Commit Graph

35 Commits

Author SHA1 Message Date
Aaron Orenstein
8db9dfa2d7 Flip default value for mypy disallow_untyped_defs [9/11] (#127846)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127846
Approved by: https://github.com/ezyang
ghstack dependencies: #127842, #127843, #127844, #127845
2024-06-08 18:50:06 +00:00
Aaron Gokaslan
c5fafe9f48 [BE]: TRY002 - Ban raising vanilla exceptions (#124570)
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.

I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
2024-04-21 22:26:40 +00:00
Aaron Gokaslan
5a1216bb2e [BE]: Update ruff to 0.4.1 (#124549)
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.

Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0

| Repository                                         | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7         | 251.8         | 351.1            | 274.9            |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
2024-04-21 14:06:23 +00:00
Aaron Gokaslan
3fe437b24b [BE]: Update flake8 to v6.1.0 and fix lints (#116591)
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
  - `assert(a == b)` -> `assert a == b`
  - `if(x > y or y < z):`->`if x > y or y < z:`
  - And `return('...')` -> `return '...'`

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
2024-01-03 06:04:44 +00:00
zabboud
7f9fafed53 Resolve docstring errors in throughput_benchmark.py, weak.py, _traceback.py, file_baton.py, _contextlib.py, _device.py, cpp_backtrace.py, bundled_inputs.py, run_cpu.py, hooks.py, mobile_optimizer.py, _freeze.py, __init__.py, mkldnn.py, dlpack.py (#113311)
Fixes #112633

Fixed errors relating to pydocstyle in the following files. The remaining errors are not covered in this issue. `torch/utils/dlpack.py` was not modified as the errors are relating to the function signature in the first line in the docstring which must be maintained as is for proper Sphinx interpretation.

```python
def from_dlpack(ext_tensor: Any) -> 'torch.Tensor':
    """from_dlpack(ext_tensor) -> Tensor
         .....
    """
```

pydocstyle torch/utils/_contextlib.py --count
before: 4
after: 0

pydocstyle torch/backends/mps/__init__.py --count
before: 8
after: 1

**remaining errors**
```
torch/backends/mps/__init__.py:1 at module level:
        D104: Missing docstring in public package
```

pydocstyle torch/backends/xeon/run_cpu.py --count
before: 13
after: 1

**remaining errors**
```
torch/backends/xeon/run_cpu.py:864 in public function `main`:
        D103: Missing docstring in public function
```

pydocstyle torch/backends/cpu/__init__.py --count
before: 2
after: 1

**remaining errors**
```
torch/backends/cpu/__init__.py:1 at module level:
        D104: Missing docstring in public package
```

pydocstyle torch/utils/cpp_backtrace.py --count
before: 4
after: 1

**remaining errors**
```
torch/utils/cpp_backtrace.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/bundled_inputs.py --count
before: 8
after: 1

**remaining errors**
```
torch/utils/bundled_inputs.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/file_baton.py --count
before: 8
after: 1

**remaining errors**
```
torch/utils/file_baton.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/mobile_optimizer.py --count
before: 6
after: 1

**remaining errors**
```
torch/utils/mobile_optimizer.py:8 in public class `LintCode`:
        D101: Missing docstring in public class
```

pydocstyle torch/backends/opt_einsum/__init__.py --count
before: 7
after: 5

**remaining errors**
```
torch/backends/opt_einsum/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/opt_einsum/__init__.py:67 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/opt_einsum/__init__.py:77 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/opt_einsum/__init__.py:93 in public class `OptEinsumModule`:
        D101: Missing docstring in public class
torch/backends/opt_einsum/__init__.py:94 in public method `__init__`:
        D107: Missing docstring in __init__
```

pydocstyle torch/utils/_device.py --count
before:  9
after: 6

**remaining errors**
```
torch/utils/_device.py:58 in public class `DeviceContext`:
        D101: Missing docstring in public class
torch/utils/_device.py:59 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_device.py:62 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:68 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:73 in public method `__torch_function__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:80 in public function `device_decorator`:
        D103: Missing docstring in public function

```

pydocstyle torch/utils/_freeze.py --count
before: 15
after: 7

**remaining errors**
```
torch/utils/_freeze.py:77 in public function `indent_msg`:
        D103: Missing docstring in public function
torch/utils/_freeze.py:89 in public class `FrozenModule`:
        D101: Missing docstring in public class
torch/utils/_freeze.py:100 in public class `Freezer`:
        D101: Missing docstring in public class
torch/utils/_freeze.py:101 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_freeze.py:106 in public method `msg`:
        D102: Missing docstring in public method
torch/utils/_freeze.py:185 in public method `get_module_qualname`:
        D102: Missing docstring in public method
torch/utils/_freeze.py:206 in public method `compile_string`:
        D102: Missing docstring in public method

```

pydocstyle torch/utils/throughput_benchmark.py --count
before: 25
after: 8
**remaining errors**
```
torch/utils/throughput_benchmark.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/throughput_benchmark.py:27 in public class `ExecutionStats`:
        D101: Missing docstring in public class
torch/utils/throughput_benchmark.py:28 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/throughput_benchmark.py:33 in public method `latency_avg_ms`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:37 in public method `num_iters`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:46 in public method `total_time_seconds`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:50 in public method `__str__`:
        D105: Missing docstring in magic method
torch/utils/throughput_benchmark.py:94 in public method `__init__`:
        D107: Missing docstring in __init__

```

pydocstyle torch/utils/hooks.py --count

before: 14
after: 11

**remaining errors**
```
torch/utils/hooks.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/hooks.py:23 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/hooks.py:34 in public method `remove`:
        D102: Missing docstring in public method
torch/utils/hooks.py:44 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:50 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:64 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:67 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:82 in public function `warn_if_has_hooks`:
        D103: Missing docstring in public function
torch/utils/hooks.py:103 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/hooks.py:188 in public method `setup_input_hook`:
        D102: Missing docstring in public method
torch/utils/hooks.py:197 in public method `setup_output_hook`:
        D102: Missing docstring in public method
```

pydocstyle torch/utils/_traceback.py --count
before: 19
after: 14

**remaining errors**
```
torch/utils/_traceback.py:47 in public function `report_compile_source_on_error`:
        D103: Missing docstring in public function
torch/utils/_traceback.py:160 in public class `CapturedTraceback`:
        D101: Missing docstring in public class
torch/utils/_traceback.py:163 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_traceback.py:167 in public method `cleanup`:
        D102: Missing docstring in public method
torch/utils/_traceback.py:170 in public method `summary`:
        D102: Missing docstring in public method
torch/utils/_traceback.py:182 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/_traceback.py:190 in public method `extract`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:190 in public method `extract`:
        D400: First line should end with a period (not 't')
torch/utils/_traceback.py:213 in public method `format`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:213 in public method `format`:
        D400: First line should end with a period (not 'f')
torch/utils/_traceback.py:213 in public method `format`:
        D401: First line should be in imperative mood (perhaps 'Format', not 'Formats')
torch/utils/_traceback.py:224 in public method `format_all`:
        D200: One-line docstring should fit on one line with quotes (found 3)
torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`:
        D400: First line should end with a period (not 'f')
```

pydocstyle torch/utils/mkldnn.py --count
before: 28
after: 26

**remaining errors**
```
torch/utils/mkldnn.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/mkldnn.py:4 in public class `MkldnnLinear`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:5 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:19 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:23 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:29 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:75 in public class `MkldnnConv1d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:76 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:82 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:88 in public class `MkldnnConv2d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:89 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:100 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:110 in public class `MkldnnConv3d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:111 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:122 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:133 in public class `MkldnnBatchNorm`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:136 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:155 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:163 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:171 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:184 in public class `MkldnnPrelu`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:185 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:190 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:194 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:199 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:205 in public function `to_mkldnn`:
        D103: Missing docstring in public function
```

pydocstyle torch/utils/weak.py --count
before: 32
after: 30

**remaining errors**
```
torch/utils/weak.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/weak.py:42 in public class `WeakIdRef`:
        D101: Missing docstring in public class
torch/utils/weak.py:45 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:54 in public method `__call__`:
        D102: Missing docstring in public method
torch/utils/weak.py:61 in public method `__hash__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:64 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:84 in public class `WeakIdKeyDictionary`:
        D101: Missing docstring in public class
torch/utils/weak.py:87 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:131 in public method `__delitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:135 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:138 in public method `__len__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:145 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:148 in public method `__setitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:151 in public method `copy`:
        D102: Missing docstring in public method
torch/utils/weak.py:162 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:172 in public method `get`:
        D102: Missing docstring in public method
torch/utils/weak.py:175 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:182 in public method `items`:
        D102: Missing docstring in public method
torch/utils/weak.py:189 in public method `keys`:
        D102: Missing docstring in public method
torch/utils/weak.py:198 in public method `values`:
        D102: Missing docstring in public method
torch/utils/weak.py:216 in public method `popitem`:
        D102: Missing docstring in public method
torch/utils/weak.py:224 in public method `pop`:
        D102: Missing docstring in public method
torch/utils/weak.py:228 in public method `setdefault`:
        D102: Missing docstring in public method
torch/utils/weak.py:231 in public method `update`:
        D102: Missing docstring in public method
torch/utils/weak.py:241 in public method `__ior__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:245 in public method `__or__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:252 in public method `__ror__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:262 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:276 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:280 in public method `__call__`:
        D102: Missing docstring in public method

```

@mikaylagawarecki @jbschlosser @svekars
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113311
Approved by: https://github.com/ezyang
2023-11-15 17:40:04 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
Justin Chu
abc1cadddb [BE] Enable ruff's UP rules and autoformat utils/ (#105424)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105424
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-18 20:17:25 +00:00
Kurt Mohler
ee28b865ee Deprecate TypedStorage, its derived classes, and all of their public methods (#85303)
Part of #85302

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85303
Approved by: https://github.com/ezyang
2022-11-08 18:11:01 +00:00
Michael Suo
fb0f285638 [lint] upgrade mypy to latest version
Fixes https://github.com/pytorch/pytorch/issues/75927.

Had to fix some bugs and add some ignores.

To check if clean:
```
lintrunner --paths-cmd='git grep -Il .' --take MYPY,MYPYSTRICT
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76753

Approved by: https://github.com/malfet
2022-05-03 20:51:34 +00:00
PyTorch MergeBot
3d7428d9ac Revert "[lint] upgrade mypy to latest version"
This reverts commit 9bf18aab94.

Reverted https://github.com/pytorch/pytorch/pull/76753 on behalf of https://github.com/suo
2022-05-03 20:01:18 +00:00
Michael Suo
9bf18aab94 [lint] upgrade mypy to latest version
Fixes https://github.com/pytorch/pytorch/issues/75927.

Had to fix some bugs and add some ignores.

To check if clean:
```
lintrunner --paths-cmd='git grep -Il .' --take MYPY,MYPYSTRICT
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76753

Approved by: https://github.com/malfet
2022-05-03 19:43:28 +00:00
Nanshu Wang
db4165892b [SmartCompose][OnDevice]fix function name bug in mobile export & Script to convert mobile model (#66915)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66915

Pull Request resolved: https://github.com/pytorch/pytorch-canary/pull/3

fix function name bug in mobile export

Test Plan: buck run pytext/fb/assistant/smart_compose:mobile_converter -- --model_input=pytext_training/tree/teams/assistant/smart_compose/300555761/model.ts --model_output=pytext_training/tree/teams/assistant/smart_compose/300555761/mobile_model_test.ts

Reviewed By: JacobSzwejbka

Differential Revision: D31782983

fbshipit-source-id: 7288bb65adc7346d218980a535d68a12d8ef2033
2021-10-20 18:14:51 -07:00
Jacob Szwejbka
18e4688199 [Pytorch Edge] Improve bundled inputs name error handling (#65856)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65856

Occasionally functions dont have this __name__ variable set and have name set instead? Not sure why this happens, but this should catch it.

Test Plan: ci

Reviewed By: iseeyuan

Differential Revision: D31286787

fbshipit-source-id: 8a339541215329b6e9ff43ef77363be41f19c5ca
2021-10-12 00:08:39 -07:00
Wenliang Zhao
3bd69d3020 add bubdle input into AIBench (#64557)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64557

MaskRCNN speed depends on how many people detected in the detection stage. A random input from dataloader doesn't satisfy this. In order to standardize the benchmarking, we use 2 standard image for benchmarking, 2/3 people.

Test Plan: AIBench result: https://www.internalfb.com/intern/aibench/details/945883114818980

Reviewed By: axitkhurana

Differential Revision: D30446049

fbshipit-source-id: a2826fdb69e9f840c0afc566c4cbbcde1c2fba89
2021-09-07 14:46:23 -07:00
Pavithran Ramachandran
5f997a7d2f [PyTorch][Edge] Improve InflatableArgs for Bundled Inputs (#62368)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62368

# Context
The bundled inputs accepts an expression in the form of string InflatableArg.fmt that can be applied on the inputs to inflate. The InflatableArg.fmt provides flexibility to have custom transformation to inflate. When the input arguments to a function are not Tensor type, TorchScript casts the inputs from type T to Optional[T] expects the function to handle Nullable (None) clause as well. This becomes tricky to handle in one line code or lambda functions.

We propose an alternative way which allows InflatableArg to include the text of a TorchScript function that would be defined on the module as a helper, then use that in its inflation expression. This can be provided by InflatableArg.fmt_fn. Please refer to pytorch/test/test_bundled_inputs.py for example on how to use the same.

Also refer JacobSzwejbka comment on the same [here](https://github.com/pytorch/pytorch/pull/62368#issuecomment-892012812)

# Mitigation
Allow InflatedArg to include the text of a TorchScript function that would be defined on the module as a helper, then use that in its inflation expression.
ghstack-source-id: 135158680

Test Plan:
To run `test_dict_args`

```
(base) [pavithran@devvm1803.vll0 /data/users/pavithran/fbsource/fbcode] buck test //caffe2/test:test_bundled_inputs -- test_dict_args
Action graph will be rebuilt because files have been added or removed.
Building: finished in 5.4 sec (100%) 12180/12180 jobs, 0/12180 updated
  Total time: 5.8 sec
More details at https://www.internalfb.com/intern/buck/build/fafcf277-1095-4cba-978d-6022f0d391ad
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: 5ef9de71-c1b1-406b-a6c0-3321c2368b8d
Trace available for this run at /tmp/tpx-20210727-163946.454212/trace.log
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/7036874465805934
    ✓ ListingSuccess: caffe2/test:test_bundled_inputs - main (11.365)
    ✓ Pass: caffe2/test:test_bundled_inputs - test_dict_args (test_bundled_inputs.TestBundledInputs) (12.307)
Summary
  Pass: 1
  ListingSuccess: 1
If you need help understanding your runs, please follow the wiki: https://fburl.com/posting_in_tpx_users
Finished test run: https://www.internalfb.com/intern/testinfra/testrun/7036874465805934
```

To check the py code of TS module:
P433043973

Reviewed By: dreiss

Differential Revision: D29950421

fbshipit-source-id: c819ec5c94429b7fbf6c4beb0259457f169b08ec
2021-08-20 09:36:08 -07:00
Jacob Szwejbka
1891e4bf1e [Pytorch] Remove run_on_bundled_input (#58344)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58344

remove a helper function thats more trouble then its worth.

ghstack-source-id: 129131889

Test Plan: ci and {P414950111}

Reviewed By: dhruvbird

Differential Revision: D28460607

fbshipit-source-id: 31bd6c1cc169785bb360e3113d258b612cad47fc
2021-05-17 12:44:00 -07:00
Jacob Szwejbka
a3b33139da [Pytorch] Add non mutator bundled inputs method (#58408)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58408

Itd be nice to have a version of bundle inputs that didnt mutate the original class/object. So now there is!
ghstack-source-id: 129127316

Test Plan: The new unittests

Reviewed By: dhruvbird

Differential Revision: D28460231

fbshipit-source-id: f6f7a19e264bddfaa177304cbde40336060a237a
2021-05-17 11:36:49 -07:00
Jacob Szwejbka
94ef2b9b48 [Pytorch] Better doc strings for bundled inputs (#56591)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56591

title
ghstack-source-id: 128926699

Test Plan: na

Reviewed By: dreiss

Differential Revision: D27912185

fbshipit-source-id: 1a8f267af21afb7b4393b9ec0792dd17c48e57cb
2021-05-14 11:13:23 -07:00
Sam Estep
75024e228c Add lint for unqualified type: ignore (#56290)
Summary:
The other half of https://github.com/pytorch/pytorch/issues/56272.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56290

Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI runs (before this PR was finished) failed:

- https://github.com/pytorch/pytorch/runs/2384511062
- https://github.com/pytorch/pytorch/actions/runs/765036024

Reviewed By: seemethere

Differential Revision: D27867219

Pulled By: samestep

fbshipit-source-id: e648f07b6822867e70833e23ddafe7fb7eaca235
2021-04-21 08:07:23 -07:00
Jacob Szwejbka
ea4af1511c [Pytorch] Better error message for bundling inputs a second time (#56086)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56086

ghstack-source-id: 126671245

Test Plan: unittest

Reviewed By: dhruvbird

Differential Revision: D27778582

fbshipit-source-id: 6b59aa7ddb25c1b3162bbffdf0dd212a96f22bd3
2021-04-20 12:28:27 -07:00
Jacob Szwejbka
bfee8d0464 [Pytorch Edge] Dont cache inflated bundled inputs (#55181)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55181

There can be a dramatic model size delta between saving a model after calling generate_bundled_inputs_for_* and saving before. This is due to the caching of the inflated tensor.

This increases latency when asking for the bundled inputs multiple times. I dont think this matters but it might for something like benchmarking?
ghstack-source-id: 125746773

Test Plan: unit tests.

Reviewed By: dreiss

Differential Revision: D27519487

fbshipit-source-id: 6ba22bff9c4e3a8d86c04627b7cbf47ca2d141b9
2021-04-07 10:46:43 -07:00
David Reiss
0e7af36acd Make bundled inputs work with quantized zero inputs (#47407)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47407

Previously, the code for bundling contiguous single-valued tensors (like
torch.zeros) wasn't working for quantized tensors because it was calling
the `torch.tensor` constructor without passing in the quantizer.
Instead, skip the constructor entirely, which makes this use case work
and also simplifies the code.  (Originally, I forgot that
`arg.flatten()[0]` would return a tensor, not a scalar.)

Test Plan: Bundled a quantized zero input and saw it run properly.

Reviewed By: dhruvbird

Differential Revision: D24752890

Pulled By: dreiss

fbshipit-source-id: 26bc4873a71dd44660cc0fcb74c227b754e31663
2021-04-06 13:47:35 -07:00
Jacob Szwejbka
155b19ef1a [Pytorch Mobile] Remove useless line from bundled_inputs (#52824)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52824

How was this not breaking? _bundled_inputs_deflated doesnt exist
ghstack-source-id: 122491970

Test Plan: unit tests

Reviewed By: iseeyuan

Differential Revision: D26658098

fbshipit-source-id: 9ebf961b8764ba8779052c520dd46a8724be042a
2021-02-26 10:36:32 -08:00
Jacob Szwejbka
3cf08eaf15 [Pytorch Mobile] Improve Bundled Inputs Error Checking (#52386)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52386

Remove stale aliasing inputs warning, error check that inputs is not null and has at least one entry, error check that the list of inputs is a list of tuples. This can cause subtle bugs where if the user passes in a list of tensors (the most common mistake) the first dimension of each tensor is dropped. This can go unnoticed because its the often the batch dimension which pytorch occasionally silently re-adds if its missing
ghstack-source-id: 122363487

Test Plan:
Bundle something with an input, bundle something with {} for inputs

For typing check below paste

{P199554712}

Reviewed By: dhruvbird

Differential Revision: D26374867

fbshipit-source-id: cd176f34bad7a4da850b165827f8b2448cd9200d
2021-02-24 13:55:45 -08:00
Jacob Szwejbka
0118dec2e3 [Pytorch] Expanded Bundled Inputs To Any Public Function (#51153)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51153

Enabled bundled inputs for all public functions that the user wants in a torchscript module. An important caveat here is that you cant add bundled inputs to functions that were in the nn.module but weren't caught in the scripting/tracing process that brought the model to torchscript.

Old Api is exactly the same. Still only works on forward, return types the same, etc.

-----------New API-------------

Attachment of inputs:

***augment_model_with_bundled_inputs*** : works the same as before but added the option to specify an info dictionary.

***augment_many_model_functions_with_bundled_inputs*** : Similar to the above function but allows the user to specify a Dict[Callable, List[<inputs>]] (mapping function references to the bundled inputs for that function) to attach bundled inputs to many functions

Consumption of inputs:

***get_all_bundled_inputs_for_<function_name>()*** : Works exactly like get_all_bundled_inputs does, but can be used for functions other then forward if you know ahead of time what they are called, and if they have bundled inputs.

***get_bundled_inputs_functions_and_info()*** : This is easily the hackiest function. Returns a Dict['str', 'str'] mapping function_names to get_all_bundled_inputs_for_<function_name>. A user can then execute the functions specified in the values with something like
    all_info = model.get_bundled_inputs_functions_and_info()
    for func_name in all_info.keys():
        input_func_name = all_info[func_name]['get_inputs_function_name'][0]
        func_to_run = getattr(loaded, input_func_name)
The reason its done this way is because torchscript doesn't support 'Any' type yet meaning I can't return the bundled inputs directly because they could be different types for each function. Torchscript also doesn't support callable so I can't return a function reference directly either.
ghstack-source-id: 120768561

Test Plan:
Got a model into torchscript using the available methods that I'm aware of (tracing, scripting, old scripting method). Not really sure how tracing brings in functions that arent in the forward call path though. Attached bundled inputs and info to them successfully. Changes to TorchTest.py on all but the last version of this diff (where it will be/is removed for land) illustrate what I did to test.

Created and ran unit test

Reviewed By: dreiss

Differential Revision: D25931961

fbshipit-source-id: 36e87c9a585554a83a932e4dcf07d1f91a32f046
2021-02-02 10:33:59 -08:00
Edward Yang
3ce539881a Back out "Revert D25757721: [pytorch][PR] Run mypy on more test files" (#50142)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50142

Original commit changeset: 58437d719285

Test Plan: OSS CI

Reviewed By: walterddr, ngimel

Differential Revision: D25803866

fbshipit-source-id: d6b83a5211e430c0451994391876103f1ad96315
2021-01-06 11:27:36 -08:00
Mike Ruberry
9529ae3776 Revert D25757721: [pytorch][PR] Run mypy on more test files
Test Plan: revert-hammer

Differential Revision:
D25757721 (b7bfc723d3)

Original commit changeset: 44c396d8da9e

fbshipit-source-id: 58437d719285a4fecd8c05e487cc86fc2cebadff
2021-01-05 15:18:14 -08:00
Ralf Gommers
b7bfc723d3 Run mypy on more test files (#49658)
Summary:
Improves one annotation for `augment_model_with_bundled_inputs`

Also add a comment to not work on caffe2 type annotations, that's not worth the effort - those ignores can stay as they are.

xref gh-16574

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49658

Reviewed By: heitorschueroff

Differential Revision: D25757721

Pulled By: ezyang

fbshipit-source-id: 44c396d8da9ef3f41b97f9c46a528f0431c4b463
2021-01-05 09:28:38 -08:00
Guilherme Leobas
cdf5e2ae86 add typing annotations for a few torch.utils.* modules (#43806)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/43431. Depends on [gh-43862](https://github.com/pytorch/pytorch/pull/43862) (EDIT: now merged)

Modules:
- torch.utils.mkldnn
- torch.utils.mobile_optimizer
- torch.utils.bundled_inputs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43806

Reviewed By: gmagogsfm

Differential Revision: D23635151

Pulled By: SplitInfinity

fbshipit-source-id: a85b75a7927dde6cc55bcb361f8ff601ffb0b2a1
2020-09-11 10:20:55 -07:00
David Reiss
375cd852fa Add a utility function for bundling large input tensors (#37055)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37055

Sometimes it's okay to bundle a large example input tensor with a model.
Add a utility function to make it easy for users to do that *on purpose*.

Test Plan: Unit test.

Differential Revision: D22264239

Pulled By: dreiss

fbshipit-source-id: 05c6422be1aa926cca850f994ff1ae83c0399119
2020-06-26 13:34:02 -07:00
David Reiss
41ea7f2d86 Add channels-last support to bundled_inputs (#36764)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36764

This allows bundling inputs that are large uniform buffers in
channels-last memory format.

Test Plan: Unit test.

Differential Revision: D21142660

Pulled By: dreiss

fbshipit-source-id: 31bbea6586d07c1fd0bcad4cb36ed2b8bb88a7e4
2020-06-26 13:31:17 -07:00
David Reiss
fab06bfb75 Add utility for bundling sample inputs with models (#35631)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35631

Bundling sample inputs with our models with a standardized interface
will make it possible to write benchmarking and code-coverage tools that
call all models in a uniform way.  The intent is to make this a standard
for mobile models within Facebook.  Putting it in torch/utils so tests
can run on GitHub and because it might be useful for others as well.

`augment_model_with_bundled_inputs` is the primary entry point.  See
its docstring for usage information and the test for some example uses.

One design question I had was how much power should be available for
automatic deflating and inflating of inputs.  The current scheme gives
some automatic handling and a reasonable escape hatch
("_bundled_input_inflate_format") for top-level tensor arguments, but no
automatic support for (e.g.) tensors in tuples or long strings.  For
more complex cases, we have the ultimate escape hatch of just defining
_generate_bundled_inputs in the model.

Another design question was whether to add the inputs to the model or
wrap the model in a wrapper module that had these methods and delegated
calls to `forward`.  Because models can have other exposed methods and
attributes, the wrapped seemed too onerous.

Test Plan: Unit test.

Differential Revision: D20925013

Pulled By: dreiss

fbshipit-source-id: 4dbbb4cce41e5752133b4ecdb05e1c92bac6b2d5
2020-04-08 13:10:36 -07:00