[dynamo] Deprecate enable_cpp_framelocals_guard_eval config variable - default: True
Reading the feature enabling param `enable_cpp_framelocals_guard_eval `at the CPP level is time consuming and slows down the operation of the dynamo as it is done every time the function using this param is called. Reading the value only once at init isn’t an option as it would disable the modification of this param at the runtime. Since this feature is enabled by default for some time and it doesn’t cause known issues, the `enable_cpp_framelocals_guard_eval `configuration param will be deprecated by this commit and its value is hardcoded to true.
Local microbenchmark dynamo_guard_eval.py:
- 931.9 us -> 538.9 us (3.10)
@williamwen42 @jansel @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151008
Approved by: https://github.com/williamwen42
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
This PR adds support for list subclasses. Among other things are
1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.
If this PR is hard to review, please let me know. I can break it into several small PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.
Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.
Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)
dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)
Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430