Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
- [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- `torch/ao/nn/__init__.py` → Changing the imports to lazy.
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] [Current PR] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860927/)!
Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78715
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
- [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [X] [Current PR] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- None
Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860927/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78715
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76637
The previous naming convention `default_affine_fixed_qparams_observer`
and `default_symmetric_fixed_qparams_observer` were uninformative, and users had to read
the definition in order to understand what these observers are. The new
naming convention reveals information about the range of the observers
The analogous changes were also made for
`default_symmetric_fixed_qparams_fake_quant` and
`default_affine_fixed_qparams_fake_quant`
Test Plan:
```
python test/test_quantization.py
```
```
python test/test_quantization.py
```
Differential Revision:
D36054169
D36054169
Reviewed By: vkuzo
Pulled By: dzdang
fbshipit-source-id: 215f7786a4b7abda7327f17cc61735697ec5cca9
(cherry picked from commit 21a4e6eda4467c8adca7fd534a506a14e975f9cf)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74845
This PR adds support for quantization flow to detect
parametrized modules and match them using their original module types.
This mainly involved using the new type_before_parametrizations function rather than
type to check for module mathcing
Test Plan:
python test/test_ao_sparsity.py TestComposability
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D35240274
fbshipit-source-id: 7294d89c9c2e069e51d8b9bafa45c15f92bed124
(cherry picked from commit ed5cdb7b636c42e040d1b4a67b6b94604d06e1ff)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73863
This PR fully aligns the convert function with the design: https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md
and simplifies the implementation of convert function by always produce a reference quantized model (with reference patterns) first,
and then lower the model to a quantized model that is runnable with PyTorch native backend (fbgemm/qnnpack).
This PR makes the convert.py much easier to understand than the previous implementation, and we are able to remove majority of code
in quantization_patterns.py as well (in followup PRs).
Test Plan:
```
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestFXNumericSuiteCoreAPIs
python test/test_quantization.py TestFXNumericSuiteCoreAPIsModels
```
and other internal/oss regression tests
Imported from OSS
Reviewed By: andrewor14
Differential Revision: D34778506
fbshipit-source-id: 0678b66addf736039a8749b352f6f569caca962b
(cherry picked from commit 33ec9caf23f3ab373d827117efbd9db0668b2437)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72431
Adds support for a fused QAT observed module for `Linear` followed by
`BatchNorm1d`. In this PR, only the support for prepared module with
fake_quants in the right places is added.
A future PR will add support for `convert`, and tests for eager and FX
graph mode workflows.
Similar to conv-bn, we rescale the weight before applying the fake
quant, and undo the rescaling after the linear operation.
Test Plan:
```
python test/test_quantization.py TestQuantizeEagerQATNumerics.test_linear_bn
```
Imported from OSS
Reviewed By: jerryzh168, raghuramank10000
Differential Revision: D34044427
fbshipit-source-id: 47a519173939ca4824d2c6e6ea7a599764a8ed10
(cherry picked from commit bfc75fe078)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71443
cogwheel test inline_cvr_infer_canary_pyper_model_publish is timing out.
The convert_fx call takes > 20 mins for local and local_ro sub modules, which used to take ~ 2 mins.
Test Plan:
Fblearn flow run
* the following cmd took 1113 seconds before the diff and 5002 seconds after.
flow-cli clone-locally 320014219 --run-as-secure-group pytorch_at_scale --operators pyper_model_publish_workflow.pyper_model_publish_workflow.process_torch_package_model_files.process_non_sparse_parameters[0]
Cogwheel test
* Cogwheel test with packages in B3588 (the last good run) took 4694.48s
* Cogwheel test with packages in B3590 (the first timeout) took 13975.83s
* Cogwheel test with the following packages took 4535.04s
* all packages in B3588 except the model publish
* the model publish built with D33469839 (043e84b3d2) reversed (created D33633570)
Reviewed By: albanD, jerryzh168
Differential Revision: D33633570
fbshipit-source-id: dc5e777c48a90c551641a3f79126461f6a60449e
(cherry picked from commit 03ab65023a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71110
as mentioned in https://github.com/pytorch/pytorch/issues/70480 the dynamic conv ops are currently missing a key feature to bring their performance in line with other dynamic ops, this diff disables conv/convT from being automatically quantized with convert dynamic
Test Plan: buck test //caffe2/test:quantization --test-selectors test_quantized_module#TestDynamicQuantizedModule
Reviewed By: vkuzo
Differential Revision: D33511152
fbshipit-source-id: 50618fbe734c898664c390f896e70c68f1df3208
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254
Fixes https://github.com/pytorch/pytorch/issues/65997
BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.
Follow up work:
1. disallow `default` as an overload name for aten operators.
2. Add a method to obtain a list of all overloads (exclude the ones registered by JIT)
3. Add methods/properties to `OpOverload` to access more schema information (types of input and output args etc)
cc ezyang gchanan
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D33469839
Pulled By: anjali411
fbshipit-source-id: c3fc43460f1c7c9651c64b4d46337be21c400621
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254
Fixes https://github.com/pytorch/pytorch/issues/65997
TODO: disallow `default` as an overload name for aten operators.
BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.
cc ezyang gchanan
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D33262228
Pulled By: anjali411
fbshipit-source-id: 600dbf511514ea9b41aea3e6b1bc1102dab08909
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66778
This removes the hack of the context manager that would communicate the zeros block shape to the quantization convert.
The conversion will assume that the converted modules have `sparse_params` (which is added by the sparsifier).
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D31835721
Pulled By: z-a-f
fbshipit-source-id: c5fd2da3b09a728a2296765c00ca69275dbca3b1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68176
it should be noted that for the modules, reduce_range is set to
true by default in a similar fashion to linear_dynamic.
Test Plan:
python test/test_quantization.py TestDynamicQuantizedModule
python test/test_quantization.py TestDynamicQuantizedConv
python test/test_quantization.py TestQuantizedConv
Imported from OSS
Reviewed By: kimishpatel
Differential Revision: D32374003
fbshipit-source-id: 011562bd0f4d817387d53bb113df2600aa60a7a3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68175
This slightly alters the way from_float works so it will work
with placeholder observers. It also fixes a but with ConvTranspose3d and
ConvTranspose1d where the parameters like kernel_size, stride...etc
weren't set properly. New tests were added to check for this type of
issue as well.
Test Plan:
python test/test_quantization.py TestQuantizedOps
python test/test_quantization.py TestStaticQuantizedModule
Imported from OSS
Reviewed By: z-a-f
Differential Revision: D32374004
fbshipit-source-id: caaa548d12d433d9c1fa0abc8597a7d31bb4e8af
Summary:
**Summary:** This commit adds the `torch.nn.qat.dynamic.modules.Linear`
module, the dynamic counterpart to `torch.nn.qat.modules.Linear`.
Functionally these are very similar, except the dynamic version
expects a memoryless observer and is converted into a dynamically
quantized module before inference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67325
Test Plan:
`python3 test/test_quantization.py TestQuantizationAwareTraining.test_dynamic_qat_linear`
**Reviewers:** Charles David Hernandez, Jerry Zhang
**Subscribers:** Charles David Hernandez, Supriya Rao, Yining Lu
**Tasks:** 99696812
**Tags:** pytorch
Reviewed By: malfet, jerryzh168
Differential Revision: D32178739
Pulled By: andrewor14
fbshipit-source-id: 5051bdd7e06071a011e4e7d9cc7769db8d38fd73