Changes the StreamID encoding to use the last bit to distinguish between external and internal streams, 4 bits for IdType (DEFAULT, EXT or user-created streams possibly with high priority), and 5 bits for index. This allows us to have more stream priorities exposed to user (I'm currently setting 4, but that's easy to change now). Note, we are pre-creating all 32 streams in the pool per each allowed priority, I don't know if it's a problem in practice. Currently cuda 11.8/A100 GPUs allow 6 different stream priorities, the number may be different for the different cards/different cuda versions.
Previous callsites explicitly requesting high prioity stream (`isHighPriority=true`) are now getting the highest priority stream.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101956
Approved by: https://github.com/ezyang
Changes the StreamID encoding to use the last bit to distinguish between external and internal streams, 4 bits for IdType (DEFAULT, EXT or user-created streams possibly with high priority), and 5 bits for index. This allows us to have more stream priorities exposed to user (I'm currently setting 4, but that's easy to change now). Note, we are pre-creating all 32 streams in the pool per each allowed priority, I don't know if it's a problem in practice. Currently cuda 11.8/A100 GPUs allow 6 different stream priorities, the number may be different for the different cards/different cuda versions.
Previous callsites explicitly requesting high prioity stream (`isHighPriority=true`) are now getting the highest priority stream.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101956
Approved by: https://github.com/ezyang
#75854
A naive attempt at working around the limitations of using a single 64-bit integer to pack `stream_id`, `device_index`, and `device_type`.
Stills needs sanity checks, testing, and minimization of BC-breaking changes.
Currently a Holder for the `StreamData3` struct is used for `IValue` compatibility. While doing this seems to work for `ivalue.h` and `ivalue_inl.h`, this doesn't seem to be naively working for the JIT CUDA stream wrapper? (Something about ambiguous calls if an `intrusive_ptr` to `c10::ivalue::StreamData3Holder` is used as the return type for `pack()`. It turns out that the methods required to access the fields for rematerializing a CUDA Stream are basically already present anyway, so `pack` is simply removed in the wrapper for now and the methods to access the required fields are called directly.
CC @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81596
Approved by: https://github.com/ezyang
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.
The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.
The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features. I'm open to suggestions
for how to structure the features better. The main changes:
- Added an --allowlist-pattern flag, which turns off the grep lint
if some other line exists. This is used to stop the grep
lint from complaining about pybind11 includes if the util
include already exists.
- Added --match-first-only flag, which lets grep only match against
the first matching line. This is because, even if there are multiple
includes that are problematic, I only need to fix one of them.
We don't /really/ need this, but when I was running lintrunner -a
to fixup the preexisting codebase it was annoying without this,
as the lintrunner overall driver fails if there are multiple edits
on the same file.
I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.
Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.
See also https://github.com/pybind/pybind11/issues/4099
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.
I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop
# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
-j \
-s \
-k \
-v \
--paths torch/csrc/ \
-g"-torch/csrc/jit/passes/onnx/helper.cpp" \
-g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
-g"-torch/csrc/jit/serialization/onnx.cpp" \
-g"-torch/csrc/jit/serialization/export.cpp" \
-g"-torch/csrc/jit/serialization/import.cpp" \
-g"-torch/csrc/jit/serialization/import_legacy.cpp" \
-g"-torch/csrc/onnx/init.cpp" \
-g"-torch/csrc/cuda/nccl.*" \
-g"-torch/csrc/cuda/python_nccl.cpp" \
-g"-torch/csrc/autograd/FunctionsManual.cpp" \
-g"-torch/csrc/generic/*.cpp" \
-g"-torch/csrc/jit/codegen/cuda/runtime/*" \
-g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
-g"-torch/csrc/deploy/interpreter/interpreter.h" \
-g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
-g"-torch/csrc/deploy/interpreter/test_main.cpp"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649
Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.
Reviewed By: walterddr, janeyx99
Differential Revision: D29504258
Pulled By: 1ntEgr8
fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
Summary:
Previous is https://github.com/pytorch/pytorch/issues/57781
We add now two CUDA bindings to avoid using ctypes to fix a windows issue.
However, we use ctypes to allocate the stream and create its pointer
(we can do this with a 0-dim tensor too if it feels better).
CC. ezyang rgommers ngimel mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59527
Reviewed By: albanD
Differential Revision: D29053062
Pulled By: ezyang
fbshipit-source-id: 661e7e58de98b1bdb7a0871808cd41d91fe8f13f
Summary:
This is required in https://github.com/pytorch/pytorch/pull/57110#issuecomment-828357947
We need to provide means to synchronize on externally allocated streams for dlpack support in python array data api.
cc mruberry rgommers leofang asi1024 kmaehashi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57781
Reviewed By: mrshenli
Differential Revision: D28326365
Pulled By: ezyang
fbshipit-source-id: b67858c8033949951b49a3d319f649884dfd0a91
Summary:
In my last PR I've missed CUDA and distributed folders, fixing this now
This change is autogenerated by `python tool/clang_tidy.py -s`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57235
Reviewed By: janeyx99
Differential Revision: D28084444
Pulled By: malfet
fbshipit-source-id: bf222f69ee90c7872c3cb0931e8cdb84f0cb3cda
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227
Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.
The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24269435
fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
Summary:
The record_stream method was hard coded for CUDA device. Define the record_stream in the native_functions.yaml to enable the dynamic dispatch to different end device.
Fixes https://github.com/pytorch/pytorch/issues/36556
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44301
Reviewed By: glaringlee
Differential Revision: D23763954
Pulled By: ezyang
fbshipit-source-id: e6d24f5e7892b56101fa858a6cad2abc5cdc4293
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
1. Added `torch/csrc/cuda/Event.h` and `torch/csrc/cuda/Event.cpp` to bind Python Event class to C++ implementation.
2. Move all CUDA runtime invocations from `torch/cuda/streams.py` to C++
3. Added tests to cover Stream and Event APIs. ~(event IPC handle tests is introduced in #15974)~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15937
Differential Revision: D13649001
Pulled By: mrshenli
fbshipit-source-id: 84ca58f35f6ba679a4ba33150ceba678d760d240
Summary:
See #15682
Pushing up this small PR to check if I am doing the right thing. If correct, more will follow for other Stream APIs. Questions will be added inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15737
Differential Revision: D13581400
Pulled By: mrshenli
fbshipit-source-id: 24afed7847b89b62f0692c79a101ec7ff9d9ee4d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14248
This diff also introduces a horrifying hack to override CUDA's DeviceGuardImpl
with a HIPGuardImplMasqueradingAsCUDA, to accommodate PyTorch's current
behavior of pretending CUDA is HIP when you build with ROCm enabled.
Reviewed By: bddppq
Differential Revision: D13145293
fbshipit-source-id: ee0e207b6fd132f0d435512957424a002d588f02
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14246
This commit systematically eliminates THCStream entirely from THC, replacing it
with at::cuda::CUDAStream. In places where the previous pointer type showed up
in a public API signature, those functions are now only available to C++
clients. (It would not be too difficult to make a C-compatible version of
CUDAStream, as it's really just a simple struct, but we leave this for
future work.)
All functions in THC that referred to THCStream were expunged in favor of their
modern counterparts.
One annoyance was that I didn't feel like redoing how the torch.cuda.Stream
binding code worked, but I really wanted to get rid of the stored THCStream*
pointer. So I repurposed the bit-packing code I implemented for Stream hashing,
and used that to (reversibly) store streams in a uint64_t cdata field. A perhaps
more future proof solution would be to get rid of cdata entirely, and store the
device and stream ID directly.
Billing of changes:
- All CUDAStream_ pointer API functions are now hidden and anonymously
namespaced (instead of being in the impl namespace). All use sites
rewritten to use the modern C++ API. Since CUDAStreamInternals is no
longer part of the public API, the CUDAStreamInternals constructor and
internals() method have been removed, and replaced with anonymous
functions in the C++ file.
- device_index() returns DeviceIndex rather than int64_t now
- Stream and CUDAStream now have pack/unpack methods. (CUDAStream checks
that the unpacked bit-pattern is for a CUDA device.)
- THCStream.h header is removed entirely
- Most THCStream handling functions in THC API are removed
Reviewed By: gchanan
Differential Revision: D13121531
fbshipit-source-id: 48873262cc0a37c3eec75a7ba1c93c800da40222
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14109
Previously it was at the top level, because the author was under
the impression that you could only refer to top-level C++ names
from C, but this is not true; you just need to make a stub struct
conditioned on __cplusplus.
Reviewed By: smessmer
Differential Revision: D13104694
fbshipit-source-id: ecb7ae6dcfa4ab4e062aad7a886937dca15fd1b2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12940
Dmytro was reading this code and requested that we rename the interface
to something that made it more obvious that pooling was going on.
Seems reasonable to me! Final name is a suggestion from Pieter.
Reviewed By: dzhulgakov
Differential Revision: D10492071
fbshipit-source-id: b1c2cac760f666968d58166be649dabfe1127c5e
Summary:
How did we get so many uses of `NULL` again?
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047
Differential Revision: D9566799
Pulled By: goldsborough
fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
Summary:
This PR creates a stream pool per issue #9646. When a new stream is requested, that device it's requested on lazily creates two pools, one low priority and one high priority, of 32 streams each. Streams are returned from these pools round-robin. That is, stream 0 is returned, then stream 1... then stream 31, then stream 0... This PR also takes the opportunity to clean up the stream API, reducing its complexity and verbosity.
Change notes:
- There are now 3 sets of streams per device, the default stream, the low priority streams, and the high priority streams. These streams live in lazily initialized pools and are destroyed on shutdown.
- All stream refcounting has been removed (the pools pattern replaces it).
- Setting a stream now sets it on its device. Streams are associated with a device and the previous
requirement to specify that device was unnecessary.
- There is no exposure for setting the flags on a stream. This may also seem like a regression but the flag was always set to cudaStreamNonBlocking.
- Streams are now low or high priority whereas previously the priority could be set with an integer. In practice, however, the range for priorities is -1 to 0 on the latest hardware. -1 is high priority, 0 is low priority (aka default priority). Low vs. high actually clarifies this behavior if people were trying finer separations. (E.g., if someone tried streams with priorities 0, 1, and 2, they would actually all have priority 0, historically, and the intended behavior would not be respected.)
- Unused THCStream and THCState stream-related functions were removed.
- A new test of pooling behavior was added in stream_test.
fyi: colesbury, apaszke, goldsborough
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9938
Reviewed By: SsnL
Differential Revision: D9569036
Pulled By: ezyang
fbshipit-source-id: 12ed673fe373170d0cf4d65cb570de016c53ee7d
Changelist:
- Move *.c to *.cpp
- Change includes of ".c" to ".cpp"
- A bunch of cmake configuration modifying CMAKE_C_FLAGS changed
to CMAKE_CXX_FLAGS or add_compile_options, because if you do CMAKE_C_FLAGS it only applies when you compile C code
- Explicitly cast void* to T* in a number of places
- Delete extern "C" { ... } blocks; instead, properly apply TH_API to everything that should have it (TH_API handles extern "C")
- Stop using stdatomic.h, instead, use <atomic>. This resulted in a bunch of placement-new/delete to be "totally properly correct"
- Refactor of THLongStorageView to not have static constructor methods (since it no longer has a copy/move constructor)
- Documentation about how the TH C interface (and extern C business) works
- Note that THD master_worker mode is dead
- C++ headers in TH libraries are given .hpp suffix, to make it less likely that you'll confuse them with the C-compatible headers (now suffixed .h)
- New function THCStream_stream and THCStream_device to project out fields of THCStream instead of accessing fields directly
- New function THStorage_(retainIfLive), which is equivalent to a retain but only if the refcount is greater than zero.
- In general, I tried to avoid using hpp headers outside of ATen/TH. However, there were a few places where I gave up and depended on the headers for my own sanity. See Note [TH abstraction violation] for all the sites where this occurred. All other sites were refactored to use functions
- Some extra Werror fixes (char* versus const char*)