24 23:33:19 -08:00
Jiyan Yang
0199d59d3a Resubmit: Set the correct engine name for position weighted pooling when fp16 is used for training
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13768

Reviewed By: xianjiec

Differential Revision: D12996103

fbshipit-source-id: 5ca4cda4210f68ece2b5d6eced8cf52ee91fb36f
2018-11-27 14:51:56 -08:00
Huan Gui
60e7d04961 Add Recency Weighted into SparseLookup (#14291)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14291

Add RecencyWeighted into SparseLookup.

Reviewed By: Wakeupbuddy

Differential Revision: D13147738

fbshipit-source-id: de5dc3aaee8ce7d41c6d30d2ff47e9786a7fa4da
2018-11-24 02:43:31 -08:00
Yan Zhu
003f97cefa fc layer accept axis argument (#13822)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13822

as title

Reviewed By: xianjiec

Differential Revision: D12996338

fbshipit-source-id: 1aa61e71e2d79535325ea7034c82e1cb6bf3a9f6
2018-11-11 13:44:57 -08:00
Frank Jiang
b827a40880 Implement bucket-based attention pooling for IdScoreList features (#13004)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13004

Implement BucketWeighted model layer, which learns a weight for each possible score in an IdScoreList. Here, we assume that the scores in the IdScoreList have already been converted into the appropriate 'buckets'. If this is not done, then essentially each score represents its own bucket.

We assume that the scores/buckets are integers, and if max_score is not set, we assume that the maximum cardinality of the score is less than or equal to the cardinality of the ids.

Reviewed By: chonglinsun

Differential Revision: D10413186

fbshipit-source-id: 743e643a1b36adf124502a8b6b29976158cdb130
2018-10-25 18:04:08 -07:00
Andrey Malevich
eaf33f22c8 Revert D10123465: Set the correct engine name for position weighted pooling when fp16 is used for training
Differential Revision:
D10123465

Original commit changeset: e8d929d4153d

fbshipit-source-id: 36269e49ac79955fe695ac1a53a3c386aa2f5bec
2018-10-15 01:53:48 -07:00
Jiyan Yang
635cbff300 Set the correct engine name for position weighted pooling when fp16 is used for training
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12225

Reviewed By: hyuen, xianjiec

Differential Revision: D10123465

fbshipit-source-id: e8d929d4153d1ee987ae3d1c37892525d7574d16
2018-10-12 20:15:13 -07:00
Xiaolong Wang
8ac8b823c2 Allow use substitute ops for LayerNorm (#12177)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12177

as titled

Reviewed By: Wakeupbuddy

Differential Revision: D9218047

fbshipit-source-id: 8d68861472c99d587e678c3d76ac43abc9c8fe6d
2018-10-11 17:36:10 -07:00
Jiyan Yang
c5f7da3f4a Support FP16 sparse lookup (#11674)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/11658

Reviewed By: hyuen

Differential Revision: D9676950

fbshipit-source-id: 89a115b9664b84e4e4436b7da033e5a428c2246d
2018-09-14 02:40:08 -07:00
Yan Zhu
ac9f0a6884 refactor preproc, support dense in TumHistory layer
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11131

Reviewed By: xianjiec

Differential Revision: D9358415

fbshipit-source-id: 38bf0e597e22d540d9e985ac8da730f80971d745
2018-09-05 16:10:13 -07:00
Hassan Eslami
3578909671 Remove unused code base for distributed training (#10282)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10282

This diff removes the unused/deprecated features from the code base.

Reviewed By: manojkris

Differential Revision: D9169859

fbshipit-source-id: d6447b7916a7c687b44b20da868112e6720ba245
2018-08-16 20:10:17 -07:00
Bangsheng Tang
44b029f5b8 move matrix formation for dot products to precompute/request-only (#10531)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10531

fixed a naming issue in pairwise_similarity

Reviewed By: huayuli00

Differential Revision: D9331716

fbshipit-source-id: d7de36f20504c08b1c7871ccdffa343221a3da0c
2018-08-15 11:02:10 -07:00
Qin Huang
ab293924bb support generic feature in DPER2 (#10197)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10197

Support generic feature in DPER2

For now since we only have one generic type 1, we are directly adding the parsed feature record to embedding feature.

For new feature types with specific structure, there should also be corresponding coding changes expected.

Reviewed By: itomatik

Differential Revision: D8788177

fbshipit-source-id: 9aaa6f35ece382acb4072ec5e57061bb0727f184
2018-08-04 15:25:13 -07:00
Huayu Li
46d8002800 Fix bug that always uses the same blob when repeating poolings
Reviewed By: houseroad

Differential Revision: D9027902

fbshipit-source-id: 957702ad9736812ec5aa32066d286c2c3adffc49
2018-07-28 00:09:16 -07:00
Yuan Xie
c14e17eced Co-disitillation with different archs and/or feature set (#9793)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9793

Enable co-distillation with different archs

Reviewed By: pjh5

Differential Revision: D8888479

fbshipit-source-id: eac14d3d9bb6d8e7362bc91e8200bab237d86754
2018-07-25 10:10:27 -07:00
Orion Reblitz-Richardson
9ec0a2aef4 fbshipit-source-id: ba600fcd2b5cefc7621357bdeb05e24cea02e5af 2018-06-27 04:50:56 -07:00
Orion Reblitz-Richardson
edb88b5f3a
Update from Facebook (#8887)
* add opencl + fpga context

adds an opencl context inside caffe2/fb which can be used for fpga access

* [Caffe2] Force tensor inference checks to be triggered during testing

We've started to rely on TensorInference functions more for different analysis.  This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.

* Enable building //caffe2:torch with @mode/opt

In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.

* [Caffe2] Fix cost models for DotProduct and Div.  Update Tensor Inference for dot product

As title.  DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs.  TensorInference defined to support implementation.

* [SG-MoE] Add an option to make the experts NOT as components

* [nomnigraph] Rename and fixup convertToNeuralNetOperator API

This will make things a bit cleaner

* no longer symlink THNN.h and THCUNN.h

* forced decoder network (onnx export)

Closes https://github.com/pytorch/translate/pull/95

Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.

Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea

* Revert schema change to fix production models

Revert schema change to fix production models

* MockLogDeviceReader - rebase on FIX

# Goal

1), Build a make_mock_log_device_reader using make_mock_reader

2), Replace the real log_device_reader here: https://fburl.com/raihwf1p

# Log by D8151734

Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin

* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier

implement log barrier as a regularization method

* Add teacher weight screening.

Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.

* Add NormalizerContext

See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.

I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.

https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1

* Adding cosine similarity option in dot processor

Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.

* [nomnigraph][redo] Concat elim for sparseNN

Same as D7962948, which was reverted because Operator Schema was not
defined

* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN

Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).

https://github.com/pytorch/pytorch/pull/7918/files

* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size

enables nomnigraph and reduces codesize

* [Warmup] Allow both offline incremental training and online training

Change plan name on saving side and reading side to support both training type

This diff depends on D8128530 and D8168651.

* Revert D7802642: [Warmup] Allow both offline incremental training and online training

This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Add legacy grad logic to fix div op on old graphs.

Add legacy grad logic to fix div op on old graphs.

* Correctly propagate operator failures

Propagate errors from operators that throw exceptions and return false

* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN

This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope

extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption().  And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.

* [opt] hgdirsync wasn't enabled, merge diverged code

Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE

* OMP parallelism over RoIs for RoIAlign op

Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.

PR: https://github.com/pytorch/pytorch/pull/8562

* Use int64_t for shape in FillOps

to avoid overflow of int32

* Implement Rotated RoIAlign op

Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.

RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre

* Rotated RoIAlign op CUDA forward implementation

CUDA forward impl for D8415490

* RoIAlignRotated op CUDA backward pass implementation

TSIA

* All remaining fixes to eliminate process_github.sh

Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py

remove skipIf(True, 'Fbcode') line from process_github.sh

replace sed of cpp file with #ifdef to control cudnnDestroy use

undo sync-time deletion of .gitattributes, remove process_github.sh

switch to using _utils._internal rather than try-import-except

This diff also fixes the open-source bug where rebuilds have

* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package

* [easy] improve error log in adagrad op

as title

* re-allow use of thnn_h_path

This fixes cffi usage in OSS

* [4/4] [tum] paralyzing layerNorm for GPU full sync

as title

* add compile=False to pytorch tests, remove hack with pyc

* Add shape and type inference for RowWiseArgMax operator

See title

* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally

# Problem

`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.

GlobalCounter on server node collect local counts from worker nodes every 1 sec.

This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.

# Plan

Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int

* [Caffe2] Fix FCGradient cost inference.  Prevent overflow in cost inference

FCGradient missed a factor 2 in the `num_outputs == 3` case.  Overflow was occurring with flop calculation for FC.  Changed types to `uint64_t` to prevent future problems.

* Fix binary ops with empty inputs

Fix binary ops with empty inputs

* Support the filling of input blob with provided data

as title for Biz Integrity case

* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.

* [c2][easy] improve pack ops error loggings

as desc.

* Add ShapeTypeInference for LpNorm operator

As desc

* Shard test_nn to reduce runtime for each test target

Closes https://github.com/pytorch/pytorch/pull/8793

The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.

* Change default caffe2_streams_per_gpu to 1

* Remove IN_SANDCASTLE from common.py and test_nn.py

We prefer to disable the failing tests through Sandcastle UI instead.

* Add a new class for an updated prof_dag.proto

This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests

* Lambdarank for SparseNN

This diff adds a lambda_rank_layer for SparseNN.
 changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op

* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [easy] A few fixups to multithread predictor benchmark

(1) support perf on T6 server
(2) remove dead code

* fix a bug about the map size

as title

* Fix reduce sum on in-place case.

Fix reduce sum on in-place case.

* [Warmup] Reland reverted diff Allow both offline incremental training and online training

Closes https://github.com/pytorch/pytorch/pull/8827

fix net transform integration test. Allow offline and online trainer to coexist D7802642.

* Add StoreHandlerNotAvailableException

Add an exception for a store that is not available or has been
deleted.

* Use exception handling for fault tolerance, missing KV store

Remove status blobs to communication ops so that exceptions propagate on
failure.

* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj

for simple bounded constrained optimization, incl non-negative box constraints.

* [GanH]: Adaptive Weighting with More Estimations

With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.

This improves parameter estimation and training stability.

* Revert some changes for landing

* Remove AutoNoGIL in StorageSharing

* Temporarily disable net_tests

* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"

This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.

* Revert "Fix reduce sum on in-place case."

This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.

* Revert "Revert "Fix reduce sum on in-place case.""

This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
2018-06-26 14:55:48 -07:00
sf-wind
5b86c3af4a
Update from facebook (#8384)
* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* Remove the code per soumith's comments

* Remove the code per soumith's comments

* Remove blank lines in the end of file

* Resolve conflicts for torch/_thnn/utils.py

* Update MKL exporter to IDEEP ops

TSIA

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* [caffe2] uprade IDEEP and hotfix for conv op accuracy issue (#8364)

* [IDEEP] Upgrade IDEEP version

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* [IDEEP] Fix accuracy issue in conv op

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Fix build error due to lack of src in CMakeLists

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Remove the code per soumith's comments

* [ONNX] Add an ATen fallback pathway for ONNX export (#8273)

* ATen fallback for ONNX export

* Move to enum

* Fix model test

* Add comment

* Address comments

BC interface

* Remove imaginary file (#8415)

* [Caffe2] Enable AMD/MIOPEN ops for Caffe2  (#8306)

* Add hip support for caffe2 core

* Add MIOPEN header/wrapper to caffe2 core

* Add HIP device into caffe2 PB

* top level makefile change for rocm/hip

* makefile scaffolding for AMD/RocM/HIP

* Makefile scafodding for AMD/RocM/HIP; add makefile/utility for HIP files

* caffe2 PB update for AMD/ROCM HIP device

* Add AMD/RocM/Thrust dependency

* HIP threadpool update

* Fix makefile macro

* makefile fix: duplicate test/binary name

* makefile clean-up

* makefile clean-up

* add HIP operator registry

* add utilities for hip device

* Add USE_HIP to config summary

* makefile fix for BUILD_TEST

* merge latest

* Fix indentation

* code clean-up

* Guard builds without HIP and use the same cmake script as PyTorch to find HIP

* Setup rocm environment variables in build.sh (ideally should be done in the docker images)

* setup locale

* set HIP_PLATFORM

* Revert "set HIP_PLATFORM"

This reverts commit 8ec58db2b390c9259220c49fa34cd403568300ad.

* continue the build script environment variables mess

* HCC_AMDGPU_TARGET

* Cleanup the mess, has been fixed in the lastest docker images

* Assign protobuf field hip_gpu_id a new field number for backward compatibility

* change name to avoid conflict

* Fix duplicated thread pool flag

* Refactor cmake files to not add hip includes and libs globally

* Fix the wrong usage of environment variables detection in cmake

* Add MIOPEN CNN operators

* Revert "Add MIOPEN CNN operators"

This reverts commit 6e89ad4385b5b8967a7854c4adda52c012cee42a.

* Add MIOPEN pooling operator

* Add MIOPEN activation operator

* Add MIOPEN softmax operator

* Add MIOPEN spatial batch norm operator

* Add MIOPEN loacl response normalization operator

* Add MIOPEN conv operator

* Clean-up LRN ops

* enable fp16 in MIOPEN pool ops

* Enable fp16 for MIOPEN relu op

* Enable fp16 for MIOPEN spatial batch norm op

* code clean-up

* revert float16 support

* Create Caffe2 python binding for AMD/ROCM/HIP

* Add op fallback for HIP operator

* add hip src/test files in cmake

* exclude hip src/test files

* fix python binding for hip backend

* fix MIOPEN pooling op workspace

* hack to compile miopen operators

* fix include path for MIOPEN ops

* Fix include path

* Add HIP math utilities

* Fix path for HIP math utils

* cmake fix

* Cmake fix / hipcc for hip files

* suppress hipcc warning

* cmake fix /replcae USE_HIP with USE_ROCM

* revert LoadHIP.cmake change

* fix include for thrust/cub-hip

* include path fix for conversion.h

* Updated with latest upstream changes

* clang format fixes

* Context_hip updates

* Fixed typo in rocblas handle get function

* Updated hipified math utils

* Updated math hip test util

* Updated context hip test

* Updated common_hip

* Updated net async dag for HIP

* Added MIOPEN in operator hip test

* fix

* C2 dependencies clean-up

* fix include path for building custom protobuf

* Decouple miopen pool op and conv_pool_op base

* cmake refactor

* fix operator_hip_test

* move all hip/miopen ops files into caffe2/operators/hip

* sanitize cmake

* permission issue

* remove extra parenthesis

* remove artifact from resolving merge conflict

* cont. sanitize cmake files

* fix syntax error

* sanitize conversion.h

* .

* Revert "."

This reverts commit 56020cb0e996a31ae27bf1f8f491955ed0b121b9.

* clang-format

* Enable some reduce operators' ONNX backend tests (#8418)

* fix old comment to point to the right file (#8416)

* Stop pinning nccl version. (#8421)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Expose logsumexp docs and mark log_sum_exp in distributions for internal use (#8428)

* Enable some of the ONNX backend test on broadcasting (#8423)

* Enable some of the ONNX backend test on broadcasting

* enable gemm broadcast

* Expose proto utils and ONNX (#8073)

* Expose proto utils and ONNX from PyTorch libcaffe2.so

* Try to use protobuf from _C.so

* Fix ONNX proto header include

* Adjust order of imports for ONNX until nanopb goes away

* Set and use ONNX_NAMESPACE for PyTorch builds

* Show protobuf summary for all builds

* Add ONNX_NAMESPACE for cpp_build

* Statically link libprotobuf.a into libtorch.so

* Set ONNX_NAMESPACE on Windows build

* Move core/dispatch up as well

* Add /MD flag for Windows build of _C

* Potential Windows fix for ONNX and protobuf

* Add direct linkage from _C to ONNX on Windows

* Only include protobuf wrapper for PyTorch

* Pass extra_compile_args to _nvrtc ext build

* Remove installation of .a files

* Rebase creates some weird situations, revert them manually

* Remove more weird changes due to rebase

* Need to add thread_name.cc after merge
2018-06-13 13:10:45 -07:00
Bram Wasti
82b981e4db Update from facebook 1ee4edd286a3 (#8040)
* Adding instance weight to batch distill loss

as title

* add bfloat 16-31

added bfloat 16-31 and their respective unit tests

* [CUDA9] Upgrade - fbcode

CUDA9 upgrade diff D5654023 has been out for a while thanks to Pieter. But with time growing it's becoming quite hard to rebase, because of the symlinks and auto-generated build/config files in tp2. Break D5654023 into two diffs, one touching tp2 config files, and another one touching fbcode TARGETS file (adding nvcc flag). These two should be a bit easier to rebase (for detailed procedure see "Test Plan").

This diff can only be committed if:
1. CUDA 9 rpm is rolled out fleet-wide (TBD)
2. NVidia driver 390.40 is rolled out fleet-wide (done)
3. Upgrade CUDA 9.1, cudnn 7.1, nccl 2.1 (done)
4. Make sure all dependents are built (done)
5. Test all C2 operators, PyTorch (see test plan)

* Share intermediate int32 buffer across Conv ops

Adding a known type

* [C2 fix] infer function for ensure_cpu_output_op

this is adding the missing device funtion for ensure_cpu_output_op

* [int8] Add blob serializer/deserializer for Int8TensorCPU

To export to logfiledb

* [nomnigraph] Add try catch block to optimization passes in predictor

This will catch failures that happen in the optimization pass.

* Caffe2: avoid static initialization order fiasco for CAFFE_ENFORCE

CAFFE_ENFORCE uses strack trace fetcher. Which is currently a
global static variable. If at static initialization time CAFFE_ENFORCE
is used, this is a SIOF. Recently CAFFE_ENFORCE was added into init
functions registration, so we started to see this.

Meyers singleton is going to provide safety here. If stacktrace
fetcher was not registered yet, it will just use a dummy one.

* NUMA support in SparseNN CPU benchmark

Adding support for NUMA in SparseNN CPU benchmark

* [mobile-roofline] Add logging needed for roofline model

This should be all that's needed

* Let the operators using the same input if the operators are not chained

or else, we have to change the input data dims

* fix null-pointer-use UBSAN errors in in reshape_op.h

* revert previous fix on input blob name

as title

* Adding flag to let MineHardNegative automatically extract single value from dict

Model exporter requires the output of the model to be a struct. This makes it convenient to use those models directly in MineHardNegative by allow automatic extraction of the single element of dict, which is a common use case.

* Reverting change that broke internal tests back to OSS compatible state
2018-06-01 17:41:09 -04:00
Sebastian Meßmer
49f8581745
Update from facebook (#7855)
* [mpscnn] MPSCNNChannelShuffle

att

* [Easy] Adding tags as an argument to the functional layer

Without it "tags" would be added as an argument to the operator.

The change here is based on the assumption that there is no operator that takes "tags" as an argument.

* Fix locally_connected_op schema check.

Fix locally_connected_op schema check.

* [C2] Add TypeAndShape inference for few more operators

As desc

* [c2] Shape inference should support 0 as dimension

Tensors can have 0 in their dimension.

* Make MockHiveReader loop over and support max_examples

Replace DatasetReader with RandomDatasetReader.

So that Mock Hive Reader can simulate a large data input using a small sample file as source.

* Utility function to wipe cache between benchmark runs

Caffe2 benchmark does not wipe out cache between runs, and this potentially creates an unrealistically optimistic picture of performance. This diff adds utility function to wipe out the cache.

* Allow caffe2 GlobalInit to be invoked multiple times

Allow caffe2 GlobalInit to be invoked multiple times. Will re-parse gflags and update logging levels on successive invocations, but will not re-run init functions or perform other one-time initialization.

* Add Caffe2 GlobalInitIsCalledGuard to base net and operator classes

Warn if caffe2's GlobalInit function has not been invoked before creating an operator or net object. This is based on discussion here: https://fb.quip.com/kqGIAbmK7vNG

* Rethrow current exception on failure

Rethrow current exception instead of copy constructing a new one on op failure.

* Make `clone()` return subclass of List/Struct

`clone()` is not working correctly when we subclass those classes

* Wipe the cache before the net run

the util function is copied from D7409424
will rebase once D7409424 is landed.

* [Caffe2] [Mobile] Support utils/cast.h::GetCastDataType with LITE_PROTO builds

* Correct includes

async_polling include -> async_base include

* Prepare execution flags for executor migration

Making async_scheduling aware of underlying net type to prepare for executor
migration

* Add operator level observers into async executor

Adding operator level observers into RunAsync operators' calls

* Cleanup TEST_Benchmark

Remove duplicate code and provide default implementation in NetBase

* [C2] Fix type and shape inference for binary comparison ops

As desc.

* Add GlobalInit to predictor to ensure initialization is always done before prediction

FACEBOOK:

Redo D7651453 the correct way.

Now use a static variable for the arguments passed to GLog

* Remove spammy log message

This method is currently used in various places inside Caffe itself.

* Disable events for operators inside a chain

We don't need to use events in operators within a chain because the chain is
always scheduled on a single stream, keeping only first and last event for
scheduling purposes

* Ensure correct finish run order

In rare cases we might call finishRun and trigger net's destruction while
another worker is still holding shared_ptr to a thread pool, that can cause
thread pool destruction from within a worker thread in case no other nets are
using the pool. This diff fixes the order of calling finishRun and also changes
pool() to return raw pointer to keep pool's ownership within the net

* Reduce unnecessary polling

Make sure we don't waste CPU by polling operators that we can set an efficient
callbacks on

* Squash commit of syncing 9506eeb from github to fbcode

Patch xplat buck fix

add virtual destructor to OptimizationPass

add virtual destructor to OptimizationPass

build fixes for sync

build fixes for sync

* Fix net tracing

Fix net tracing from async_scheduling

* Fix logging
2018-05-29 11:38:02 -07:00
bddppq
f94ae3ba1d
Update from facebook (#7696)
* Fix handling of empty batches in SumReduceDimsOp

As titled

* Deferrable async_scheduling finishRun fix

Proper order of finishing run operations in deferrable_async_scheduling net

* Simplify exception handling in async_scheduling

Simplify exception handling, no need to busy wait, thread that processes the
last task can finish the run

* [C2]worker_coordinator_memorize_worker_ids

As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids

* Add unit test for nets with no type set

* Ignore total length argument in sympolic_pad_packed_sequence

1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence)
2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp

* Add support for MKLDNN to async_scheduling

Just add MKLDNN as a possible CPU option to async_scheduling's pool function

* [AuFL][ensemble] support branch output for prediction

This diff supports using predictions from different branches and thus enables model ensembling (not fully independent).

* Fix a bug in add_loss in layer_model_helper

As titled.

* Support lradaption for adam

1.lr adaption operator
2.apply to dense adam

* Perf tweaks for async_scheduling

Restore single pool option + remove unnecessary (no-ops) calls

* add quantization to SparseSimdAdagradOp

add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next

* [sr] [codemod] Change all SR callsites to use new API

@allow-large-files

This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`.

```
cd ~/fbsource/fbcode
find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \;
```

Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes).

* Back out "Fix handling of empty batches in SumReduceDimsOp"

Original commit changeset: 282da1730cc2 This commit is blocking the
Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this
diff depends on will be reverted in the sync D7990948 which causes this to
break. The sync diff cannot be patched with this reversion because it must be
landed against base revision 5c8c099 , and D7881937 must not be included in the
sync diff because it is breaking GPU tests that are not available in sandcastle
: https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console
for one example.

* Add the flow to support operator benchmark

1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark

* [tum][gpu] Connect DPM trainer with flow and unit tests

This diff:
- Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases.
- Add correct tags to the TUM code, so we can do data parallel transform
- pass extra info when instantiation.
- add unit test for using DPM in TUM model

After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking.

* w/o normalized lradaption for adam dense only

The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step

* [fb] Use SharedPromise in DeferrableAsyncSchedulingNet

This code is to simplify DeferrableAsyncSchedulingNet by removing condition
variable + small fixes

* [tum] implement cuda sparseLengthsMean and LengthsMean

as title

* Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

* Move feature_to_index to FeatureSpec.feature_to_index

move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields

* [Caffe2] Rename bytes_moved to bytes_written

Just a rename in preparation for supporting bytes_read.

* [c2] fix ReduceFrontSumOp for empty case by setting 0

otherwise, it may use the results from last iteration when it's empty batch.

* [Caffe2] [Int8] Improve Intel CPU performance

* [Easy] Improve PrependDim op logging

as titled

* DBFileReader expand db_path using os.path.expanduser(..)

Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves.

* [Caffe2] Add bytes_read to cost structure

We're adding analytical read bytes to cost functions.  This extends the structure accordingly for all CostInference defined operators.
Additionally, some small bug fixes were performed:
1) Cost functions now extract type information of operands instead of assuming float

* Fix sleef on aarch64 for hhvm

@bypass-lint

Rename flag

* Remove duplicated part in caffe2/ideep/operators/conv_op.cc

should be sync error

* Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
2018-05-19 23:10:48 -07:00
Paul Jesse Hellemn
b875fb281c
Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00
Lu Fang
664fe34e0a
[Caffe2][fbcode=>GH sync] Update from facebook 4323b18ce13c (#7116)
* [fix] Re-enable events in RNN ops

We have earlier added event disabling in RNN ops as back then we didn't use
events, with current use cases this is no longer true
(https://fburl.com/8vd0lp8y)

* use ops with cude impl

* Revert D7729695: [caffe2][fix] Re-enable events in RNN ops

This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [observer] Clean up observer_config.h

#accept2ship

* [1/n] Refactor dataio_test.py

Replace code duplication with a common function

* Add barrier net that runs before training nets

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.

Removed explicit data_parallel_model.py.synchronize call in holmes workflow.  Similar change in speech/asr_training workflow will come in another diff.

* Support the dnnlowp backend in caffe2_benchmark

This is for SHARE operator latency evaluation

* Migrate integral_image_op to main caffe2

migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi
to caffe2/caffe2/operators and implement its CPU version. Write up a test
using the hypothesis_test mechanism

* [pos_disc, fbcode] Implement unjoined lr loss

As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss.

The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where
    loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x))

For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as
    loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x))

Then the final expression becomes
    loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0)))

where y is the true label, x is the dot product and p = logistic(x).

This kind of implementation is align with the current implementation of the original cross entropy in
https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13

* Keep the array to fix the conflict

* [C2] Compute Adagrad effective LR

The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob.

* Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs

1. Open-source extractMetaNetDef and runGlobalInitialization, for use in
2. new Predictor constructor from db file.
3. Add new run function that returns outputs as TensorMap

* Disable eigen cpu

Disable eigen cpu in transpose and reduce

* Introduce request_only/object_only property of ModelLayer

by default this is False

* A simple TC Caffe2 benchmark

We can run tunner, get MappingOptions and then use them to
compare against cuBLAS

currently broken due to LLVM issues. How to run:

hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01
add D7401202
add D7434625
add D7506031
add D7540728

buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark

* Move Caffe2 feature_maps_ops to open source

Need feature maps operators in open source project facebookresearch/BlueWhale

* Manually fix the conflicts in channel shuffle op

* Fix the inconsistency between different gh and fbcode

* Skip Adagrad GPU Test (Because some gpu implementation is missing)

* Fix another test to make sure it won't run on gpu when implementation is not available yet
2018-05-01 20:49:00 -07:00
Orion Reblitz-Richardson
6223bfdb1d Update from Facebook (#6692)
* [GanH][Easy]: Add assertion to adaptive weighting layer

0 weight causes numeric instability and exploding ne

* [Easy] Add cast op before computing norm in diagnose options

As LpNorm only takes floats we add a manual casting here.

* Introduce a new caching device allocator

`cudaMalloc` and `cudaFree` calls are slow, and become slower the
more GPUs there are. Essentially, they grab a host-wide (not device-wide) lock
because GPU memory is transparently shared across all GPUs. Normally, this
isn't much of a concern since workloads allocate memory upfront, and reuse it
during later computation.

However, under some computation models (specifically, memory conserving
approaches like checkpoint-and-recompute, see
https://medium.com/@yaroslavvb/fitting-larger-networks-into-memory-583e3c758ff9)
this assumption is no longer true. In these situations, `cudaMalloc` and
`cudaFree` are common and frequent. Furthermore, in data parallel contexts,
these calls happen at nearly the same time from all GPUs worsening lock
contention.

A common solution to this problem is to add a custom allocator. In fact,
nVIDIA provides one out of the box: CUB, which Caffe2 already supports.
Unfortunately, the CUB allocator suffers from very high fragmentation. This is
primarily because it is a "buddy" allocator which neither splits nor merges
free cached blocks. Study
https://github.com/NVlabs/cub/blob/1.8.0/cub/util_allocator.cuh#L357 if you
want to convince yourself.

This diff adapts a caching allocator from the Torch codebase
https://github.com/torch/cutorch/blob/master/lib/THC/THCCachingAllocator.cpp
which does splitting and merging and ends up working really well, at least for
workloads like the checkpoint-and-recompute computation models noted above.

I simplified the implementation a little bit, made it a bit more C++-like. I
also removed a bunch of stream synchronization primitives for this diff. I
plan to add them back in subsequent diffs.

* Report reader progress in fblearner workflows

Integrate with fblearner progress reporting API and add support to report training progress from reader nodes.
If reader is constructed with batch limits, report based on finished batch vs total batch. The finished batch may be more than total batch because we evaludate if we should stop processing everytime we dequeue a split.
If no limit for the reader, report based on finished splits (Hive files) vs total splits. This is fairly accurate.

* [GanH][Diagnose]: fix plotting

1. ganh diagnose needs to set plot options
2. modifier's blob name is used for metric field can need to be fixed before
generating net

* Automatic update of fbcode/onnx to 985af3f5a0f7e7d29bc0ee6b13047e7ead9c90c8

* Make CompositeReader stops as soon as one reader finishes

Previously, CompositeReader calls all readers before stopping. It results in flaky test since the last batch may be read by different threads; resulting in dropped data.

* [dper] make sure loss is not nan

as desc.

* [rosetta2] [mobile-vision] Option to export NHWC order for RoIWarp/RoIAlign

Thanks for finding this @stzpz and @wangyanghan. Looks like NHWC is more
optimized. For OCR though it doesn't yet help since NHWC uses more mem b/w but
will soon become important.

* Intra-op parallel FC operator

Intra-op parallel FC operator

* [C2 Proto] extra info in device option

passing extra information in device option

design doc: https://fb.quip.com/yAiuAXkRXZGx

* Unregister MKL fallbacks for NCHW conversions

* Tracing for more executors

Modified Tracer to work with other executors and add more tracing

* Remove ShiftActivationDevices()

* Check for blob entry iff it is present

When processing the placeholders ops, ignore if the blob is not present in the blob_to_device.

* Internalize use of eigen tensor

Move use of eigen tensor out of the header file so we don't get template partial specialization errors when building other libraries.

* feature importance for transformed features.

* - Fix unused parameter warnings

The changes in this diff comments out unused parameters.
This will allow us to enable -Wunused-parameter as error.

#accept2ship

* add opencv dependencies to caffe2

The video input op requires additional opencv packages. This is to add them to
cmake so that it can build

* Add clip_by_value option in gradient clipping

Add clip_by_value option in gradient clipping

when the value is bigger than max or smaller than min, do the clip

* std::round compat
2018-04-17 23:36:40 -07:00
Yinghai Lu
ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00
Andrey Malevich
b9d2ba1dbf Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid
This reverts commit d63266ccbc0c1390c58c2a71ae0b562fdec2fbc0

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files
2018-03-30 21:00:44 -07:00
Xiaolong Wang
2b0e39f569 [GanH]: Log D Trick for Cross Entropy with Sigmoid
as titled
2018-03-30 21:00:44 -07:00
Xiaolong Wang
af3dcdf6ae [D2]: Improve loss weight by allowing omitted weights
as titled
2018-03-27 18:10:39 -07:00
Xiaolong Wang
c909abd85f [GanH] Label Smooth: Add Layer and Integrate to SparseNN
as titled
2018-03-27 18:10:39 -07:00
Xianjie Chen
078b6d5ad1 [layer model] remove duplicated init ops
it saves some model init time, and reduce confusion.
2018-03-27 18:10:39 -07:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
Xiaolong Wang
4bb73b8361 [GanH] Weighting Layers: Adaptive/Constant/Homotopy
use case: to weight multiple losses (real values) as a single composite loss for
optimization
2018-03-20 13:34:22 -07:00
Xiaolong Wang
a5279dccd4 [GanH]: homotopy JSD
as titled
2018-03-20 13:34:22 -07:00
Yan Shang
40683cdf42 Allow calculating average margin rank loss
Similar to LrLoss, we allow for average loss of margin rank loss.
2018-03-20 13:34:22 -07:00
sf-wind
602a09dde7 Update caffe2 from facebook 4f527ef46abf (#2234)
* [GanH]: two_task_discriminator

as titled

and adding label smooth

* [Dper2] Simplified UI options needed for blob magnitude visualization

* [GanH]: fix tags

as titled

* Added type and shape inference for GatherRange operator

This helps with type / shape inference when using this operator in layers.
Also just a nice to have in general.

* Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python

We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException.

* Bind Gloo IoException to IoError in Python

Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind.

* [GanH]: add label smoothing to softmax with loss

as titled

* [C2] Enable LARS in Adagrad and hook it to DPER

* [DPER] Don't pass LayerModelHelper in create_trainer_nodes

Since we're planning to get rid of it eventually and I want to get access to
NetDef only interface ASAP - I'm looking towards removing all references to
LMH, where we don't really need them.

* fix bugs in LambdaRankNdcgOp

the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log.

* Restrict thread pool on iOS to only big cores

Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them.
However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android.

* Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

* make clang happy and get fewer warnings

make clang happy and get fewer warnings

* [Personalization] Support add_output_schema() in layer_model_helper

Problem:
Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer.

Solution:
For flexibility, we want to add fields to output_schema incrementally.

Plan:
Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema.

Callsite:
The add_output_schema() should be called instead at https://fburl.com/efth5zer

Reference:
The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
2018-03-12 12:22:59 -07:00
Dmytro Dzhulgakov
6b98315a28 [GanH] Model Test
as titled
2018-03-06 00:33:11 -08:00
Dmytro Dzhulgakov
968ebb3b82 [GanH]fuse jsd with lr loss/xent
as titled
2018-03-06 00:33:11 -08:00
Dmytro Dzhulgakov
f2ec5b7b0e [DPER] Fix bug in uint8 quantization shortcut.
After D6953547 some of the blobs were no longer impacted by uint8 quanitzation,
but they would still generate operators expecting uint8 inputs and thus fail.

This diff is adding a temporal hack to avoid doing this quantization when layer
is not quantized.

Will fix it with switching to Net rewriting instead.
2018-03-06 00:33:11 -08:00
Orion Reblitz-Richardson
c55a642d83 [c2] update SparseFeatureHash layer
The diff makes following changes for this layer: copy length blob; add nameScope for output schema; add layer tests
2018-02-26 10:26:25 -08:00
Andrey Malevich
60dc3ca66f Use 8-bit quantization only in cases when it makes sense.
Summary:
In some cases we were doing quantization even we we should not. This diff is
preventing this from happening.

Reviewed By: rayleichen

Differential Revision: D6953547

fbshipit-source-id: 7c65baaf969e5e1bddb68ca8182f4f3b43f2431d
2018-02-15 19:33:03 -08:00
Xianjie Chen
c5497a34f6 Add CPU_ONLY tag for sparse_feature_hash layer
Summary: as desc.

Differential Revision: D6997841

fbshipit-source-id: 75a33ea146224979f149a36a063a78d6f18338ee
2018-02-15 19:05:56 -08:00
Matan Appelbaum
d99d28b3e6 Allow custom component tagging in DeviceOptions.node_name
Summary:
Modify detect_components to take a list of valid node_name prefixes instead of values.  Users can set node_name to e.g. `'sparse_component:0'`, `'sparse_component:1'`, etc.
and pass `'sparse_component:'` as a valid prefix.  Also add `Tags.SPARSE_COMPONENT` in addition to `Tags.SPARSE_SHARDED` and `Tags.SPARSE_DONT_SHARD` and update all calls to
`detect_device_components`.

Reviewed By: azzolini

Differential Revision: D6952599

fbshipit-source-id: e1b1e6b146a6bd053b295690016044fd5990c893
2018-02-13 11:14:41 -08:00