Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68693
Generation of python bindings for native functions is split over 8
different files. One for each namespace, with the torch namespace
split into 3 shards, and methods in their own file as well. This
change ensures that editing any single (non-method) operator only
causes one of these files to be rebuilt.
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32596270
Pulled By: albanD
fbshipit-source-id: 0570ec69e7476b8f1bc21138ba18fe8f95ebbe3f
(cherry picked from commit ba0fc71a3a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945
This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110
Test Plan: Run the existing unit and integration tests.
Reviewed By: albanD
Differential Revision: D32676505
fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69579
This should help us avoid reference counting overhead on singleton Type subclasses without a major rewrite of the Type subsystem.
ghstack-source-id: 146643993
Test Plan:
Ran //caffe2/caffe2/fb/high_perf_models/pytorch/benchmark_framework_overheads:cpp_benchmark with arguments `--op empty -niter 40 --stressTestRecordFunction --captureRecordFunctionInputs` on devbig with turbo off.
Before:
```
I1206 13:47:15.037441 1201670 bench.cpp:144] Mean 0.737675
I1206 13:47:15.037463 1201670 bench.cpp:145] Median 0.736725
I1206 13:47:15.037468 1201670 bench.cpp:146] Min 0.722897
I1206 13:47:15.037473 1201670 bench.cpp:147] stddev 0.00508187
I1206 13:47:15.037482 1201670 bench.cpp:148] stddev / mean 0.00688903
```
After:
```
I1206 13:48:16.830123 1205612 bench.cpp:144] Mean 0.66988
I1206 13:48:16.830150 1205612 bench.cpp:145] Median 0.663956
I1206 13:48:16.830157 1205612 bench.cpp:146] Min 0.65986
I1206 13:48:16.830164 1205612 bench.cpp:147] stddev 0.0335928
I1206 13:48:16.830171 1205612 bench.cpp:148] stddev / mean 0.0501475
```
Static runtime startup is also improved; for CMF local_ro, time to initialize a predictor went from 10.01s to 9.59s.
(Note: I wish I had a production workload to demonstrate the advantage of this on. I tried ctr_mobile_feed local_ro net but it was neutral. Anything that manipulates types or List/Dict a lot might be promising.)
Reviewed By: suo
Differential Revision: D32923880
fbshipit-source-id: c82ed6689b3598e61047fbcb2149982173127ff0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59734
Adds typecast logic to allow for c10::Storages to cross the Python/C++ barrier with pyBind
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D29075279
Pulled By: Lilyjjo
fbshipit-source-id: 3e67b8525d308c5bccc64438ebac82b4d17ba462
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57292
In Future (and soon in other places too) we need to receive a list of devices from Python-land. We don't want to just take their indices because we need full devices in order to infer the type from them. torch.device is not defined through pybind, it's defined through a plain `PyModule_AddObject` call with CPython, thus pybind isn't naturally able to understand and convert it. However we can provide a custom type caster which fixes that. We have this already for at::Tensor, at::Generator, ...
ghstack-source-id: 127916268
Test Plan: CI
Reviewed By: mrshenli
Differential Revision: D28092732
fbshipit-source-id: 1c31d0b85a4d5c9e7bde8161efbb7574d505157c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57029
Partially addresses https://github.com/pytorch/pytorch/issues/56297
This fixes deadlocks when the threads the RPCAgent are blocking
on try to take the GIL. This also adds a general utility for
making shared_ptr run destructors without GIL.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D28030294
Pulled By: ezyang
fbshipit-source-id: 628c066eebbb70bda5b914645a109dce35d73c8d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55799
I'm going to change the implementation of cdata soon so I need to
abstract over cdata access with a function. Additionally, many
users are casting manually casting to THPVariable to access
the member so I can remove these unsafe casts in the client code
(the implementation, of course, is still doing an unsafe cast.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D27712130
Pulled By: ezyang
fbshipit-source-id: 95fcc013bf3913d67f2c634068eb5b3aab144cb3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47586
relanding PR of https://github.com/pytorch/pytorch/pull/44492, and add
additional Capsule related wrapping to ensure we still have the correct
type in pybind11 to resolve Capsule as torch._C.CapsuleType
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D24822519
Pulled By: wanchaol
fbshipit-source-id: eaaea446fb54b56ed3b0d04c31481c64096e9459
Summary:
Original commit changeset: b9796e15074d
have weird issue happening with custom class + recursive scripting, unland this first to figure out more details
Test Plan: wait for sandcastle
Reviewed By: zhangguanheng66
Differential Revision: D24780498
fbshipit-source-id: 99a937a26908897556d3bd9f1b2b39f494836fe6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774
This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.
This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.
`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`
Test Plan: Imported from OSS
Differential Revision: D20549451
Pulled By: pbelevich
fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28287
This PR eliminates the static distinction between
Tensor and Variable. Every Variable is a Tensor, no need to static_cast
or call the Variable constructor.
To do this, I need Tensor to have API parity with Variable. I have already
moved most of the methods I don't want in Tensor off Variable.
These implementations are all placed in Tensor.cpp.
One API difference is that all Variable methods now have const, so we no longer
have faux const-correctness (see https://github.com/zdevito/ATen/issues/27 for
back story)
This diff is BC breaking in a few ways:
- Because torch::autograd::Variable is now just an alias of at::Tensor, ADL for
`torch::autograd` functions no longer works, you have to explicitly qualify
them with `torch::autograd` (examples: `torch/nn/parallel/data_parallel.h`)
- Because Variable and Tensor are now the same type, code which assumes that
they are different types (e.g., for the purposes of templating, or enable_if checks)
will not work until you delete the (now) redundant overload/specialization.
(examples: `torch/nn/modules/container/any.h`, `torch/csrc/utils/pybind.h`)
Some other notes:
- I'm not sure what was going with the old template implementation of `extract_vars`,
but I couldn't get the sfinae version to work. Replacing it with an overloading based version
made it work.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18571426
Pulled By: ezyang
fbshipit-source-id: 2ea8151e5f1d8512cdebf1345399642e68b707b8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29653
I didn't remove is_variable from Tensor for BC reasons, but I did
remove as many uses as I could from the codebase.
at::impl::variable_excluded_from_dispatch got moved to TensorBody.h
so that it's more widely accessible.
This diff is NOT semantics preserving. Here are the major differences:
- In a number of native operator implementations, we tested that arguments
are not variable. I replaced these with asserts that variable is
excluded from dispatch. I actually don't think these asserts are really
necessary now (they should certainly be true, but it's hard to get
it wrong), but I've kept them for old time's sake. At least, they'll detect
if you call these functions before you've processed variable (indicating
a bug in your kernel.)
- There are a number of places where we do a per-tensor test for being a
variable, for better error reporting when someone commits Tensor/Variable
confusion. Although these tests are substantively the same as the
tests above, in these cases I decided to *delete* the test entirely.
The reasoning is that in these cases, we didn't really care about
dispatch (also, see above; I'm not too sure we really need the dispatch
asserts), we cared about Tensor/Variable confusion. Since Tensor/Variable
confusion is impossible now, we don't need the tests. One of the key
factors which pushed me one way or another was whether or not a function
was doing per-tensor validation; if I kept the assert in such functions,
I'd repeatedly access the TLS. Even if we want to bring back the asserts,
they would have to go somewhere else.
Another similar idiom is the number of places we do !x.defined() ||
x.is_variable(); I treated this equivalently.
- nuclear_norm's computation of compute_uv is a bit weird, but I think
it's OK to just delete the is_variable case (I *suspect* that it is
always the case that self.is_variable(), but it doesn't really matter.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496168
Pulled By: ezyang
fbshipit-source-id: 5a1ded931e0c10a6b758ba64a8380d34110e0c3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026
Differential Revision: D13458784
Pulled By: goldsborough
fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
Summary:
This PR enables C++ frontend modules to be bound into Python and added as submodules of Python modules. For this, I added lots of pybind11 bindings for the `torch::nn::Module` class, and modified the `torch.nn.Module` class in Python to have a new Metaclass that makes `isinstance(m, torch.nn.Module)` return true when `m` is a C++ frontend module. The methods and fields of C++ modules are bound in such a way that they work seamlessly as submodules of Python modules for most operations (one exception I know of: calling `.to()` ends up calling `.apply()` on each submodule with a Python lambda, which cannot be used in C++ -- this may require small changes on Python side).
I've added quite a bunch of tests to verify the bindings and equality with Python. I think I should also try out adding a C++ module as part of some large PyTorch module, like a WLM or something, and see if everything works smoothly.
The next step for inter-op across our system is ScriptModule <-> C++ Frontend Module inter-op. I think this will then also allow using C++ frontend modules from TorchScript.
apaszke zdevito
CC dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13481
Differential Revision: D12981996
Pulled By: goldsborough
fbshipit-source-id: 147370d3596ebb0e94c82cec92993a148fee50a7
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
as discussed with ezyang and slayton58 , this might be a nice convenience to be able to use code in extensions just as in ATen.
also split off `tracing_state.h` from `torch/jit/tracer.h` fix#11204 to bee able to use the utility functions
pytorchbot it's not a jit patch per se.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11425
Differential Revision: D9735556
Pulled By: ezyang
fbshipit-source-id: 466c92bbdb1d7d7a970eba1c26b7583fe9756139
* PyObject* <--> at::Tensor no longer unwraps variables, instead we expect end uses to always work with variable types, and we will only unwrap the variables when we optimize.
* Add torch::CPU, torch::CUDA and torch::getType
* at::CPU -> torch::CPU in extensions
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge