Commit Graph

53 Commits

Author SHA1 Message Date
Justin Chu
c0d8a4af0a [BE] Enable ruff's UP rules and autoformat ao/ (#105430)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105430
Approved by: https://github.com/albanD, https://github.com/malfet
2023-07-19 13:44:37 +00:00
Aaron Gokaslan
67d9790985 [BE] Apply almost all remaining flake8-comprehension checks (#94676)
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
2023-02-12 01:01:25 +00:00
leslie-fang-intel
0f802eedc2 [Quant][FX] Lower QConvAddReLU2d for onednn backend (#91155)
**Summary**
Add quantization mappings for QConvAddReLU2d for int8 inference for onednn backend. The fusion and lowering is supported only in FX mode.

**Test plan**
```
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_onednn
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_by_default
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_lowering
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91155
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
2023-02-01 01:18:52 +00:00
leslie-fang-intel
ef4118e435 [Quant][FX] Lower QConvAdd2d for onednn backend (#91153)
**Summary**
Add quantization mappings for QConvAdd2d for int8 inference for onednn backend. The fusion and lowering is supported only in FX mode.

**Test plan**
```
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_onednn
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_by_default
python -m pytest test_quantization.py -k test_fuse_conv_bn_add_relu_lowering
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91153
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
2023-02-01 01:14:12 +00:00
Xia, Weiwen
a5eb564ba4 [Quant] lower fused LinearTanh for onednn backend (#89188)
**Summary**
Add fuser method and quantization mappings for `QLinearLeakyReLU` for int8 inference for onednn backend. The fusion and lowering are supported only in FX mode.

**Test plan**
python test_quantization.py TestFuseFx TestQuantizeFx

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89188
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
2022-12-20 01:30:21 +00:00
Xia, Weiwen
9ca41a986c [Quant][FX] Lower QLinearLeakyReLU for onednn backend (#88668)
**Summary**
Add quantization mappings for `QLinearLeakyReLU` for int8 inference for onednn backend. The fusion and lowering is supported only in FX mode.

**Test plan**
python test_quantization.py TestQuantizeFx

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88668
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
2022-12-19 00:44:24 +00:00
zaf
3a02873183 [quant][ao_migration] nn.intrinsic.quantized migration to ao (#86172)
All quantization-related modules are being migrated to `torch.ao`. This migrates the `nn.intrinsic.quantized`. Please, see the [tracker](https://github.com/pytorch/pytorch/issues/81667) for the timeline.

```
python test/test_quantization.py -- TestAOMigrationNNIntrinsic
```

Internal:

```
buck2 test @mode/dev-nosan //caffe2/test:quantization -- TestAOMigrationNNIntrinsic
```

Differential Revision: [D39425515](https://our.internmc.facebook.com/intern/diff/D39425515/)

Differential Revision: [D39425515](https://our.internmc.facebook.com/intern/diff/D39425515)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86172
Approved by: https://github.com/jerryzh168
2022-10-08 00:01:38 +00:00
zaf
efccb6401c [quant][ao_migration] nn.intrinsic.qat migration to ao (#86171)
All quantization-related modules are being migrated to `torch.ao`. This migrates the `nn.intrinsic.qat`. Please, see the [tracker](https://github.com/pytorch/pytorch/issues/81667) for the timeline.

```
python test/test_quantization.py TestAOMigrationNNIntrinsic
```

Differential Revision: [D39419993](https://our.internmc.facebook.com/intern/diff/D39419993/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39419993/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86171
Approved by: https://github.com/jerryzh168
2022-10-07 17:29:42 +00:00
HDCharles
73777d8a2b [ao] fixing public v private for quantization_mappings.py (#86025)
Summary: no significant changes, just added __all__

Test Plan: python test/test_public_bindings.py

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86025
Approved by: https://github.com/jerryzh168
2022-10-05 22:12:03 +00:00
Feisi Fu
d8eae6283d Rename 'torch/ao/nn/quantized._reference' to 'torch/ao/nn/quantized/reference'. (#84974)
Currently, the path for reference modules contains _ which means it's private (https://github.com/pytorch/pytorch/tree/master/torch/ao/nn/quantized/_reference), but we would like to make it public since the reference module is now enabled by default in the fx graph mode quantization flow and it will be added to eager mode flow as well in the future.

To make '_reference' public, it should satisfy the [public API rules](https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation).
I did in the first commit (prepare '_reference' to be public):
1: add __all__ to public modules and packages;
2. made functions, that are only used in the file that the function is defined, private by adding _ at their names.

Fixes #83090. (we rename the 'torch/ao/nn/quantized/_reference', because of migration #81667.)

This is a dup for the #84786.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84974
Approved by: https://github.com/andrewor14, https://github.com/z-a-f
2022-09-16 17:49:07 +00:00
zaf
2f04ba2c7c [quant][ao_migration] torch.nn.qattorch.ao.nn.qat (#78716)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
    - [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- None

Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!

Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:38 +00:00
zaf
29e83b6599 [quant][ao_migration] torch.nn.quantizabletorch.ao.nn.quantizable. (#78717)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- `torch/ao/nn/__init__.py` → Changing the imports to lazy.

Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!

Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:37 +00:00
zaf
b1455f9424 [quant][ao_migration] torch.nn.quantized._referencetorch.ao.nn.quantized._reference (#78715)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] [Current PR] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- None

Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860927/)!

Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78715
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:36 +00:00
zaf
d32a762147 [quant][ao_migration] torch.nn.quantized.dynamictorch.ao.nn.quantized.dynamic (#78714)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a

Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!

Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:34 +00:00
zaf
c92e5ac95b [quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] [Current PR] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [ ] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- Documentation @vkuzo
  - docs/source/conf.py
  - docs/source/quantization.rst
- [quantize_fx](torch/ao/quantization/quantize_fx.py) @jerryzh168
- [common test routine](test/quantization/ao_migration/common.py) @HDCharles
- JIT stuff @jamesr66a
  - torch/csrc/jit/passes/hoist_conv_packed_params.cpp
  - torch/csrc/jit/passes/quantization/helper.h
  - torch/csrc/jit/serialization/import_source.cpp

Differential Revision: [D38926012](https://our.internmc.facebook.com/intern/diff/D38926012/)

Differential Revision: [D38926012](https://our.internmc.facebook.com/intern/diff/D38926012)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78713
Approved by: https://github.com/jerryzh168
2022-08-25 16:50:33 +00:00
PyTorch MergeBot
6a9c02339d Revert "[quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)"
This reverts commit 432f037498.

Reverted https://github.com/pytorch/pytorch/pull/78713 on behalf of https://github.com/janeyx99 due to Reverting for breaking (trunk-only) ios build
2022-08-22 07:32:37 +00:00
PyTorch MergeBot
b1a7b67529 Revert "[quant][ao_migration] torch.nn.quantized.dynamictorch.ao.nn.quantized.dynamic (#78714)"
This reverts commit e6fb97d8ae.

Reverted https://github.com/pytorch/pytorch/pull/78714 on behalf of https://github.com/janeyx99 due to sorry, reverting so https://github.com/pytorch/pytorch/pull/78713 could be cleanly reverted
2022-08-22 07:30:48 +00:00
PyTorch MergeBot
355d343fa8 Revert "[quant][ao_migration] torch.nn.quantized._referencetorch.ao.nn.quantized._reference (#78715)"
This reverts commit a7344e52b9.

Reverted https://github.com/pytorch/pytorch/pull/78715 on behalf of https://github.com/janeyx99 due to sorry, reverting so https://github.com/pytorch/pytorch/pull/78713 could be cleanly reverted
2022-08-22 07:29:15 +00:00
PyTorch MergeBot
e9dd4d5adf Revert "[quant][ao_migration] torch.nn.quantizabletorch.ao.nn.quantizable. (#78717)"
This reverts commit e0876feb49.

Reverted https://github.com/pytorch/pytorch/pull/78717 on behalf of https://github.com/janeyx99 due to sorry, reverting so https://github.com/pytorch/pytorch/pull/78713 could be cleanly reverted
2022-08-22 07:26:44 +00:00
PyTorch MergeBot
4cbb1986fe Revert "[quant][ao_migration] torch.nn.qattorch.ao.nn.qat (#78716)"
This reverts commit 7cd2fa1d38.

Reverted https://github.com/pytorch/pytorch/pull/78716 on behalf of https://github.com/janeyx99 due to sorry, reverting so https://github.com/pytorch/pytorch/pull/78713 could be cleanly reverted
2022-08-22 07:23:24 +00:00
zaf
7cd2fa1d38 [quant][ao_migration] torch.nn.qattorch.ao.nn.qat (#78716)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [X] [Current PR] `torch.nn.qat` → `torch.ao.nn.qat`
    - [X] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [X] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- None

Differential Revision: [D36861197](https://our.internmc.facebook.com/intern/diff/D36861197/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861197/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78716
Approved by: https://github.com/jerryzh168
2022-08-22 05:33:23 +00:00
zaf
e0876feb49 [quant][ao_migration] torch.nn.quantizabletorch.ao.nn.quantizable. (#78717)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [X] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [X] [Current PR] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- None

Differential Revision: [D36861090](https://our.internmc.facebook.com/intern/diff/D36861090/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36861090/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78717
Approved by: https://github.com/jerryzh168
2022-08-22 05:31:48 +00:00
zaf
a7344e52b9 [quant][ao_migration] torch.nn.quantized._referencetorch.ao.nn.quantized._reference (#78715)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [X] [Current PR] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- None

Differential Revision: [D36860927](https://our.internmc.facebook.com/intern/diff/D36860927/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860927/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78715
Approved by: https://github.com/jerryzh168
2022-08-22 05:29:23 +00:00
zaf
e6fb97d8ae [quant][ao_migration] torch.nn.quantized.dynamictorch.ao.nn.quantized.dynamic (#78714)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a

Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
2022-08-22 05:22:00 +00:00
zaf
432f037498 [quant][ao_migration] torch.nn.quantized.modulestorch.ao.nn.quantized.modules (#78713)
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.

The list of the `nn.quantized` files that are being migrated:

- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
    - [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
    - [X] [Current PR] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
    - [ ] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
    - [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
    - [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
    - [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
    - [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
    - [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
    - [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
        - [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
        - [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`

Majority of the files are just moved to the new location.
However, specific files need to be double checked:

- Documentation @vkuzo
  - docs/source/conf.py
  - docs/source/quantization.rst
- [quantize_fx](torch/ao/quantization/quantize_fx.py) @jerryzh168
- [common test routine](test/quantization/ao_migration/common.py) @HDCharles
- JIT stuff @jamesr66a
  - torch/csrc/jit/passes/hoist_conv_packed_params.cpp
  - torch/csrc/jit/passes/quantization/helper.h
  - torch/csrc/jit/serialization/import_source.cpp

Differential Revision: [D36860145](https://our.internmc.facebook.com/intern/diff/D36860145/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78713
Approved by: https://github.com/jerryzh168
2022-08-22 01:38:55 +00:00
Weiwen Xia
2edd6aaeaa Add prelu op and module for quantized CPU backend (#73491)
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
2022-07-20 07:48:15 +00:00
PyTorch MergeBot
b64096a264 Revert "Add prelu op and module for quantized CPU backend (#73491)"
This reverts commit 3a6d6bc3cc.

Reverted https://github.com/pytorch/pytorch/pull/73491 on behalf of https://github.com/malfet due to Broke Windows builds, see 3a6d6bc3cc
2022-06-30 12:54:39 +00:00
Weiwen Xia
3a6d6bc3cc Add prelu op and module for quantized CPU backend (#73491)
Add prelu op and module for quantized CPU backend.
The PR includes:
- Quantized version of prelu op
- Native prelu kernel for quantized CPU
- Prelu modules in `nn` and `nn.quantized`
- FX support for prelu
- Unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73491
Approved by: https://github.com/jerryzh168
2022-06-30 06:50:22 +00:00
dzdang
e2aa28a2d0 [quant][fx][improvement] Renamed default_affine_fixed_qparams_observer and default_symmetric_fixed_qparams_observer (#76637)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76637

The previous naming convention `default_affine_fixed_qparams_observer`
and `default_symmetric_fixed_qparams_observer` were uninformative, and users had to read
the definition in order to understand what these observers are. The new
naming convention reveals information about the range of the observers

The analogous changes were also made for
`default_symmetric_fixed_qparams_fake_quant` and
`default_affine_fixed_qparams_fake_quant`

Test Plan:
```
python test/test_quantization.py
```

```
python test/test_quantization.py
```

Differential Revision:
D36054169
D36054169

Reviewed By: vkuzo

Pulled By: dzdang

fbshipit-source-id: 215f7786a4b7abda7327f17cc61735697ec5cca9
(cherry picked from commit 21a4e6eda4467c8adca7fd534a506a14e975f9cf)
2022-05-04 02:39:20 +00:00
Vasiliy Kuznetsov
35545d85dc fx quant: add quantized Softmax workflow integration (#75106)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75106

In https://github.com/pytorch/pytorch/pull/75017 a quantized softmax
kernel was added. This PR adds the FX graph mode quantization workflow
integration to swap `nn.Softmax` to `nnq.Softmax`.

Test Plan:
```
python test/test_quantization.py TestQuantizeFxOps.test_fixed_qparams_ops
```

Reviewed By: kimishpatel, andrewor14

Differential Revision: D35324817

Pulled By: vkuzo

fbshipit-source-id: 710ae3bedf8a6ad1dc411cd9808fdd0ce743e757
(cherry picked from commit d67603c0fbb1d3469d97bd538cec38aa8b03324b)
2022-04-20 21:54:26 +00:00
Charles David Hernandez
02e30a09f7 [ao][sparsity] make sparsity and PTQ compose (#74845)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74845

This PR adds support for quantization flow to detect
parametrized modules and match them using their original module types.
This mainly involved using the new type_before_parametrizations function rather than
type to check for module mathcing

Test Plan:
python test/test_ao_sparsity.py TestComposability

Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D35240274

fbshipit-source-id: 7294d89c9c2e069e51d8b9bafa45c15f92bed124
(cherry picked from commit ed5cdb7b636c42e040d1b4a67b6b94604d06e1ff)
2022-04-05 03:35:41 +00:00
Jerry Zhang
7ddf212f33 [quant][fx] Fully align convert with the reference model design and simplify the implementation (#73863)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73863

This PR fully aligns the convert function with the design: https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md
and simplifies the implementation of convert function by always produce a reference quantized model (with reference patterns) first,
and then lower the model to a quantized model that is runnable with PyTorch native backend (fbgemm/qnnpack).

This PR makes the convert.py much easier to understand than the previous implementation, and we are able to remove majority of code
in quantization_patterns.py as well (in followup PRs).

Test Plan:
```
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestFXNumericSuiteCoreAPIs
python test/test_quantization.py TestFXNumericSuiteCoreAPIsModels
```
and other internal/oss regression tests

Imported from OSS

Reviewed By: andrewor14

Differential Revision: D34778506

fbshipit-source-id: 0678b66addf736039a8749b352f6f569caca962b
(cherry picked from commit 33ec9caf23f3ab373d827117efbd9db0668b2437)
2022-03-11 17:11:30 +00:00
Terry Chen
4e6aefaf72 [Qunat] Refactor reference module mapping (#72755)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72755

Add is_refernece flag in convert function

Test Plan:
python3 test/test_quantization.py TestQuantizeEagerOps.test_conv_transpose_2d

Imported from OSS

Reviewed By: mruberry

Differential Revision: D34188856

fbshipit-source-id: 291014a7b3b4d4b40ca0ca76a80711097dcc4b58
(cherry picked from commit cfba3b8dc0373708712c0d847d590f0d587df002)
2022-03-08 06:48:04 +00:00
Jerry Zhang
5613527ef9 [quant][fx] Add lowering support for functional ops using DefaultNodeQuantizeHandler (#73120)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73120

att
This is to align our implementation with https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D34354038

fbshipit-source-id: 873a867e62bd541ef236974c697fac2334bf02ea
(cherry picked from commit 3fce7cade2f057b985833659c2cb365ee4d6d9f3)
2022-02-26 19:29:58 +00:00
Vasiliy Kuznetsov
1c0df26597 eager quant: convert mapping for fused QAT Linear-Bn1d (#72796)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72796

Adds the eager mode convert mappint for fused QAT Linear-Bn1d module.

Test Plan:
```
python test/test_quantization.py TestQuantizeEagerQATNumerics.test_linear_bn_workflow
```

Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D34213150

fbshipit-source-id: c08b5eb843dea673fd07c6b7b93dcd3ba03eaec2
(cherry picked from commit 722edfe676)
2022-02-18 13:14:56 +00:00
Vasiliy Kuznetsov
e73eaffd3b quant: add QAT fused Linear-Bn1d [1/x]: prepared module (#72431)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72431

Adds support for a fused QAT observed module for `Linear` followed by
`BatchNorm1d`. In this PR, only the support for prepared module with
fake_quants in the right places is added.

A future PR will add support for `convert`, and tests for eager and FX
graph mode workflows.

Similar to conv-bn, we rescale the weight before applying the fake
quant, and undo the rescaling after the linear operation.

Test Plan:
```
python test/test_quantization.py TestQuantizeEagerQATNumerics.test_linear_bn
```

Imported from OSS

Reviewed By: jerryzh168, raghuramank10000

Differential Revision: D34044427

fbshipit-source-id: 47a519173939ca4824d2c6e6ea7a599764a8ed10
(cherry picked from commit bfc75fe078)
2022-02-18 13:14:56 +00:00
Anjali Chourdia
a1383a9cfa Reland torch.ops API change machinery with the core functionality disabled (#71785)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71785

see https://github.com/pytorch/pytorch/pull/67254
ghstack-source-id: 147648699

Test Plan: github CI

Reviewed By: albanD

Differential Revision: D33777229

fbshipit-source-id: 517b36be9743025eb40d708d380dae62e3663184
(cherry picked from commit a637e69569)
2022-02-02 16:06:29 +00:00
Terry Chen
ce3215db70 Fix nnq.dropout in vision mobilenetv3 pretrain model (#71438)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71438

Fix issue https://github.com/pytorch/vision/issues/5198
skip observer for nn.dropout to load pretrain model

Test Plan:
python -c "import torchvision; torchvision.models.quantization.mobilenet_v3_large(pretrained=True, quantize=True)"

Imported from OSS

Reviewed By: HDCharles

Differential Revision: D33641707

fbshipit-source-id: 14ea26557c4ff3b942cf46bf06610db0b8f06b05
(cherry picked from commit 0b8b178d26)
2022-01-22 00:02:48 +00:00
Yan Li
6964aa2ced backout D33469839 (#71443)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71443

cogwheel test inline_cvr_infer_canary_pyper_model_publish is timing out.

The convert_fx call takes > 20 mins for local and local_ro sub modules, which used to take ~ 2 mins.

Test Plan:
Fblearn flow run
* the following cmd took 1113 seconds before the diff and 5002 seconds after.
    flow-cli clone-locally 320014219  --run-as-secure-group pytorch_at_scale  --operators pyper_model_publish_workflow.pyper_model_publish_workflow.process_torch_package_model_files.process_non_sparse_parameters[0]

Cogwheel test
* Cogwheel test with packages in B3588 (the last good run) took 4694.48s
* Cogwheel test with packages in B3590 (the first timeout) took 13975.83s
* Cogwheel test with the following packages took 4535.04s
  * all packages in B3588 except the model publish
  * the model publish built with D33469839 (043e84b3d2) reversed (created D33633570)

Reviewed By: albanD, jerryzh168

Differential Revision: D33633570

fbshipit-source-id: dc5e777c48a90c551641a3f79126461f6a60449e
(cherry picked from commit 03ab65023a)
2022-01-18 23:51:51 +00:00
Terry Chen
e7c87e8b44 [quant] fix dropout in FX graph mode quantization (#71043)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71043

fix issue #68250
dropout break fx graph model quantization

Test Plan:
python test/test_quantization.py TestStaticQuantizedModule

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D33490176

fbshipit-source-id: 155546505b28ffc635ada65a1464b9d622dbc235
2022-01-13 15:59:59 -08:00
Charles David Hernandez
83b45fe166 [ao] disabling dynamic conv/convT ops (#71110)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71110

as mentioned in https://github.com/pytorch/pytorch/issues/70480 the dynamic conv ops are currently missing a key feature to bring their performance in line with other dynamic ops, this diff disables conv/convT from being automatically quantized with convert dynamic

Test Plan: buck test //caffe2/test:quantization --test-selectors test_quantized_module#TestDynamicQuantizedModule

Reviewed By: vkuzo

Differential Revision: D33511152

fbshipit-source-id: 50618fbe734c898664c390f896e70c68f1df3208
2022-01-13 11:28:02 -08:00
anjali411
043e84b3d2 Per-overload torch.ops API (#67254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254

Fixes https://github.com/pytorch/pytorch/issues/65997

BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.

Follow up work:
1. disallow `default` as an overload name for aten operators.
2. Add a method to obtain a list of all overloads (exclude the ones registered by JIT)
3. Add methods/properties to `OpOverload` to access more schema information (types of input and output args etc)

cc ezyang gchanan

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D33469839

Pulled By: anjali411

fbshipit-source-id: c3fc43460f1c7c9651c64b4d46337be21c400621
2022-01-10 17:29:06 -08:00
Michael Suo
402f2934bf Revert D33262228: Per-overload torch.ops API
Test Plan: revert-hammer

Differential Revision:
D33262228 (8e6d1738a4)

Original commit changeset: 600dbf511514

Original Phabricator Diff: D33262228 (8e6d1738a4)

fbshipit-source-id: 238fa88ea9c4f26c7511334765c07452fbca9655
2022-01-05 22:10:11 -08:00
anjali411
8e6d1738a4 Per-overload torch.ops API (#67254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254

Fixes https://github.com/pytorch/pytorch/issues/65997

TODO: disallow `default` as an overload name for aten operators.

BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.

cc ezyang gchanan

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D33262228

Pulled By: anjali411

fbshipit-source-id: 600dbf511514ea9b41aea3e6b1bc1102dab08909
2022-01-05 15:17:41 -08:00
Zafar
07932e2735 [sparsity] Convert function for sparse kernels without a context manager (#66778)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66778

This removes the hack of the context manager that would communicate the zeros block shape to the quantization convert.
The conversion will assume that the converted modules have `sparse_params` (which is added by the sparsifier).

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D31835721

Pulled By: z-a-f

fbshipit-source-id: c5fd2da3b09a728a2296765c00ca69275dbca3b1
2021-12-09 02:58:57 -08:00
Ben Koopman
6c9cf5e6ea [quant][embedding qat] eager mode QAT for Embeddings (#66429)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66429

Test Plan: Imported from OSS

Reviewed By: HDCharles, supriyar

Differential Revision: D31618284

Pulled By: b-koopman

fbshipit-source-id: 0c0e2e86b98da9f29e9b2fc2a35c59424f94cbba
2021-11-18 05:57:11 -08:00
Charles David Hernandez
09615cd0b0 Adding Dynamic Conv and ConvT ops/modules (#68176)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68176

it should be noted that for the modules, reduce_range is set to
true by default in a similar fashion to linear_dynamic.

Test Plan:
python test/test_quantization.py TestDynamicQuantizedModule
python test/test_quantization.py TestDynamicQuantizedConv
python test/test_quantization.py TestQuantizedConv

Imported from OSS

Reviewed By: kimishpatel

Differential Revision: D32374003

fbshipit-source-id: 011562bd0f4d817387d53bb113df2600aa60a7a3
2021-11-15 16:42:25 -08:00
Charles David Hernandez
e795315c63 Changes and fixes to prepare for dynamic conv (#68175)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68175

This slightly alters the way from_float works so it will work
with placeholder observers. It also fixes a but with ConvTranspose3d and
ConvTranspose1d where the parameters like kernel_size, stride...etc
weren't set properly. New tests were added to check for this type of
issue as well.

Test Plan:
python test/test_quantization.py TestQuantizedOps
python test/test_quantization.py TestStaticQuantizedModule

Imported from OSS

Reviewed By: z-a-f

Differential Revision: D32374004

fbshipit-source-id: caaa548d12d433d9c1fa0abc8597a7d31bb4e8af
2021-11-11 23:55:04 -08:00
andrewor
4a8f27445d [Quant] Add dynamic QAT Linear module (#67325)
Summary:
**Summary:** This commit adds the `torch.nn.qat.dynamic.modules.Linear`
module, the dynamic counterpart to `torch.nn.qat.modules.Linear`.
Functionally these are very similar, except the dynamic version
expects a memoryless observer and is converted into a dynamically
quantized module before inference.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67325

Test Plan:
`python3 test/test_quantization.py TestQuantizationAwareTraining.test_dynamic_qat_linear`

**Reviewers:** Charles David Hernandez, Jerry Zhang

**Subscribers:** Charles David Hernandez, Supriya Rao, Yining Lu

**Tasks:** 99696812

**Tags:** pytorch

Reviewed By: malfet, jerryzh168

Differential Revision: D32178739

Pulled By: andrewor14

fbshipit-source-id: 5051bdd7e06071a011e4e7d9cc7769db8d38fd73
2021-11-08 10:24:25 -08:00
Ben Koopman
a58ff186e8 [quant][embedding qat] Add basic EmbeddingBag QAT fakeQuant workflow (#65443)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65443

Test Plan: Imported from OSS

Reviewed By: dagitses, supriyar

Differential Revision: D31456445

Pulled By: b-koopman

fbshipit-source-id: 0edda6e272d9005fce65f2ba6a5e6abc831836de
2021-10-07 20:19:29 -07:00