Commit Graph

83 Commits

Author SHA1 Message Date
Peter Goldsborough
c101a57a74 Build mechanism for custom operators (#10226)
Summary:
This is the last step in the custom operator implementation: providing a way to build from C++ and Python. For this I:

1. Created a `FindTorch.cmake` taken largely from ebetica with a CMake function to easily create simple custom op libraries
2. Created a ` torch/op.h` header for easy inclusion of necessary headers,
3. Created a test directory `pytorch/test/custom_operator` which includes the basic setup for a custom op.
    1. It defines an op in `op.{h,cpp}`
    2. Registers it with the JIT using `RegisterOperators`
    3. Builds it into a shared library via a `CMakeLists.txt`
    4. Binds it into Python using a `setup.py`. This step makes use of our C++ extension setup that we already have. No work, yey!

The pure C++ and the Python builds are separate and not coupled in any way.

zdevito soumith dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10226

Differential Revision: D9296839

Pulled By: goldsborough

fbshipit-source-id: 32f74cafb6e3d86cada8dfca8136d0dfb1f197a0
2018-08-16 18:56:17 -07:00
James Reed
32bb4040dd Unified type annotation parsing for script frontends (#10279)
Summary:
After this, all combinations of {String frontend, Python AST Frontend}{Python 3-style type annotations, MyPy-style type comments}{Script method, Script function} should properly accept type annotations.

Possible TODOs:
- Clean up the functions marked HACK
- Clean up the Subscript tree-view to better match the Python AST versions
- Can we use this for Python functions? That's the only place annotations.get_signature() is still needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10279

Differential Revision: D9319726

Pulled By: jamesr66a

fbshipit-source-id: b13f7d4f066b0283d4fc1421a1abb9305c3b28fa
2018-08-14 18:13:15 -07:00
Peter Goldsborough
5390476297 Add tracing to custom op and simplify tracer overall (#10212)
Summary:
This PR adds tracing infrastructure for custom operators. It also simplifies the tracer overall, and changes the codegen to do more metaprogramming there instead of via C++ (which was necessary for the custom op tracing).

To give an example of the tracer/metaprogramming change, what used to look like this in `VariableType.cpp`:

```
jit::tracer::PreTraceInfo trace_info;
  if (jit::tracer::isTracing()) {
    trace_info = jit::tracer::preRecordTrace(jit::aten::index_select, "self", self, "dim", dim, "index", index);
  }
```

is now simply the inlined version of `preRecordTrace`, minus C++ metaprogramming:

```
torch::jit::Node* node = nullptr;
  if (jit::tracer::isTracing()) {
    auto& graph = jit::tracer::getTracingState()->graph;
    node = graph->create(jit::aten::index_select_out, /*outputs=*/0);
    jit::tracer::recordSourceLocation(node);
    jit::tracer::addInputs(node, "result", result);
    jit::tracer::addInputs(node, "self", self);
    jit::tracer::addInputs(node, "dim", dim);
    jit::tracer::addInputs(node, "index", index);
    graph->appendNode(node);
  }
```

zdevito apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10212

Differential Revision: D9199615

Pulled By: goldsborough

fbshipit-source-id: cd4b603c1dc01340ead407228e109c99bdba2cfc
2018-08-07 13:54:15 -07:00
Peter Goldsborough
cb0e72e00d Add registerOperator overloads that infer the schema (#10048)
Summary:
This PR adds a way to infer the JIT/script schema of a function from its signature, and then create an operator from the schema and implementation. The implementation function is wrapped into another function, which pops values from the stack into an argument tuple, then invokes the function and pushes the return value back onto the stack, sometimes unpacking the return value if it is a tuple.

Currently the method is called `createOperator`. We may want to think of a nicer way of registering ops in tandem with `RegisterOperators`. It might be very cumbersome to add a template constructor to `Operator`, so maybe we can come up with a chaining method on `RegisterOperators` like `RegisterOperators(schema, func).op(schema.func).op(schema, func)` -- it has to work at startup time (for a static variable) though. We can solve this in another PR.

zdevito apaszke smessmer dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10048

Differential Revision: D9125975

Pulled By: goldsborough

fbshipit-source-id: de9e59888757573284a43787ae5d94384bfe8f9a
2018-08-03 11:45:49 -07:00
Adam Paszke
5e5c15dd42 Add (constant size) TensorLists to JIT, use them in cat and stack nodes (#9948)
Summary:
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9948

Reviewed By: ezyang

Differential Revision: D9033666

Pulled By: apaszke

fbshipit-source-id: 02d75e391ed6dee62500842df50f0b6ee5e38846
2018-07-31 07:39:52 -07:00
Zachary DeVito
40a8239984 Fix a bug in argument spec (#9958)
Summary:
Non-tensor types did not set the running total_dims count, causing corrupted data.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9958

Reviewed By: jamesr66a

Differential Revision: D9065621

Pulled By: zdevito

fbshipit-source-id: 0ac1fcdf6da076a9c9ebd5d70ce9126e3f8e722e
2018-07-30 13:08:59 -07:00
Wanchao Liang
b7b61a8eb4 Change expect, cast on Type to return shared pointers, make isSubtypeOf accept TypePtr (#9786)
Summary:
Follow up task of #9584.

Commit 1:

- change expect/cast to return shared pointers instead of raw pointer
- isSubtypeOf accept TypePtr instead. Use `x->isSubtypeOf(NumberType::get())` rather than `x->isSubtypeOf(*NumberType::get())`

Commit 2:

- to address enable_shared_from_this pitfalls, we make the constructor private and expose the factory method to make sure user can only create it using our factory method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9786

Reviewed By: zdevito

Differential Revision: D8980441

Pulled By: wanchaol

fbshipit-source-id: e5c923fc57a701014310e77cf29985b43bb25364
2018-07-26 18:09:45 -07:00
Adam Paszke
e39c8043dc Make GraphExecutors work on Stacks instead of variable_tensor_lists (#9763)
Summary:
This is blocking the IR operator unification, because I need to be able to pass scalars to backward functions.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9763

Reviewed By: zou3519

Differential Revision: D8978457

Pulled By: apaszke

fbshipit-source-id: 570b4c3409322459cb0f2592069730a7d586ab20
2018-07-26 12:00:27 -07:00
Peter Goldsborough
f62bc01dfe Remove TORCH_ASSERT (#9575)
Summary:
I got some tensor->variable conversion exceptions from `torch/csrc/autograd/variable.h`, which used the `TORCH_ASSERTM` macros instead of `AT_CHECK`, so they didn't have backtraces. This was such a substantial loss for debugability that I decided to update the whole codebase to use the backtrace-enabled ATen macros instead of `TORCH_ASSERT` and `JIT_ASSERT`, the latter having been an alias of the former.

ezyang apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9575

Differential Revision: D8924566

Pulled By: goldsborough

fbshipit-source-id: 7a4013b13eec9dbf024cef94cf49fca72f61d441
2018-07-24 18:10:06 -07:00
peter
53083b8353 Remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS and fix CUDA 8 build on Windows (#9491) (#9491)
Summary:
Fixes #9092.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9491
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9693

Differential Revision: D8946850

Pulled By: ezyang

fbshipit-source-id: bd816f459ab70f6b4a0983305a1ce341bb633707
2018-07-23 06:40:39 -07:00
Zachary DeVito
9ed2190bdb Add a tagged union type that replaces tensor in the interpreter. (#9368)
Summary:
IValue is short for interpreter value. It is used frequently so a short name is important.
This will allow us to implement more non-tensor types in an efficient way and remove
many hacks from the compiler.

This PR is limited. It only introduces IValue and changes interpreter to use it.
Follow up PRs will:
* Change the way aten_ops consume non-tensor types so that integer lists,
  are no longer represented as Tensors.
* Introduce TensorList as a fundamental type and remove all vararg handling in gen_jit_dispatch
* Change the compiler to implement math on primitive numbers rather than converting to tensors.

jamesr66a  apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9368

Reviewed By: ezyang

Differential Revision: D8817598

Pulled By: zdevito

fbshipit-source-id: 29dce80611ce5f6384234de9d12a67861d2b112f
2018-07-16 15:40:22 -07:00
Adam Paszke
b9f575fc33 Remove legacy code from the JIT (#9323)
Summary:
In particular, get rid of backward tracing and CppOp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9323

Reviewed By: ezyang

Differential Revision: D8795935

Pulled By: apaszke

fbshipit-source-id: fb7a7eeee41902da35f2a8efd77262ca60fd6bbe
2018-07-11 10:25:38 -07:00
Zachary DeVito
9aded4351e Allow arbitrary namespaces for Symbols (#9018)
Summary:
Context: I am updating jit::FunctionSchema to use `Symbol name;` rather than `std::string name`. Sometimes the name refers to a builtin  thing like `prim::UnpackTuple`, sometimes to an aten operator like `aten::add`, and sometimes just to a raw string, like `my_method_foo` that really doesn't belong in any namespace and should be printed to the user in that form. For this last case, I want the ability to create a raw Symbol again, like was previously possible, that just represents an interned string. This PR enables that use, keeps the other functionality still possible, and simplifies interned_string's implementation a bit.

This changes how Symbol is implemented. Now the namespace of a symbol
is optional and the namespaces themselves are Symbols.
This allows Symbol to be used with arbitrary namespaces, and allows
you to use Symbol as an simple interned string using via fromQualString
and toQualString without :: in the string. This also simplifies the
implementation. Like with string conversion, builtin primitives go
through a fast path for namespace lookup while registered symbols require
holding a lock and reading an array entry to lookup the namespace.

Note: alexnet expect file update is from a previous commit. It doesn't run in CI because pytorch vision is not installed.
Closes https://github.com/pytorch/pytorch/pull/9018

Reviewed By: SsnL

Differential Revision: D8690449

Pulled By: zdevito

fbshipit-source-id: b65ee57704641d7294fe115c5470cf55d406458f
2018-07-06 10:11:15 -07:00
Zachary DeVito
f74207c99f
Allow autograd to work even when the shape of values cannot be determined (#8641)
This commit implements the solution proposed in https://github.com/pytorch/pytorch/issues/8410
to workaround the need to create zero tensors with the same shape as inputs.
It introduces the concept of a LinearBlock which marks places in the code
where we know if all the inputs to the node are zero, then the outputs
to the node are also zero. Autodiff introduces LinearBlocks around
backwards functions, which have this property. specializeUndef then
propagates Undef nodes using this information.

Notes:
* Since we do not always specialize, we have a pass LowerLinearBlocks
that replaces the block with an if statement that dynamically guards
the Undef case.
* We introduce AutogradAdd which is addition that still works when
its inputs might be undefined. In cases where we specialize this will
get removed in favor of a normal add, but there are cases where
gradient graphs do not specialize (e.g. when they are not differentiable,
but a derivative is required) so it is important for this op to be executable.
2018-06-25 18:40:04 -07:00
Richard Zou
8489c4cc6e
Better support for literals in jit script (#8687)
Addresses #8177

A design doc can be found here: [gist](https://gist.github.com/zou3519/4b7f13f03cc9f3612bd9363e6405fa0a) version or [quip](https://fb.quip.com/azL1AqUckBdo) version

General approach:
- Add NumberType, FloatType, IntType to represent Python numbers, floats and ints.
- Emit these types for python literals
- Change aten_schema such that Scalars are NumberType, int64_t and bool are IntType.
- Emit aten::type_as, prim::NumToTensor, and prim::TensorToNum nodes for tensor-number math. (see examples below)
- Erase NumberType,  prim::NumToTensor, and prim::TensorToNum for ONNX export

### Tensor/number math
```
import torch
@torch.jit.script
def fn(x):
    return x + 1
```
```
graph(%x : Dynamic) {
  %1 : int = prim::Constant[value={1}]()
  %2 : Dynamic = prim::NumToTensor(%1)
  %3 : Dynamic = aten::type_as(%2, %x)
  %4 : Dynamic = aten::add[alpha={1}](%x, %4)
  return (%5);
}
```

### Number/Number Math
```
import torch
@torch.jit.script
def fn(zero):
    c = 1 + 1
    return zero + c
```
```
graph(%zero : Dynamic) {
  %1 : int = prim::Constant[value={1}]()
  %2 : int = prim::Constant[value={1}]()
  %3 : Dynamic = prim::num_to_tensor(%1)
  %4 : Dynamic = prim::num_to_tensor(%2)
  %5 : Dynamic = aten::add[alpha={1}](%3, %4)
  %c : int = prim::TensorToNum(%6)  # this is the result of the addition
  ...
  return (%13);
}
```

List of squashed commits:

* Introduce Python Number types

Added: IntType, FloatType, NumberType with
IntType <: NumberType
FloatType <: NumberType

Changed aten_schema so arguments have corresponding types

* Emit a NumberType for python literals.

Also emit a NumberType for Scalar default values.

* Add prim::NumToTensor and prim::TensorToNum

* Add DynamicType -> NumberType implicit cast for bc

* Better ensureTensor error message

* Add ensureTensorOrNumber. Allow passing Number to some functions

Like the range() construct and slices

* Patch IntList to work.

IntList is still a DynamicType in the frontend: a tensor gets built from
a List[int].

Also, IntList[1] is a "union between int and IntList" the way it is
implemented. If the frontend sees an int being passed for an IntList[1]
arg, it converts it to a tensor as well.

* Enforce some order on schemas to avoid overload ambiguity

add(Tensor, Tensor) should appear earlier than add(Tensor, Scalar). This
matches the order in which python_arg_parser parses its arguments.

* Disable std_dim and var_dim tests.

With the new schema information, std(input, keepdim) and std(input, dim)
are ambiguous. This will need to be fixed at a later date.

* Add NumberType erasure pass.

This is used for ONNX export and to ensure that NumberType information
doesn't reach the interpreter

* Add support for mixed tensor/number math ops.

* Tests for new functionality.

Includes:
- Tensor/number math
- number/number math
- EraseNumberTypes pass test

* Patch tests

Update expect tests for:
- decompose_addmm
- loop unrolling tests

Because python numbers are now NumberType, they cannot be returned by
functions anymore. Work around this by using "torch.full", or by adding
a tensor([0]) (taken from FIXME_zerol()). Both approaches are used
because torch.full is more readable, but it is broken in some cases.

* Add erase_number_types to torch/CMakeLists.txt

* Move math back to emitSimpleExpr from emitSugaredExpr

* Remove some dead lines

* Renable some excluded script/trace tests that are fixed.

* Move some tests to expected failure

* Address some comments (more addressing to come)

* Erase relevant aten::type_as nodes in EraseNumberTypes

I also changed it so that EraseNumberTypes is only called for ONNX
export. It is no longer used to prevent
prim::NumToTensor/prim::TensorToNum from reaching shape_analysis or
interpreter.cpp.

shape_analysis infers the type of the output of these nodes to be the
same as their input.

intepreter.cpp treats both of these nodes as no-ops.

* Add reminder to fix std/var

* Call EraseNumberTypes only when exporting a script module

* Update expects after rebase
2018-06-21 15:43:38 -04:00
Peter Goldsborough
372d1d6735
Create ATen tensors via TensorOptions (#7869)
* Created TensorOptions

Storing the type in TensorOptions to solve the Variable problem

Created convenience creation functions for TensorOptions and added tests

Converted zeros to TensorOptions

Converted rand to TensorOptions

Fix codegen for TensorOptions and multiple arguments

Put TensorOptions convenience functions into torch namespace too

All factory functions except *_like support TensorOptions

Integrated with recent JIT changes

Support *_like functions

Fix in place modification

Some cleanups and fixes

Support sparse_coo_tensor

Fix bug in Type.cpp

Fix .empty calls in C++ API

Fix bug in Type.cpp

Trying to fix device placement

Make AutoGPU CPU compatible

Remove some auto_gpu.h uses

Fixing some headers

Fix some remaining CUDA/AutoGPU issues

Fix some AutoGPU uses

Fixes to dispatch_tensor_conversion

Reset version of new variables to zero

Implemented parsing device strings

Random fixes to tests

Self review cleanups

flake8

Undo changes to variable.{h,cpp} because they fail on gcc7.2

Add [cuda] tag to tensor_options_cuda.cpp

Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks

Fix linker error in AutoGPU.cpp

Fix bad merge conflict in native_functions.yaml

Fixed caffe2/contrib/aten

Fix new window functions added to TensorFactories.cpp

* Removed torch::TensorOptions

Added code to generate wrapper functions for factory methods

Add implicit constructor from Backend to TensorOptions

Remove Var() from C++ API and use torch:: functions

Use torch:: functions more subtly in C++ API

Make AutoGPU::set_device more exception safe

Check status directly in DynamicCUDAHooksInterface

Rename AutoGPU to DeviceGuard

Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad

remove python_default_init: self.type()

Add back original factory functions, but with deprecation warnings

Disable DeviceGuard for a couple functions in ATen

Remove print statement

Fix DeviceGuard construction from undefined tensor

Fixing CUDA device compiler issues

Moved as many methods as possible into header files

Dont generate python functions for deprecated factories

Remove merge conflict artefact

Fix tensor_options_cuda.cpp

Fix set_requires_grad not being checked

Fix tensor_new.h

TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac

Fix bug in DeviceGuard.h

Missing includes

TEMPORARILY moving a few more methods into .cpp to see if it fixes windows

Fixing linker errors

* Fix up SummaryOps to use new factories

Undo device agnostic behavior of DeviceGuard

Use -1 instead of optional for default device index

Also move DeviceGuard methods into header

Fixes around device index after optional -> int32_t switch

Fix use of DeviceGuard in new_with_tensor_copy

Fix tensor_options.cpp

* Fix Type::copy(

* Remove test_non_float_params from ONNX tests

* Set requires_grad=False in ONNX tests that use ints

* Put layout/dtype/device on Tensor

* Post merge fixes

* Change behavior of DeviceGuard to match AutoGPU

* Fix C++ API integration tests

* Fix flip functions
2018-06-16 00:40:35 -07:00
Orion Reblitz-Richardson
edd4e2c5d1
Expose proto utils and ONNX (#8073)
* Expose proto utils and ONNX from PyTorch libcaffe2.so

* Try to use protobuf from _C.so

* Fix ONNX proto header include

* Adjust order of imports for ONNX until nanopb goes away

* Set and use ONNX_NAMESPACE for PyTorch builds

* Show protobuf summary for all builds

* Add ONNX_NAMESPACE for cpp_build

* Statically link libprotobuf.a into libtorch.so

* Set ONNX_NAMESPACE on Windows build

* Move core/dispatch up as well

* Add /MD flag for Windows build of _C

* Potential Windows fix for ONNX and protobuf

* Add direct linkage from _C to ONNX on Windows

* Only include protobuf wrapper for PyTorch

* Pass extra_compile_args to _nvrtc ext build

* Remove installation of .a files
2018-06-13 10:25:32 -07:00
Peter Goldsborough
04a3616de0 Replace std::size_t with size_t (#8093) 2018-06-04 11:10:44 -04:00
Zachary DeVito
185f8fbe7c Removing remaining NO_PYTHON ifdefs (#8067)
* Remove NO_PYTHON in tracing

* Remove NO_PYTHON in ir.h

* Remove NO_PYTHON in test_jit.cpp
2018-06-04 10:53:28 -04:00
Peter Goldsborough
28b1a3852c
Add backward() to Tensor and Variable (#7774)
* Add backward() to Tensor and Variable

* Add at:: in front of Tensor

* Trying to not move optional to appease windows?

* Move implementation into cpp file

* Undo some formatting changes
2018-05-24 17:31:41 -07:00
Will Feng
60745b3380 Revert #7750 and #7762 to fix Windows CI on master (#7772)
* Revert "Add missing brace (#7762)"

This reverts commit ea27c5af50.

* Revert "[C++ API] Add backward() to Tensor and Variable  (#7750)"

This reverts commit 1e2762796f.
2018-05-22 15:42:52 -07:00
Peter Goldsborough
1e2762796f
[C++ API] Add backward() to Tensor and Variable (#7750)
* Add backward() to Tensor and Variable

* Added a couple tests
2018-05-22 10:43:04 -07:00
Zachary DeVito
286cd04a20
JIT cleanup (#7631)
Cleans up dead code in the JIT:

* Remove interpreter_autograd_function
* Remove Handles
* Remove HandleBuilder
* Remove creates_handles, and tracing_autograd_python_function flags
* Remove unused var_args
* Fix submodules
2018-05-21 10:06:29 -07:00
gchanan
4f20a0e439
Fix various sparse transpose issues; remove dead code from Declaratio… (#7200)
* Fix various sparse transpose issues; remove dead code from Declarations.yaml.

1) Fixes some checks in t_, transpose_ that don't allow transposing empty sparse tensors.
2) Remove out= variants from docs since they don't exist (and haven't since at least v0.3.1).
3) Unify implementations of t_, transpose_, t, transpose.
4) Move dead checking code from Declarations.cwrap to actual implementations.
5) Fix test which never tested transpose_.

* Add test for error with t, t_.

* Address review comments.

* Fix jit tests.

* Fix test_jit.
2018-05-18 19:51:41 +02:00
Zachary DeVito
38bc732b2d
[jit] Change interpreter/fuser to work on Variables only (#7489)
* this removes the flag controlling whether the interpreter works on variables.
* now the interpreter _always_ works on variables
* constants in the IR are still _always_ non-variables, and an assert was added to ensure this.
* as_tensor was split into as_variable and as_tensor since it is sometimes used
  to construct constants in the IR
* I tried changing the IR to also always use variables but that change was much more
  cross cutting and fragile and I never got it working
2018-05-11 13:33:47 -07:00
Zachary DeVito
b7487d42a0
Workaround to make PythonOps traced with torch.jit.trace work correctly. (#6738)
The long-term fix is to remove the handling-creating pathways and
remove all the modes from PythonOp making it into an op that simply
calls a PyObject. Right now ONNX expects PythonOp to hold a
nn.Function, not a generic callable, so completely removing the legacy
pathway will also require changes to how ONNX symbolics are found.
2018-04-24 17:21:00 -07:00
Zachary DeVito
d985cf46f1
Add workaround to fix include warnings in Python 2 builds. (#6716) 2018-04-24 12:30:19 -07:00
gchanan
e1f5d80d5c
Eliminate handle_zero_dim when broadcasting is applied earlier. (#6683)
* Eliminate handle_zero_dim when broadcasting is applied earlier.

This ends up not actually doing anything unless all the broadcasted tensors are scalars,
which ends up with inconsistent behavior in that case only, because the type promotion rules are different.

This is better solved with real type promotion logic.

* Change type of script comparison to long.

* Fix jit tests.

* Fix cpp jit test by being consistent about long-vs-float.

* Consistent float and long.

* Use int64_t rather than long.
2018-04-18 23:37:54 -04:00
Zachary DeVito
c8d1ec02be
[jit] Have ScriptModule inherit from Module (#5769)
* Have ScriptModule inherit from Module
  This is accomplished by created replacement _parameters, _buffers,
  and _modules which implement the OrderedDict APIs but which
  actually get/set their members inside script::Module
* Merge TracedModule with ScriptModule
* Move logic of attribute handling into Python bindings rather than
  make script::Module handle it. This was redundant with nn.Module,
  which already handles attribute.
* Make TracedModule a subclass of ScriptModule
* Move handling of attribute kind logic into bindings.
* Allow ScriptModule to contain non-script module submodules.
2018-03-22 00:17:49 -04:00
Luca Antiga
6f80023c29 Port ATen and JIT C++ tests to Catch2 (#5788)
This PR addresses #5648. In particular, following the discussion at #5648:

- it adds Catch as a submodule (https://github.com/catchorg/Catch2) in torch/aten/utils
- it ports all ATen tests to Catch
- it ports torch/csrc/jit/test_jit.cpp to Catch (libtorch only, Python build is unaffected)
2018-03-19 16:09:43 -04:00
Edward Z. Yang
acc409396b
Namespaced symbols (#5820)
* Namespaced symbols

- Our interned strings now have structure, "ns::symname" rather than just
  "symname" before.  We support efficient namespace testing for uniques
  by encoding the namespace in one byte in the Symbol internal representation.
  See torch/csrc/jit/interned_strings.h for a more in-depth implementation
  discussion.

- All uses of ksymbol are now attr::symbol (or some appropriate namespace).
  The valid namespaces are prim, attr, onnx and aten.

- Symbol is bound in Python as a qualified string "attr::symbol", EXCEPT for the
  attribute setting/getting API, whose symbols must always be attr
  symbols; they get special cased to assume strings are passed.
  There's a little bit of naughtiness in the implementation, maybe you know
  how to solve it.

- However, the g.op() convenience function assumes that you're generating
  ONNX operators, unless you explicitly qualify.

- All ATen operators and nodes have built-in interned strings generated
  for them, so you should never have to write a string literal ever again.
  The tracing code is adjusted to use it.

- ONNX exporter now properly tests to see that all operators are in
  onnx namespace before accepting the export.  This is way more
  robust than the previous exporter, which would be willing to
  export capitalized operators which were not actually ONNX operators.

- A slight organizational change for symbolic.py; this module now ONLY
  contains aten operators.  In particular, the exporter for Constant
  has moved into utils.py (along with Undefined, from the C++ side),
  since primitive ops get "special treatment."

- The un-inplacing logic in recording is more robust, so that we don't
  delete a trailing underscore from __and__.  This never affected us
  before because we didn't have any tests for it.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-03-16 13:36:11 -04:00
Adam Paszke
b239b123e4
Clean up TraceInput (#5743) 2018-03-15 19:38:33 +01:00
Zachary DeVito
41285edbb6 [jit] add a compiled script module (#5630)
Add script::Module C++ class to represent script modules
switch AST -> IR conversion to work on Modules/Methods rather than raw graphs
function-only AST -> IR conversion is just a simplified case where there is
only one module with a single method and no parameters.
introduce SugaredValue in compiler.h to represent values in scope in a script
function that are not first-class and that get desugared. This is used to
represent the module's self parameter, as well as python function calls,
and method calls on tensor
provide a Python ScriptModule that provides a nice API on top of script::Module
allowing for the definition of script modules with methods, parameters,
and submodules
Not in this PR but intended for the future:

ScriptModule actually subclasses nn.Module, with most methods implemented
Unification of tracedmodule and script module functionality into one container class.

Detailed changelog:

* Switch compiler over to using Module, but don't
use them yet.

* Remove intermediate attribute encoding in compiler

* Create SugaredValue object to handle resolution
of compiled module.

* switch to_ir to modules, implement Select

* hacky python wrappers

* Private ScriptModule

* Add `define` to script module

* Attributes use TK_LIST_LITERAL

this anticipates adding a real list literal expression to the language.

* Add a metaclass to make sure script stubs are registered

* Add a test

* Doc createResolutionCallback

* Docs and minor editing

* Address PR comments

* Document

* Fix unicode issue
2018-03-12 09:52:40 -04:00
gchanan
a3442f62bc
Support native namespace functions with type dispatch. (#5576)
* Support native namespace functions with type dispatch.

Use 'ones' as an example.  Note this is a "halfway" solution; i.e. the call chain is:
at::ones(shape, dtype) -> dtype.ones(shape, dtype) -> CPUFloatType.ones(shape, dtype) -> at::native::ones(shape, dtype)

The "nicer" solution would probably be something like:
at::ones(shape, dtype) -> dtype.ones(shape) -> CPUFloatType.ones(shape) -> at::native::ones(shape, this)

* Fix type inference.

* Fix test install.

* Fix extensions.

* Put dtype argument at the beginning.

* Fix extension.cpp.

* Fix rnn.

* Move zeros in the same manner.

* Fix cuda.

* Change randn.

* Change rand.

* Change randperm.

* Fix aten contrib.

* Resize in randperm_out.

* Implement eye.

* Fix sparse zeros.

* linspace, logspace.

* arange.

* range.

* Remove type dispatch from gen_python_functions.

* Properly generate maybe_init_cuda for type dispatch functions not named type.

* Don't duplicate dtype, this parameters for native type dispatched functions.

* Call VariableType factory methods from the base type so it gets version number 0.

* Address review comments.
2018-03-09 10:52:53 -05:00
Luca Antiga
396637cdd6 Python-free build of autograd + jit (#5356)
This PR adds the possibility to build the C++ parts of autograd and jit, with no dependency on Python.
The goal is to allow taking a PyTorch IR representation (a tree s-expr) and running it with provided inputs.

Prerequisite: build PyTorch so that codegen runs once.
Instructions:

cd tools/cpp_build
bash build_all.sh
This will build libtorchjit and torchjit_test in tools/cpp_build/build/torchjit-build. The latter basically runs the code in test_jit.cpp for now.

While writing the PR, it turned out that a few of Python.h includes were redundant. They were removed here (PyTorch tests still pass on my machine, we'll see CI).

* Introduce Python-free builds of autograd and jit

* Remove NO_PYTHON ifdef in functions/special
2018-03-08 15:13:10 -05:00
Adam Paszke
5597aba868
Add return statement to the JIT AST (#5578) 2018-03-06 13:14:53 +01:00
James Reed
55c64e5243 Add Python function calls to JIT script (#5445)
* Add Python function calls to script
* Script compiler gains a `Resolver` object that runs when it does not understand a function call. This decouples the python resolution from the conversion to IR.
2018-02-28 19:45:04 -08:00
Zachary DeVito
8904616028
add control flow to interpreter (#5293)
* Use stacks in the interpreter/aten_dispatch

Rather than have separate input/output lists,
the interpreter now works using a single stack.
Operators in the interpreter push/pop from the stack.
This allows ownership of tensors to transfer directly to an operator,
and an operator can drop the reference to a tensors as soon as it is
no longer needed. This is important for the GraphExecutor op,
which recursively runs the interpreter.

Once autograd is updated to pass variables to Function by value,
we will be able to ensure that we release ownership as soon as possible.

This commit also switches the interpreter to use a fake
tensor 'ContainerTensor' rather than at::Retainable to hold non-tensor
data in the interpreter. This allows us to use std::vector<at::Tensor>
for all registers, which is significantly less confusing than the
OwnedRetainables struct it was replacing.

* Add If and Loop to interpreter

* Preprocess loop to calculate where references to tensor should be dropped
* Add control instructions JumpZ/JumpNZ/Jump
* Switch from explicitly having stage structs to having a single list
  of instructions with Store/Load instructions to take values off the
  initial stack
* Make the interpreter tests executable rather than use expect files
* add a flag to interpreter code so that constants are variables
  if the interpreter is running on variables.

* Add tensor_as to its own file
2018-02-22 19:56:15 -08:00
Peter Goldsborough
2d5fbe6e0d Improve Variable interface (#5127)
* Improve Variable interface

* Address comments from @apaszke and @colesbury

* string ::operator= is not noexcept

* Remove ir.h from tracer_state.h to improve build times

* Make Variable a struct and pack SavedVariable fields

* Implement as_variable_ref

* grad_fn_ptr() -> grad_fn_unsafe()

* Reduce hackiness of set_type hack

* Include variable.h and edge.h in tracer_state.h because it uses them

* class Variable -> struct Variable because Windows cant even

* Make Variable::output_nr uint32_t instead of int

* Add comment about tracing state

* Replaced more static_cast<Variable&> and improve docs

* Remove SavedVariable destructor and construct members in init list

* Clarify docs for Variable

* Variable::set_version -> set_version_counter
2018-02-12 23:26:26 -05:00
Simeon Monov
5816721e35 Fix the evaluation order problem with build_lstm_body (#5124)
C++ argument evaluation order is undefined and leads to different
results in different platforms. This commit fixes build_lstm_body to
do the calculation slightly differently.

Fixes #5055
2018-02-08 00:49:16 -05:00
Peter Goldsborough
25e946bf78 Replace edge_type with Edge and create Variable::gradient_edge() (#5030) 2018-02-07 10:50:42 -08:00
Adam Paszke
239d3b2461
Add formulas for LSTM ops to JIT AD (#4916) 2018-02-06 00:01:02 +01:00
Zachary DeVito
b044c95129 Use blocks machinery to simplify bookkeeping in autodiff (#5036)
* Remove addValues and use WithInsertPoint

* Use blocks to simplify differentiate

Using @ezyang's suggestion, this change uses a block rather than
staging annotations to represent the reverse pass. This allows us
to reuse the machinery to copy graphs/blocks to extract the
reverse pass concisely.

This also change the input order of Gradients df to:
   [output vjps][temporary vjps][captures]

In addition to being simpler to generate in this order, it also
will allow ExecutionPlan to append the captures onto the already-
existing input list of vjps that are given by the autograd,
rather than have to prepend them, which should be slightly cheaper.

* Enforce that input capture are before outputs

This changes the Gradient struct to enforce that input
captures appear before output captures in the capture list,
which makes it easier to use in ExecutionPlan.
2018-02-05 10:43:50 -05:00
Zach DeVito
f8388d2aea Add the ability to change the insert point Graphs
In lieu of a more complicated builder object, this commit adds
an 'insert point' to Graph and a method 'insertNode' which inserts
nodes at that insert point. setInsertPoint can be used to change
the insert point on the graph to the end of a block or to any point
inside a current block. The resource guard `WithInsertPoint`
can be used to temporarily change it to, for example, insert
into the "then" branch of an If statement.

This commit also updates the resource guard for scopes. It previously
relied on return value optimization to work correctly which is
not guaranteed to be applied until C++17.
2018-02-03 12:09:40 -08:00
Zach DeVito
99ce581155 Add support for ::copy and ::createClone with blocks 2018-02-02 23:24:49 -08:00
Zach DeVito
0d748fac96 Add nested Blocks in IR
This commit is getting the IR ready for representing ONNX control flow.
It adds nested blocks to the IR.

* Each node now has blocks(), addBlock(), and eraseBlock() similar to a node's
  output list.
* Blocks are a property of every node rather than an attribute because
  to make it easier to manage the lifetime of the containing nodes and because
  the behavior of cloning Blocks will likely be different from the way we clone other
  attributes.
* A block itself has a list of nodes, as well as inputs and outputs.
  The meaning of the nested input/output nodes are specific to the particular
  node kind containing the block. It is safe to assume inputs to a block will be
  in scope in the block.
* Each Block has an owningNode() and each node has an owningBlock().
  The owningNode of the top-most block is null.
* Values are lexically scoped: nested blocks can use values from outer blocks
  that have been defined in previous nodes. Lint has been updated with these
  new scoping rules.
* This change preserves almost all of the pre-Block API. No attempt has been made
  to make optimizations aware of Blocks. This will need to be done on a case-by-case
  basis as we make optimizations capable of handling Blocks.
2018-02-02 23:24:49 -08:00
Zachary DeVito
c308e03f3e
Initial GraphExecutor Implementation. (#4982)
This adds the initial implementation of graph executor for the new JIT design. It includes a few python tests ensuring that nograd, backward, and double-backward cases work for simple examples and some corner cases. More work needs to be done to performance optimize as there are many extra copies and places where we hold onto variables longer than we should. These are noted in the comments.
2018-02-02 17:45:59 -08:00
Adam Paszke
6f0b7bea03
Add support for requires_grad in JIT's AD (#4898) 2018-01-30 01:28:50 +01:00
Zach DeVito
2d829d15af [JIT] Add simple shape analysis
This quick and dirty shape analysis just makes up fake tensors,
and runs them through ATen to do shape propagation.
2018-01-28 22:55:36 -08:00
Zach DeVito
3b38a244ab Add ArgumentSpec data structure and tests
This data-structure will be used as the key in GraphExecutor's
code cache. It supports fast creation, hashing, and equality checking
because it will run on all inputs to GraphExecutors in the hot path.
2018-01-28 22:55:36 -08:00