Commit Graph

67 Commits

Author SHA1 Message Date
David Berard
272890998e [JIT] pass more exception info through the JIT interpreter
If TORCH_SHOW_CPP_STACKTRACES=1, then dump e.what() into the RuntimeError, which should make it easier to debug exceptions that happen within interpreted sections.

Test:
```patch
diff --git a/test/cpp/jit/test_dce.cpp b/test/cpp/jit/test_dce.cpp
index 6f9161d0d9..7c574787cf 100644
--- a/test/cpp/jit/test_dce.cpp
+++ b/test/cpp/jit/test_dce.cpp
@@ -3,6 +3,10 @@
 #include <torch/csrc/jit/ir/irparser.h>
 #include <torch/csrc/jit/passes/dead_code_elimination.h>
 #include <torch/csrc/jit/testing/file_check.h>
+#include <torch/csrc/jit/runtime/interpreter.h>
+#include <test/cpp/jit/test_utils.h>
+
+#include <ATen/ATen.h>

 namespace torch {
 namespace jit {
@@ -48,5 +52,30 @@ graph():
   // Check that dead code elimin
   testing::FileCheck().run(input, *graph);
 }
+
+TEST(EliminateDeadCodeTest, interpreterfailure) {
+  const std::string input = R"IR(
+graph(%x.1 : Tensor):
+  %2 : int = prim::Constant[value=128]() # /data/users/dberard/scripts/DGB/sz.py:4:38
+  %3 : int = prim::Constant[value=256]() # /data/users/dberard/scripts/DGB/sz.py:4:43
+  %5 : int = prim::Constant[value=1]() # /data/users/dberard/scripts/DGB/sz.py:4:53
+  %4 : int[] = prim::ListConstruct(%2, %3)
+  %6 : Tensor[] = aten::split_with_sizes(%x.1, %4, %5) # /data/users/dberard/scripts/DGB/sz.py:4:11
+  return (%6)
+)IR";
+  auto graph = std::make_shared<Graph>();
+  parseIR(input, graph.get());
+
+  //auto stack = createStack({at::randn({2, 383}, at::kCPU)});
+  auto stack = createStack({at::Tensor{}});
+
+  Code code(graph, "");
+  InterpreterState interpreter{code};
+  interpreter.run(stack);
+ ASSERT_EQ(2, stack.size());
+  ASSERT_FALSE(stack[0].toTensor().defined());
+  ASSERT_FALSE(stack[1].toTensor().defined());
+}
+
 } // namespace jit
 } // namespace torch
```

^ use this to repro the interpreter issue: `TORCH_SHOW_CPP_STACKTRACES=1 ./bin/test_jit --gtest_filter="EliminateDeadCodeTest.interpreterfailure"` and the stack trace is shown.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75682

Approved by: https://github.com/eellison
2022-04-21 18:26:49 +00:00
Can Balioglu
e1db2f13ce Refactor TORCH_DISTRIBUTED_DEBUG implementation (#73166)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73166

This PR refactors, cleans up, and optimizes the implementation of `TORCH_DISTRIBUTED_DEBUG`. It also introduces three new user APIs: `get_debug_level()`, `set_debug_level()`, and `set_debug_level_from_env()` to retrieve and modify the debug level after a process has started.
ghstack-source-id: 149778566

Test Plan: Run the existing unit tests.

Reviewed By: rohan-varma

Differential Revision: D34371226

fbshipit-source-id: e18443b411adcbaf39b2ec999178c198052fcd5b
(cherry picked from commit 26d6bb1584b83a0490d8b766482656a5887fa21d)
2022-02-24 02:33:05 +00:00
Sameer Deshmukh
d100d98db8 torch.linalg routines return torch.linalg.LinAlgError when a numerical error in the computation is found. (#68571)
Summary:
This PR fixes https://github.com/pytorch/pytorch/issues/64785 by introducing a `torch.LinAlgError` for reporting errors caused by bad values in linear algebra routines which should allow users to easily catch errors caused by numerical errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68571

Reviewed By: malfet

Differential Revision: D33254087

Pulled By: albanD

fbshipit-source-id: 94b59000fdb6a9765e397158e526d1f815f18f0f
2021-12-23 10:53:26 -08:00
Peter Bell
96fe82ac3c HANDLE_TH_ERRORS: Move exception translation out of line (#69974)
Summary:
I've noticed that the `HANDLE_TH_ERRORS` macros are actually very expensive in terms of compile time.  Moving the bulk of the catch statements out of line using a lippincott function significantly improves compile times and object file binary sizes. For just the generated autograd bindings, this halves serial build time from 8 minutes to 4 and binary size is more than halved for most files with the biggest difference being `python_variable_methods.cpp` which went from 126 MB to 43 MB.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69974

Reviewed By: mruberry

Differential Revision: D33160899

Pulled By: albanD

fbshipit-source-id: fc35fa86f69ffe5a0752557be30b438c8564e998
2021-12-16 11:04:48 -08:00
Peter Bell
cd9da3267c Rationalize API exports in torch_python (#68095)
Summary:
This renames `WindowsTorchApiMacro.h` to `Export.h` to mirror the c10 header `c10/macros/Export.h` and also updates it to use `C10_EXPORT`/`C10_IMPORT`. This also removes the `THP_API` macro from `THP_export.h` which appears to serve the same purpose.

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68095

Reviewed By: jbschlosser

Differential Revision: D32810881

Pulled By: albanD

fbshipit-source-id: d6949ccd0d80d6c3e5ec1264207611fcfe2503e3
2021-12-07 15:24:37 -08:00
Can Balioglu
6e640a0acf Revise the socket implementation of c10d (#68226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68226

**Note that this PR is unusually big due to the urgency of the changes. Please reach out to me in case you wish to have a "pair" review.**

This PR introduces a major refactoring of the socket implementation of the C10d library. A big portion of the logic is now contained in the `Socket` class and a follow-up PR will further consolidate the remaining parts. As of today the changes in this PR offer:

 - significantly better error handling and much more verbose logging (see the example output below)
 - explicit support for IPv6 and dual-stack sockets
 - correct handling of signal interrupts
 - better Windows support

A follow-up PR will consolidate `send`/`recv` logic into `Socket` and fully migrate to non-blocking sockets.

## Example Output

```
[I logging.h:21] The client socket will attempt to connect to an IPv6 address on (127.0.0.1, 29501).
[I logging.h:21] The client socket is attempting to connect to [localhost]:29501.
[W logging.h:28] The server socket on [localhost]:29501 is not yet listening (Error: 111 - Connection refused), retrying...
[I logging.h:21] The server socket will attempt to listen on an IPv6 address.
[I logging.h:21] The server socket is attempting to listen on [::]:29501.
[I logging.h:21] The server socket has started to listen on [::]:29501.
[I logging.h:21] The client socket will attempt to connect to an IPv6 address on (127.0.0.1, 29501).
[I logging.h:21] The client socket is attempting to connect to [localhost]:29501.
[I logging.h:21] The client socket has connected to [localhost]:29501 on [localhost]:42650.
[I logging.h:21] The server socket on [::]:29501 has accepted a connection from [localhost]:42650.
[I logging.h:21] The client socket has connected to [localhost]:29501 on [localhost]:42722.
[I logging.h:21] The server socket on [::]:29501 has accepted a connection from [localhost]:42722.
[I logging.h:21] The client socket will attempt to connect to an IPv6 address on (127.0.0.1, 29501).
[I logging.h:21] The client socket is attempting to connect to [localhost]:29501.
[I logging.h:21] The client socket has connected to [localhost]:29501 on [localhost]:42724.
[I logging.h:21] The server socket on [::]:29501 has accepted a connection from [localhost]:42724.
[I logging.h:21] The client socket will attempt to connect to an IPv6 address on (127.0.0.1, 29501).
[I logging.h:21] The client socket is attempting to connect to [localhost]:29501.
[I logging.h:21] The client socket has connected to [localhost]:29501 on [localhost]:42726.
[I logging.h:21] The server socket on [::]:29501 has accepted a connection from [localhost]:42726.
```
ghstack-source-id: 143501987

Test Plan: Run existing unit and integration tests on devserver, Fedora, Ubuntu, macOS Big Sur, Windows 10.

Reviewed By: Babar, wilson100hong, mrshenli

Differential Revision: D32372333

fbshipit-source-id: 2204ffa28ed0d3683a9cb3ebe1ea8d92a831325a
2021-11-16 20:49:25 -08:00
Peter Bell
5f45927d15 Autograd: Delay warnings until the end of backward execution (#66235)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50209

This adds a new warning handler that stores all warnings in a shared
queue, which can be "replayed" at a later time and, crucially, on
another thread. Then, I use this inside the autograd engine to ensure
that warnings are processed by the handler registered on the main
thread.

For testing, I also add an operator that always warns in the backward
pass and test that the warning is a normal Python warning.

cc ezyang albanD zou3519 gqchen pearu nikitaved soulitzer Lezcano Varal7

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66235

Reviewed By: ejguan

Differential Revision: D31505413

Pulled By: albanD

fbshipit-source-id: 1a7f60b038f55c20591c0748b9e86735b3fec2f9
2021-10-13 15:38:04 -07:00
Michael Suo
db4b68b3ac Back out "Eagerly populate python_error::what() when TORCH_SHOW_CPP_STACKTRACES=1"
Summary: Original commit changeset: 9cfda47cafb3

Test Plan: unland

Reviewed By: ezyang

Differential Revision: D31116643

fbshipit-source-id: 631eea446ed48c63ca39281d24163a2eadbe8d12
2021-09-22 10:37:27 -07:00
Edward Yang
3c6d9fd124 Eagerly populate python_error::what() when TORCH_SHOW_CPP_STACKTRACES=1 (#65376)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65376

Let's suppose there's a bug in PyTorch and python_error gets thrown
and never gets caught.  Typically, you'll get a very useless error
message like this:

```
terminate called after throwing an instance of 'python_error'
  what():
  Aborted (core dumped)
```

Now, you'll get:

```
what():  unknown Python error (for more information, try rerunning with TORCH_SHOW_CPP_STACKTRACES=1)
```

and with TORCH_SHOW_CPP_STACKTRACES=1 you'll get:

```
what():  error message from Python object
```

If we're OK with making Python exceptions go even slower, we could
eagerly populate unconditionally.  I'm also not so happy we don't get
a Python backtrace or the Python error name, that's worth improving
(this is a minimal diff to get the discussion going.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D31067632

Pulled By: ezyang

fbshipit-source-id: 9cfda47cafb349ee3d6853cdfb0f319073b87bff
2021-09-22 07:12:28 -07:00
Richard Barnes
ee44d73e59 Modernize override (#61744)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61744

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D29717320

fbshipit-source-id: 6eea4295ee2e5572ab337620be412376fcc2f3cc
2021-07-23 23:04:46 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
Richard Barnes
b162d95e46 Fix a number of lint perf and safety issues in torch (#59897)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59897

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29037012

fbshipit-source-id: 7c16286d5fc2b67964fb65f8374dfff4d1a7aefb
2021-06-15 13:14:51 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Nikita Shulga
6a39613f35 [BE] Make torch/csrc/jit/tensorexpr/ clang-tidy clean (#55628)
Summary:
Mostly auto-generated changes using
```
 python3 tools/clang_tidy.py -c build -x torch/csrc/jit/tensorexpr/eval.cpp -s
```
With following common patterns manually fixed
- Use ` = default` instead of `{}`
- deleted methods should be public
- Use pass-by-value + std::move instead of pass-by-reference+copy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55628

Reviewed By: walterddr

Differential Revision: D27655378

Pulled By: malfet

fbshipit-source-id: 92be87a08113435d820711103ea9b0364182c71a
2021-04-08 19:44:14 -07:00
Edward Yang
28d6e01511 Add TORCH_CHECK_NOT_IMPLEMENTED/c10::NotImplementedError; make dispatch use it (#53377)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53377

My underlying goal is I want to make the test suite ignore
NotImplementedError without failing when bringing up a backend (meta)
that doesn't have very many functions implemented.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D26850766

Pulled By: ezyang

fbshipit-source-id: ffbdecd22b06b5ac23e1997723a6e2a71dfcd14a
2021-03-09 09:04:22 -08:00
James Reed
be45c3401a [JIT] Make objects throw Python AttributeError on nonexistant attr access (#45911)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45911

Test Plan: Imported from OSS

Reviewed By: robieta

Differential Revision: D24140971

Pulled By: jamesr66a

fbshipit-source-id: 046a2cffff898efad5bcc36a41bf992f36f555f9
2020-10-07 01:57:29 -07:00
Nikita Shulga
4066022146 Do not use PRId64 in torch/csrc (#44767)
Summary:
Instead use `fmt::format()` or `%lld` and cast argument to `(long long)`
Fix typos and add helper `PyErr_SetString()` method in torch/csrc/Exceptions.h

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44767

Reviewed By: ezyang

Differential Revision: D23723671

Pulled By: malfet

fbshipit-source-id: c0101aed222184aa436b1e8768480d1531dff232
2020-09-17 14:00:02 -07:00
Alban Desmaison
02ae9a1583 add TypeError to c10 and fix segfault in error checking in Tensor constructor (#40106)
Summary:
As per title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40106

Differential Revision: D22137193

Pulled By: albanD

fbshipit-source-id: 11d059263c00a834211f016bd9a9e18fdc0437ef
2020-06-22 13:42:44 -07:00
Alban Desmaison
67d76f6bdd Add utility to enable cpp stacktraces in torch.utils.debug (#38127)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38127

Test Plan: Imported from OSS

Differential Revision: D21595298

Pulled By: albanD

fbshipit-source-id: 3926336cea2eaa0ef50bf9bfffd6c07f239d753f
2020-05-15 16:49:16 -07:00
James Reed
a553935e3c [JIT] Expose magic methods on script::Object (#38167)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38167

Test Plan: Imported from OSS

Differential Revision: D21486709

Pulled By: jamesr66a

fbshipit-source-id: 17b44d979fc658768b0d64f7d8af6fb684043ea3
2020-05-11 15:01:15 -07:00
Mike Ruberry
b64fc3c4b5 Changes warnings generated in cpp to show point of Python origination (#36052)
Summary:
Today in PyTorch, warnings triggered in C++ are printed to Python users like this:

`../aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.`

This may be unhelpful to Python users, who have complained it's difficult to relate these messages back to their programs. After this PR, warnings that go through the PyWarningHandler and allow it to add context print like this:

```
test/test_torch.py:16463: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead. (Triggered internally at  ../aten/src/ATen/native/BinaryOps.cpp:81.)
  cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
```

This relates the warning back to the user's program. The information about the cpp file and line number is preserved in the body of the warning message.

Some warnings, like those generated in the JIT, already account for a user's Python context, and so they specify that they should be printed verbatim and are unaffected by this change. Warnings originating in Python and warnings that go through c10's warning handler, which prints to cerr, are also unaffected.

A test is added to test_torch.py for this behavior. The test relies on uint8 indexing being deprecated and its warning originating from its current header file, which is an unfortunate dependency. We could implement a `torch.warn` function, instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36052

Differential Revision: D20887740

Pulled By: mruberry

fbshipit-source-id: d3515c6658a387acb7fccaf83f23dbb452f02847
2020-04-25 21:18:58 -07:00
Peter Bell
4b3ae7e0af Enable -Werror=format compile errors on torch exception types (#34019)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33899

In the issue, we have
```
TypeError("expected %s (got %s)", dispatch_key, toString(other.key_set()).c_str());
```
which results in `dispatch_key` being interpreted as a c-string by `sprintf`. Adding `__attrbute__((format))` to the `TypeError` constructor allows gcc or clang to detect this at compile time. Then `-Werror=format` makes it a hard error at compile time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34019

Differential Revision: D20194842

Pulled By: ezyang

fbshipit-source-id: fa4448916c309d91e3d949fa65bb3aa7cca5c6a8
2020-03-02 13:25:39 -08:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Will Feng
36919278cc C++ tensor multi-dim indexing: add index() and index_put_() overloads, simple indexing tests, merge with Python indexing path (#32841)
Summary:
This PR adds the following items:
- **1st item**: `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads for `Tensor::index` and `Tensor::index_put_`, to be used specifically for multi-dim indexing purpose.

Design rationale:
* C++ `Tensor::index` and `Tensor::index_put_` are both existing tensor APIs, and they currently (before this PR) only accept a list of tensors (i.e. `ArrayRef<Tensor>`) as indices. If we change their signatures to also accept non-tensors as indices (i.e. `ArrayRef<TensorIndex>`, and `TensorIndex` is convertible from `Tensor` / `Slice` / `None` / `Ellipsis`), it would slow down the original code path (since now it has to go through more steps), which is undesirable.

    To get around this problem, the proposed solution is to keep the original `ArrayRef<Tensor>` overload, and add `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads to `Tensor::index` and `Tensor::index_put_`. This way, the original code path won’t be affected, and the tensor multi-dim indexing API is only used when the user explicitly pass an `ArrayRef<TensorIndex>` or a braced-init-list of `TensorIndex`-convertible types to `Tensor::index` and `Tensor::index_put_` .

    Note that the above proposed solution would still affect perf for the user’s original `Tensor::index` or `Tensor::index_put_` call sites that use a braced-init-list of tensors as input, e.g. `tensor.index({...})` or `tensor.index_put_({...}, value)`, since now such function calls would take the multi-dim indexing path instead of the original advanced indexing path. However, there are only two instances of this in our codebase (one in ATen cpp test, one in a C++ API nn init function), and they can be easily changed to explicitly use `ArrayRef<Tensor>` as input (I changed them in this PR). For external user’s code, since this is part of the C++ frontend which is still considered experimental, we will only talk about this change in the release note, and ask users to switch to using `ArrayRef<Tensor>` explicitly if they want to keep using the original advanced indexing code path.

- **2nd item**: Mechanisms for parsing `ArrayRef<TensorIndex>` indices and performing indexing operations (mirroring the functions in `torch/csrc/autograd/python_variable_indexing.cpp`).
- **3rd item**: Simple tests to demonstrate that the `Tensor::index()` and `Tensor::index_put_()` APIs work. I will add more tests after the first few PRs are reviewed.
- **4th item**: Merge Python/C++ indexing code paths, for code simplicity. I tested locally and found that there is no perf regression resulting from the merge. I will get more concrete numbers for common use cases when we settle on the overall design.

This PR supersedes https://github.com/pytorch/pytorch/pull/30425.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32841

Differential Revision: D19919692

Pulled By: yf225

fbshipit-source-id: 7467e64f97fc0e407624809dd183c95ea16b1482
2020-02-24 22:04:00 -08:00
Peter Bell
44af8ee6cd Add pybind11 exception translator (#30588)
Summary:
Closes https://github.com/pytorch/pytorch/issues/30027

The idea here is that you can bind a function with `pybind11` in a single line and without modifying the function:
```cpp
m.def("foo", foo, py::call_guard<torch::PyWarningHandler>());
```
Where warnings are handled by the [`call_guard`](https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard) and exceptions are handled by the `pybind11` exception translator. To do this, I have added support for handling C++ exceptions in `torch::PyWarningHandler`'s destructor without setting the python error state before hand.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30588

Differential Revision: D19905626

Pulled By: albanD

fbshipit-source-id: 90c0a5e298b123cc0c8ab9c52c91be4e96ea47c6
2020-02-18 11:33:29 -08:00
Sam Gross
df9d5b8a77 Use macros instead of directly accessing Python object fields (#31388)
Summary:
The Python C API documentation states "Access to the [PyObject]
members must be done by using the macros Py_REFCNT and Py_TYPE."
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31388

Differential Revision: D19161790

Pulled By: colesbury

fbshipit-source-id: ac9a3738c913ad290a6d3460d0d657ec5c13b711
2019-12-20 12:11:17 -08:00
Edward Yang
1111a6b810 Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL (#30274)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/29095
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30274

Differential Revision: D18762293

Pulled By: ezyang

fbshipit-source-id: d3d50c2dd12bcb678ab25fa708eb6587cc4b66f9
2019-12-02 12:19:58 -08:00
Mike Ruberry
eff4c4d7c1 Revert D18301806: Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL
Test Plan: revert-hammer

Differential Revision:
D18301806

Original commit changeset: 03da6a26c41e

fbshipit-source-id: c1324ee8d154e7e16f5dd4f1cf3625aaa566cd39
2019-11-21 14:50:07 -08:00
Alan Du
f4b9690f2d Use pybind11::gil_scoped_* functions instead of AutoGIL/AutoNoGIL (#29095)
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.

Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095

Differential Revision: D18301806

Pulled By: ezyang

fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
2019-11-21 13:44:40 -08:00
Alban Desmaison
b14c5943d4 Handle warning in torchscript (#27154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27154

Fix for #25859

* #28283 Fix clang-tidy errors in csrc/Module.cpp

Test Plan: Imported from OSS

Differential Revision: D18249631

Pulled By: albanD

fbshipit-source-id: 4e9bbad07cc39e7c7f0546ef7587bd4ab2dd644e
2019-11-07 08:35:16 -08:00
Alban Desmaison
0ff1696c75 add pybind version of HANDLE_TH_ERRORS
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26614

Test Plan: Imported from OSS

Differential Revision: D18249634

Pulled By: albanD

fbshipit-source-id: 25503f368926e0f3633c5af0f222c9bb4729f342
2019-11-07 08:35:11 -08:00
Alban Desmaison
9b875e1256 Buffer python warning to avoid deadlocks
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26613

Test Plan: Imported from OSS

Differential Revision: D18249633

Pulled By: albanD

fbshipit-source-id: 863f52400e1b97943a67a9e1abb09ae8d045e7f0
2019-11-07 08:35:06 -08:00
Edward Yang
a5d356cb39 Delete THP_CORE macro; partially replace with THP_BUILD_MAIN_LIB (#29143)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29143

THP_CORE macro is a very old macro that appeared to have served
two purposes:

1. The torch-python equivalent of CAFFE2_BUILD_MAIN_LIB, to toggle
   symbol visibility headers

2. Some sort of ad hoc way of hiding certain definitions from headers
   so external clients can't get at them.

It did (2) in a very confusing manner, because we set THP_CORE in both
torch and torch-python (it shouldn't do anything in torch).  In this
PR I just get rid of use case (2) entirely (so everything shows up in
headers all the time), and then redo (1) using a new THP_BUILD_MAIN_LIB
macro.  This cleans up some of the macro definitions and makes my life
easier for working on #27215.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18309594

Pulled By: ezyang

fbshipit-source-id: adcb6d7cb387cd818480137e2b94e5e761dbfefc
2019-11-06 15:02:02 -08:00
Pritam Damania
e8e7d93293 Additional autograd unit tests for Python UDFs. (#29041)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29041

1) Enhanced autograd unit tests to test the
torch.distributed.autograd.backward() API more thoroughly on Python UDFs.
2) Enhanced `python_error` to override `what` such that it returns an
appropriate error string if we call `what()` on this error. This ensures we can
propagate exceptions over the wire during RPCs (since we get the error string
by calling what() on the exception)
ghstack-source-id: 93098679
ghstack-source-id: 93098679

Test Plan: waitforbuildbot

Reviewed By: mrshenli

Differential Revision: D18273041

fbshipit-source-id: 85d3932fed6337668a812367fdfce233c1b3ff8e
2019-11-01 18:30:09 -07:00
Edward Yang
08860721ad Revert D18195584: Additional autograd unit tests for Python UDFs.
Test Plan: revert-hammer

Differential Revision:
D18195584

Original commit changeset: b795daf644ba

fbshipit-source-id: 413dac34f1a28e0a591893f43e116f006fd3f2be
2019-11-01 06:59:54 -07:00
Pritam Damania
3bba751cd6 Additional autograd unit tests for Python UDFs. (#28824)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28824

1) Enhanced autograd unit tests to test the
torch.distributed.autograd.backward() API more thoroughly on Python UDFs.
2) Enhanced `python_error` to override `what` such that it returns an
appropriate error string if we call `what()` on this error. This ensures we can
propagate exceptions over the wire during RPCs (since we get the error string
by calling what() on the exception)
ghstack-source-id: 92972494

Test Plan: waitforbuildbot

Differential Revision: D18195584

fbshipit-source-id: b795daf644ba1816fdec484545192ab55a2f71e7
2019-10-31 14:03:00 -07:00
Mikhail Zolotukhin
722eb48ff2 Cleanup includes in torch/csrc/* (#19924)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19924
ghimport-source-id: f7248b16c8e263a7d0ba7975b1fc0b00cb2cf2c0

Differential Revision: D15125018

Pulled By: ZolotukhinM

fbshipit-source-id: 322c7ca53e38ef8b43b5ac5bd747b28bc10379f1
2019-05-06 14:03:18 -07:00
Stefan Krah
a5e7b1d032 Use IndexError instead of RuntimeError in ATen CPU kernels
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17049

Reviewed By: ezyang

Differential Revision: D14064700

Pulled By: fmassa

fbshipit-source-id: 3575db103bba5a7d82f574cbb082beca419151ec
2019-02-13 10:19:28 -08:00
Peter Goldsborough
7a61306031 Enable all clang-tidy performance checks (#15198)
Summary:
This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.

![image](https://user-images.githubusercontent.com/6429851/49978940-adc1a780-ff01-11e8-99da-a4e431361f07.png)

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198

Differential Revision: D13468797

Pulled By: goldsborough

fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
2018-12-14 13:32:47 -08:00
Peter Goldsborough
1e9c384afb Enable performance-unnecessary-value-param in .clang-tidy (#15026)
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026

Differential Revision: D13458784

Pulled By: goldsborough

fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
2018-12-13 16:15:35 -08:00
Peter Goldsborough
0bf1383f0a Python <-> C++ Frontend inter-op (#13481)
Summary:
This PR enables C++ frontend modules to be bound into Python and added as submodules of Python modules. For this, I added lots of pybind11 bindings for the `torch::nn::Module` class, and modified the `torch.nn.Module` class in Python to have a new Metaclass that makes `isinstance(m, torch.nn.Module)` return true when `m` is a C++ frontend module. The methods and fields of C++ modules are bound in such a way that they work seamlessly as submodules of Python modules for most operations (one exception I know of: calling `.to()` ends up calling `.apply()` on each submodule with a Python lambda, which cannot be used in C++ -- this may require small changes on Python side).

I've added quite a bunch of tests to verify the bindings and equality with Python. I think I should also try out adding a C++ module as part of some large PyTorch module, like a WLM or something, and see if everything works smoothly.

The next step for inter-op across our system is ScriptModule <-> C++ Frontend Module inter-op. I think this will then also allow using C++ frontend modules from TorchScript.

apaszke zdevito

CC dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13481

Differential Revision: D12981996

Pulled By: goldsborough

fbshipit-source-id: 147370d3596ebb0e94c82cec92993a148fee50a7
2018-12-13 08:04:02 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Peter Goldsborough
d6c53328f9 Large scale fix of python-related files in torch/csrc/
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14515

Differential Revision: D13247966

Pulled By: goldsborough

fbshipit-source-id: 7a127c508fc576a7a92626dd6b729f660162d628
2018-12-07 13:04:46 -08:00
Yangqing Jia
08aab4dfdd remove ATen/Error.h and ATen/core/Error.h (#12792)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12792

This is a follow up diff after D10238910.

Only non-codemod change is the removal of ATen/Error.h and ATen/core/Error.h. Other files are basically changing the inclusion path + clang format for inclusion order.

Reviewed By: bddppq

Differential Revision: D10437824

fbshipit-source-id: 7f885f80ab5827468d1351cfb2765d0e3f555a69
2018-10-17 17:25:42 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Peter Goldsborough
7ddc6f84c4 NULL -> nullptr (#11047)
Summary:
How did we get so many uses of `NULL` again?

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047

Differential Revision: D9566799

Pulled By: goldsborough

fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
2018-08-30 16:25:42 -07:00
Sebastian Messmer
f51f15bb27 Update include paths for ATen/core (#10130)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130

Update some include paths to make them internally consistent

Reviewed By: ezyang

Differential Revision: D9119906

fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
2018-08-03 11:57:02 -07:00
zrphercule
afa75fa6b2 Remove NO_PYTHON macros from Exceptions.h/cpp (#8007)
Removes cases where NO_PYTHON was unnecessary in Exception.h/cpp
2018-06-01 22:37:18 -07:00
Peter Goldsborough
0d19b81a65 Give ATen errors backtraces (#6112) 2018-03-31 16:39:12 +02:00
Peter Goldsborough
d42fcdbc96 Add source location information to error messages (#6059) 2018-03-29 22:57:18 +02:00