Sometimes, it could be difficult to write a fake class e.g. when the original implementation is using some third-party libraries or users are certain that the class is safe to trace with the real object.
This PR allows user to specify their intention by implementing a "safe_to_trace_with_real_obj" method on their script class.
Test Plan:
`pytest test/export/test_torchbind.py -k safe`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129586
Approved by: https://github.com/zou3519
As titled. Previously, __obj_flatten__ can run in a fake tensor mode, e.g. in process_input of aot_autograd, which is surrounded by a fake tensor mode. This causes the tensor ops inside __obj_flatten__ to run under fake tensor mode. However, tensors inside of script obejct are real tensors, this causes the fake tensor mode to error out saying that we need to first fakify fall the tensors (because allow_non_fake_inputs is set to True).
In this PR, we disable all the dispatch modes when running to_fake_obj.
Note that, the output of `__obj_flatten__` will be fakified and filled inside of the corresponding FakeScriptObject. So during traicng, we'll be using FakeScriptObject that has fake tensor contents.
Test Plan:
Add a new test: pytest test/export/test_torchbind.py -k test_compile_tensor_op_in_tensor_flatten
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129605
Approved by: https://github.com/angelayi
We've been facing issues where TCPStore can successfully connect but then fail in the validate() function due to resets from listen backlog queue overflow when combined with reset enabled as well as long init times.
This PR does a few things:
* Retry that connect and validate up to the specified timeout.
* Use exponential backoff for the retry logic with jitter instead of a fixed 1s sleep.
* Eliminate the `sleep(std::chrono::milliseconds(numWorkers))` on init which can add significant delays to startup. This is no longer necessary per @XilunWu https://github.com/pytorch/pytorch/pull/116141
Test plan:
```
python test/distributed/test_store.py -v
./build/bin/BackoffTest
```
Will do internal testing with some large scale jobs to ensure TCPStore works correctly.
At 4k scale: 4x improvement
```
tristanr@devvm4382 ~/pt_tests [SIGABRT]> time TORCH_SHOW_CPP_STACKTRACES=1 python tcpstore_large_test.py (pytorch-3.10)
started 0
init 0
set 0
joined all
________________________________________________________
Executed in 1.98 secs fish external
usr time 0.93 secs 91.00 micros 0.93 secs
sys time 1.98 secs 954.00 micros 1.97 secs
tristanr@devvm4382 ~/pt_tests> conda activate torchdrive-3.10 (pytorch-3.10)
tristanr@devvm4382 ~/pt_tests> time TORCH_SHOW_CPP_STACKTRACES=1 python tcpstore_large_test.py (torchdrive-3.10)
started 0
init 0
set 0
joined all
________________________________________________________
Executed in 8.20 secs fish external
usr time 2.15 secs 0.00 micros 2.15 secs
sys time 2.76 secs 843.00 micros 2.76 secs
```
```py
import time
import os
import threading
from multiprocessing import Pool
WORLD_SIZE = 10000
import torch.distributed as dist
def run(rank):
should_log = rank % (WORLD_SIZE // 10) == 0
if should_log:
print(f"started {rank}")
store = dist.TCPStore(
host_name="devvm4382.nao0.facebook.com",
port=29500,
world_size=WORLD_SIZE,
is_master=rank == 0,
use_libuv=True,
)
if should_log:
print(f"init {rank}")
store.set(f"key{rank}", "1234")
if should_log:
print(f"set {rank}")
del store
def noop(rank):
pass
print("starting pool")
with Pool(WORLD_SIZE) as pool:
pool.map(noop, range(WORLD_SIZE), 1)
print("pool hot")
start = time.time()
pool.map(run, range(WORLD_SIZE), 1)
print("run finished", time.time()-start)
```
```
tristanr@devvm4382 ~/pt_tests> python tcpstore_large_test.py (pytorch-3.10)
starting pool
pool hot
started 0
[W624 16:58:09.086081750 TCPStore.cpp:343] [c10d] Starting store with 10000 workers but somaxconn is 4096.This might cause instability during bootstrap, consider increasing it.
started 1000
init 1000
set 1000
started 2000
init 2000
set 2000
started 3000
init 3000
set 3000
started 4000
init 4000
set 4000
started 5000
init 5000
set 5000
started 6000
init 6000
set 6000
started 7000
init 7000
set 7000
started 8000
init 8000
set 8000
started 9000
init 9000
set 9000
init 0
set 0
run finished 0.705092191696167
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129261
Approved by: https://github.com/rsdcastro, https://github.com/wconstab, https://github.com/kurman, https://github.com/XilunWu, https://github.com/c-p-i-o
This PR does two things:
1. it duplicates the fake script object because aot_export trace the program twice. The result of tracing in the first time would cause the tracing result of second time be wrong.
2. Also add a new test for methods that return constant outputs. Before the PR, there's is no meta["val"] for these nodes because fx won't track these constants. We still need to preserve these constant return operators in the graph because torchbind objects are stateful and deleting it would remove the implicit state mutation inside of the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128844
Approved by: https://github.com/angelayi
Adds `C10_UBSAN_ENABLED` macro and use it to disable `SymIntTest::Overflows` (fails under `signed-integer-overflow` UBSAN check).
Also cleans up UBSAN guard in `jit/test_misc.cpp` to use `C10_UBSAN_ENABLED` and the existing `C10_ASAN_ENABLED` instead of locally defining `HAS_ASANUBSAN`.
> NOTE: This should fix `SymIntTest::Overflows` failing under ubsan in fbcode too...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127967
Approved by: https://github.com/atalman, https://github.com/d4l3k, https://github.com/malfet
Summary:
Split out `seq_id` into `collective_seq_id` and `p2p_seq_id`. The main idea here is that collectives that go to all machines should have identical `collective_seq_id` and therefore it makes it easier to spot if one of machines isn't handling a collective operation.
Next, we can attempt to match up p2p operations to ensure that the sender(s)/receivers(s) are in sync.
Resolves issue: https://github.com/pytorch/pytorch/issues/125173
Test Plan:
Unit tests.
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125727
Approved by: https://github.com/zdevito
Copy of #126089, with some additional fixes & tests
Partial fix for #125635: previously, the deepcopy implementation would group together any tensors with any aliasing relationship and assign them to the same tensor. This was sort of good if you have two tensors `b = a.detach()`, because then if you deepcopy `list = [a, b]` to `list2 = list.deepcopy()`, then writes to `list2[0]` will also modify `list2[1]`. But for the most part, it's bad; (1) if you have `b = a.as_strided((4, 4), (16, 1), 16)`, then it'll make `b == a` in the deepcopied implementation, which is completely wrong; and (2) even if you have `b = a.detach()`, these are still initially two different tensors which become the same tensor after the old deepcopy implementation.
The new implementation only groups together tensors that have the same identity. This is a partial fix, but it's more reasonable. What changes:
* (becomes more correct): different views of the same base tensor will no longer all become equal after deepcopying
* (still kind of wrong): views won't actually alias each other after deepcopying.
* (arguably a minor regression): equivalent views of the same tensor will no longer be copied to the same tensor - so they won't alias.
BC breaking: C++ deepcopy interface changes from accepting `IValue::HashAliasedIValueMap memo` to accepting `IValue::HashIdentityIValueMap memo`. If there are objections, we can keep the old API. However, it seems likely that users generally won't try to deepcopy from C++.
Differential Revision: [D57406306](https://our.internmc.facebook.com/intern/diff/D57406306)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126126
Approved by: https://github.com/ezyang
This PR makes libtorch behave the same as PyTorch when loading optimizer state from archive. With PyTorch, options of parameter groups are loaded from the archive, which is missing currently in libtorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125215
Approved by: https://github.com/janeyx99
Summary:
We found that some dumps are missing when monitoring thread timeout.
This is likely due to multiple PGs could still dump the same records
at the same time. So we should allow only PG0 to actualy dump
Test Plan:
unit test
python test/run_test.py --cpp --verbose -i cpp/ProcessGroupNCCLErrorsTest
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125356
Approved by: https://github.com/c-p-i-o
This PR continues to clean clang-tidy warnings in torch/csrc/distributed/c10d, following #124701. In addition, libfmt dependency is added in CMake code to enable using it in the headers. The libfmt has to be added as private dependency to torch_cuda and torch_hip because they include torch/csrc/distributed/c10d/Utils.hpp which uses libfmt.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124987
Approved by: https://github.com/malfet
Summary: Now that we have reached nanosecond granularity, we can now remove the temporary guards that were previously required for nanosecond precision.
Test Plan: Regression should cover this change
Reviewed By: aaronenyeshi
Differential Revision: D56444570
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124734
Approved by: https://github.com/aaronenyeshi
Summary: In AOTInductor generated CPU model code, there can be direct references to some aten/c10 utility functions and data structures, e.g. at::vec and c10::Half. These are performance critical and thus it doesn't make sense to create C shim for them. Instead, we make sure they are implemented in a header-only way, and use this set of tests to guard future changes.
There are more header files to be updated, but we will do it in other followup PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123848
Approved by: https://github.com/jansel
ghstack dependencies: #123847
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Zoomer: https://www.internalfb.com/intern/zoomer/?profiling_run_fbid=796886748550189
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55925068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123650
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Tracing with flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_37_22.4155151.pt.trace.json.gz&bucket=gpu_traces
Tracing without flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_39_15.4166047.pt.trace.json.gz&bucket=gpu_traces
Tracing on main: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_42_43.4177559.pt.trace.json.gz&bucket=gpu_traces
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55087993
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122425
Approved by: https://github.com/aaronenyeshi
This PR updates the error message in autograd when an input tensor does not set to `require_grad`. The original message does not contain the index info, making users hard to debug.
The error message style consists with that on line 105-109.
Co-authored-by: Jeffrey Wan <soulitzer@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123154
Approved by: https://github.com/soulitzer
This PR only adds abstract class registration logic without touching existing tests so they still trace with real script object. The added tests are only for registration APIs and test error messages.
Our design is that the abstract implementation should be in Python. This is much better in terms of usability. But this also has implications for custom op that takes script object as input, which is detailed later in this stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122622
Approved by: https://github.com/zou3519
ghstack dependencies: #122619, #122620, #122621
Summary:
During tracing, some constants (tensor_constant{idx}) are being generated internally.
Those constants are neither parameters or buffers, and users have zero control on them.
To accomodate this, we should allow users not passing in those constants generated internally but still be able the constants in the model.
Test Plan:
Included in commit.
```
build/bin/test_aot_inductor
```
Reviewed By: zoranzhao
Differential Revision: D55354548
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122690
Approved by: https://github.com/khabinov
Summary:
During tracing, some constants (tensor_constant{idx}) are being generated internally.
Those constants are neither parameters or buffers, and users have zero control on them.
To accomodate this, we should allow users not passing in those constants generated internally but still be able the constants in the model.
Test Plan:
Included in commit.
```
build/bin/test_aot_inductor
```
Differential Revision: D55286634
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122562
Approved by: https://github.com/chenyang78, https://github.com/khabinov
Fix and test issues with both coalesced and individual send/recv ops
Considered an alternate approach and then ditched it
- alternate approach: #119757
- reason ditched: prefer recording individual collective events inside
coalescing region instead of just the event at the end of the region,
which also would not have tensor sizes or opnames without additional
state variables added
Another approach also ditched
- record events on workEnqueue instead of initWork
- reason ditched: too messy to get input/output shapes tagged on
recording when recording in workEnqueue. Adding the info onto the
Work obj would be possible, but adds to overhead of copying Works
which we do on every collective. We can get info off the input/output
tensors directly in initWork, but we don't want to keep refs to those
tensors alive while the work is Enqueued, so we'd have to specifically
copy size lists or something.
This PR instead avoids creating a work inside pointToPoint when
coalescing is active. Instead, only at endCoalescing() is a work finally
intialized and enqueued. But it adds a record() call inside
pointToPoint() instead of creating a work, during coalescing. This
record() call picks up tensor shapes and op names.
It ALSO changes initWork to accept a 'record' argument. This defaults to
false, and should only be set to true if the caller ensures the work
will be enqueued by workEnqueue, ensuring its cuda events are live when
used by flight recorder's update_state().
The testing uncovers some odd pre-existing behavior and leaves them
alone for now. We could change some of these
- seq starts off at 1, not 0 for first op (but this is inconistent)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120270
Approved by: https://github.com/shuqiangzhang
ghstack dependencies: #120724
Summary:
The current dump timeout logic is a bit cumbersome as it needs 2 times: 1.
timeout, 2. wake up time. And in theory the caller just needs to wait
for a max of timeout value for the dump and declare the dump to be
either successful or not. Also we unify the async call using std::async
instead of a customized async lauch function for each operation.
Test Plan:
Unit tests
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120331
Approved by: https://github.com/wconstab
Do not run test ConstantPropagation.CustomClassesCanBePropagated on a platform where QNNPACK is not supported.
For example, this test fails on M1 Mac because QNNPACK is not supported on M1 Mac:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
unknown file: Failure
as described in more details in the issue #88613.
After the PR, test passes successfully as below:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
[ OK ] ConstantPropagation.CustomClassesCanBePropagated (0 ms)
[----------] 1 test from ConstantPropagation (0 ms total)
Fixes#88613
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119139
Approved by: https://github.com/jcaip
Recently we made it possible to serialize ExportedPrograms with fake parameters/buffers/etc.
The serialization regime was kind of whacky; basically we serialized a stub and reassembled the FakeTensor using metadata that we had stashed elsewhere in the Graph state.
This was bad for a few reasons:
- Storing the metadata separately from the actual serialized object caused situations where you could have one but not the other. An example case is if you had a FakeTensor contained inside a TorchBind object—there was no obviously place to store the metadata for this. This actually happens—TensorQueue in fbgemm does this.
- It created an annoying cycle: we had to deserialize the Graph's tensor metadata in order to deserialize (potentially faked) constants, but we need constants in order to deserialize the Graph.
This fixes all that. The basic idea is to patch the reducer function for FakeTensor at serialization time, and serialize a copy of the FakeTensor metadata. We already are policing BC for the TensorMeta schema struct so it's not a net increase in the BC surface.
As a bonus, I fixed a weird bug with torchbind tracing where we were accidentally reinterpreting a torch.ScriptObject as a torch.ScriptModule (which was the root cause of some weird behavior @bahuang was seeing last week).
Differential Revision: [D53601251](https://our.internmc.facebook.com/intern/diff/D53601251/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119531
Approved by: https://github.com/zhxchen17