Commit Graph

866 Commits

Author SHA1 Message Date
Mikayla Gawarecki
be0ceee1c3 Make record/storage alignment in torch.save configurable (#147788)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147788
Approved by: https://github.com/albanD
ghstack dependencies: #147786, #147787
2025-03-06 12:04:46 +00:00
cyy
9aa897b992 Remove unnecessary tensor clone (#148159)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148159
Approved by: https://github.com/Skylion007
2025-03-02 16:21:39 +00:00
Michael Suo
99dd846672 [torch] fix builds for older pybind (#146630)
Summary:
some versions of pybind we build with don't have `py::set_error`.

So just use the underlying python C API.

Test Plan: unit tests

Differential Revision: D69254629

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146630
Approved by: https://github.com/colin2328, https://github.com/ngimel
2025-02-06 21:22:00 +00:00
Michael Suo
425804db2b [torch] fix exception types in custom class magic setattr/getattr (#146516)
Summary:
`c10::AttributeError` is not automatically converted to Python AttributeError, it needs some special macros (e.g. `HANDLE_TH_ERRORS`).

Some Python functions like `hasattr` rely on the type of the throw exception to be correct.

We don't need the fully generality of those macros, so just do a targeted error type conversion here.

Test Plan: added unit test

Differential Revision: D69197217

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146516
Approved by: https://github.com/zdevito
2025-02-06 02:14:11 +00:00
Mikayla Gawarecki
001e355a56 Add option to serialization config to reduce random reads from get_record_offset when loading with mmap=True (#143880)
## Background

This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies  on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.

When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).

The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.

6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)

## How does this work

The format for the checkpoint is as such

```
archive_name/
|_ data.pkl
|_.format_version
|_byteorder
|_data/
  |_ 0
  |_ 1
  |_ 2
  |_ ...
|_
```

Each `data/i` record represents a storage, where storages are written in the order that the Pickler encounters them.

For each storage, our `persistent_load` logic saves the following metadata to the pickle file `dtype, numel, key, location` where `numel` is the number of bytes in the storage.

Note that we always use `miniz` writer  in the zip64 mode per [here](7796e308d0/caffe2/serialize/inline_container.cc (L701)) A zipfile record written by miniz looks as such

```
 ---------------- ----------------- ------------------- ---------------- --------- ------------------------------
| 30 byte header | n byte filename | zip64_extra_data | m byte padding | storage | 16 or 24 byte local dir footer  |
 ---------------- ----------------- ------------------- ---------------- --------- ------------------------------
```

- The header size (30) is given by [`MZ_ZIP_LOCAL_DIR_HEADER_SIZE`](https://github.com/pytorch/pytorch/blob/main/third_party/miniz-3.0.2/miniz.c?fbclid=IwZXh0bgNhZW0CMTEAAR2O8Vysd--UoSCxW70gabXIS1dbz733oHwuUQ5_Ff1hY2WU6PL2i6CSH4A_aem_J9oaU2HpDeWtJKOU9EnVqw#L3290)
- filename will be `"{archive_name}/{filepath}"`

- `zip64_extra_data` is determined by [`mz_zip_writer_create_zip64_extra_data`](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6202)). Note that [we only create zip64_extra_data if storage_size >= 0xFFFFFFFF or the offset of the start of the header >= 0xFFFFFFFF](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6519-L6524))
- `m` is determined by [`getPadding`](7796e308d0/caffe2/serialize/inline_container.cc (L254)), which accounts for filename, zip64_extra_data to determine `m` such that the start of `storage` is aligned to 64 bytes. The `m` bytes will always start with `F B padding_size" as the first 4 bytes
- The local dir footer size is determined based on [this snippet ](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6610-L6632)): if the buffer size is 0 it is skipped. If the zip64_extra_data was created, it is 24, otherwise it is 16.

When `torch.utils.serialization.config.load.calculate_storage_offsets` is set we do the following
- We keep track of where the "cursor" is in the file using `current_offset`, after each persistent_load call, it will be at the offset where the header for the next record starts
- for the 0th storage, "data/0", we use the regular get_record_offset to determine the start of the storage
- for any other storage, (where the storages will be in order encountered by the unpickler, 0, 1, 2, 3, ...) we use `get_record_offset_no_read`, which re-uses the `getPadding` logic to determine the offset of the storage
- Note that `load_tensor` will only ever be called again with the same key if the storage's `._data_ptr()` is 0 [[pointer1](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1917-L1918)][[pointer2](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1936-L1937)], so we cache the offsets for this edge case
- After each storage, if the storage is non-zero, we account for the local dir footer based on the logic described above

## Testing strategy

The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.

Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
2025-01-31 17:09:20 +00:00
Manav Avlani
f9227e7c33 Expose ToIValueAllowNumbersAsTensors to TORCH_PYTHON_API so we can use it in monarch (#146087)
Summary: TSIA

Test Plan: Tested up the stack but existing unittests

Reviewed By: suo

Differential Revision: D68917233

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146087
Approved by: https://github.com/suo
2025-01-31 05:08:11 +00:00
PyTorch MergeBot
9010649292 Revert "Add option to serialization config to reduce random reads from get_record_offset when loading with mmap=True (#143880)"
This reverts commit db3685a35c.

Reverted https://github.com/pytorch/pytorch/pull/143880 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but either this PR or the base PR breaks distributed tests ([comment](https://github.com/pytorch/pytorch/pull/143880#issuecomment-2617743403))
2025-01-28 03:07:17 +00:00
Mikayla Gawarecki
db3685a35c Add option to serialization config to reduce random reads from get_record_offset when loading with mmap=True (#143880)
## Background

This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies  on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.

When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).

The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.

6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)

## Testing strategy

The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.

Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
2025-01-27 23:57:30 +00:00
c8ef
a989a0b13a [NFC] Fix some minor typos. (#145599)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145599
Approved by: https://github.com/Skylion007
2025-01-24 18:58:59 +00:00
cyy
e9f6045e80 [15/N] Fix extra warnings brought by clang-tidy-17 (#143100)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143100
Approved by: https://github.com/Skylion007
2024-12-14 03:24:10 +00:00
Richard Barnes
46dc2965de Adding missing space to pybind_utils.h error message (#142258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142258
Approved by: https://github.com/Skylion007
2024-12-08 20:46:32 +00:00
Richard Barnes
17f1a42c13 Add missing py::bytes to pybind_utils tryToInferType (#142265)
I'm not sure what the best way to fix this is, but this does unbreak an internal test.

Test Plan: Sandcastle

Reviewed By: itamaro

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142265
Approved by: https://github.com/houseroad
2024-12-07 20:31:57 +00:00
cyy
45ed7c13fa Remove unneeded std::make_optional (#141567)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141567
Approved by: https://github.com/albanD
2024-11-28 00:05:21 +00:00
Richard Barnes
cb8c956b5f Fix PyBind 2.10.4 compatibility issue in caffe2/torch/csrc/dynamo/guards.cpp +2 (#141456)
Summary: See D65023502 and [here](https://fb.workplace.com/groups/mldp.users/permalink/8706556336131960/) for details.

Test Plan: Sandcastle

Reviewed By: itamaro

Differential Revision: D66395491

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141456
Approved by: https://github.com/Skylion007
2024-11-24 21:05:48 +00:00
cz2h
9602f56979 Fix misuse of offset param in seek (#140633)
Fixes #115630.

The size of BufferAdapter has been calculated wrongly due to misuse of python method seek. Causes miniz reader initialized with wrong size.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140633
Approved by: https://github.com/ezyang

Co-authored-by: Edward Z. Yang <ezyang@fb.com>
2024-11-15 19:07:52 +00:00
David Berard
1a8752bc7d [TorchScript] bindings for torch._C.ClassType.method_names() (#140444)
I used this for debugging, figured I'd upstream it.

This gives you a list of the method names provided by the given ClassType.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140444
Approved by: https://github.com/eellison
2024-11-13 17:23:23 +00:00
cyy
40fb738197 Use Wextra-semi (#140236)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140236
Approved by: https://github.com/ezyang
2024-11-13 02:15:16 +00:00
Richard Zou
ef380f7b8e [real tensor prop] Add some asserts for custom ops (#139212)
When we see a custom op:
- check that its mutation annotations are correct
- check that its aliasing constraints matches our constraints for custom
  ops.

Otherwise, there may be undefined behavior.

Test Plan:
- new tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139212
Approved by: https://github.com/angelayi
2024-10-30 19:29:11 +00:00
cyy
0274d16c01 Fix clang-tidy warnings in jit code (#138974)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138974
Approved by: https://github.com/ezyang
2024-10-29 04:33:40 +00:00
cyy
d8f99f39cb Avoid unnecessary tensor constructions (#139039)
Because Variable is an alias of Tensor

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139039
Approved by: https://github.com/Skylion007
2024-10-29 02:23:23 +00:00
Wouter Devriendt
bae3426af7 reimport pr137735 due to merging check issues (#138959)
This is  a cherry-pick from #137735 by @mikaylagawarecki , that cannot be merged due to a (wrongly) failing check for codev

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138959
Approved by: https://github.com/mikaylagawarecki
2024-10-27 16:31:34 +00:00
Angela Yi
51f6b946ae [torchbind] Add generic __deepcopy__ method (#137613)
Summary: Added a generic `__deepcopy__` method which will use the torchbind object's existing `__getattr__` and `__setattr__` to copy the torchbind object. This will later be used in [D64124825](https://www.internalfb.com/diff/D64124825)

Differential Revision: D64124826

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137613
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2024-10-24 22:14:55 +00:00
FFFrog
af0bc75460 Remove deprecated alias macro(1/3) (#137556)
**Detailed Descriptions:**
- Remove AT_ERROR Macro

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137556
Approved by: https://github.com/ezyang
2024-10-21 17:32:32 +00:00
Richard Barnes
fddabc6e0b C10_UNUSED to [[maybe_unused]] (#6357) (#138364)
Summary: Pull Request resolved: https://github.com/pytorch/executorch/pull/6357

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138364
Approved by: https://github.com/Skylion007, https://github.com/eqy
2024-10-19 13:17:43 +00:00
PyTorch MergeBot
dd32a32cb6 Revert "Expose option to disable CRC-32 computation during torch.save (#137735)"
This reverts commit 534fa96f2d.

Reverted https://github.com/pytorch/pytorch/pull/137735 on behalf of https://github.com/clee2000 due to failing internally D64438525, probably needs gating ([comment](https://github.com/pytorch/pytorch/pull/137735#issuecomment-2417412264))
2024-10-16 17:03:06 +00:00
Mikayla Gawarecki
534fa96f2d Expose option to disable CRC-32 computation during torch.save (#137735)
Option only works in open source, not internal

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137735
Approved by: https://github.com/albanD
2024-10-15 19:30:02 +00:00
Richard Barnes
b7f798caa4 Use C10_UNUSED instead of (void)X (#137239)
Summary:
Auto-generated with
```
buck run //scripts/rbarnes/regex_multiline_replacer:regex_multiline_replacer -- --find '^(\s*for\s*\()(const.*\n)\s*\(void\)[A-Za-z]+;\s*//\s*Suppress.*\s*\n(.*)'  --replace '\1C10_UNUSED \2\3' `find caffe2/ -regex ".*\.\(cpp\|h\)"`
```

Differential Revision: D33432600

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137239
Approved by: https://github.com/Skylion007
2024-10-15 14:32:59 +00:00
albanD
067d203b22 Upgrade pybind11 API calls for 3.13t (#136370)
This is a modified version of https://github.com/pytorch/pytorch/pull/130341 that preserve support for older pybind version.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136370
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-09-20 23:09:55 +00:00
albanD
cf31724db7 Fix and improvements to toward 3.13t (#136319)
Small part of https://github.com/pytorch/pytorch/pull/130689
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136319
Approved by: https://github.com/malfet, https://github.com/Skylion007
2024-09-20 04:22:18 +00:00
cyy
31e42a45dd Fix redundant move warnings by g++ (#134987)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134987
Approved by: https://github.com/ezyang
2024-09-15 05:28:19 +00:00
Jennifer (Jiyue) Wang
a32255481b [caffe2][hipify] remove un-used flag from pybind_utils.h (#134404)
Summary:
Encountered issues related to AMD build when working on https://www.internalfb.com/diff/D60739324?dst_version_fbid=2203158110057105 (see stack trace P1545717562)

Looking at the file history, seems that the flag is no longer used so I propose to remove it.  Alternatively, I could change the `#ifdef` to check both `USE_C10D_NCCL` and  `USE_ROCM` and include the corresponding AMD header files.

Let me know what is more preferred way.

Test Plan: Sandcastle

Differential Revision: D61762129

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134404
Approved by: https://github.com/malfet
2024-08-29 04:09:44 +00:00
Zhengxu Chen
59b3f5911d [sigmoid] Support custom obj deserialization. (#133463)
Summary:
It seems we have multiple places deserializing torchbind objects. Moving the code around so that every load essentially share the same implementation.

Also added a test case "package_reader_testing" which load back the archive file in Python and eagerly validate the numerical result.

Test Plan: buck test mode/opt sigmoid/inference/test:e2e_test_cpu

Reviewed By: SherlockNoMad

Differential Revision: D61235770

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133463
Approved by: https://github.com/ydwu4
2024-08-15 17:58:44 +00:00
cyy
8967d55b01 [18/N] Fix clang-tidy warnings in jit (#132963)
Follows #132753

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132963
Approved by: https://github.com/Skylion007
2024-08-09 01:27:32 +00:00
cyy
5b3b2b9cc7 [7/N] Fix clang-tidy warnings in jit (#131996)
Follows #131986

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131996
Approved by: https://github.com/ezyang
2024-07-29 01:21:18 +00:00
cyy
ddd539ba6c [6/N] Fix clang-tidy warnings in jit (#131986)
Follows  #131969
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131986
Approved by: https://github.com/ezyang
2024-07-29 00:49:08 +00:00
cyy
99e13e68e9 [4/N] Fix clang-tidy warnings in jit (#131903)
Follows #131830

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131903
Approved by: https://github.com/Skylion007
2024-07-27 08:08:14 +00:00
PyTorch MergeBot
161bb67116 Revert "Fix static py::object dangling pointer with py::gil_safe_call_once_and_store (#130341)"
This reverts commit ace6decc99.

Reverted https://github.com/pytorch/pytorch/pull/130341 on behalf of https://github.com/clee2000 due to unfortunately the internal pybind update got reverted cc @malfet ([comment](https://github.com/pytorch/pytorch/pull/130341#issuecomment-2253147079))
2024-07-26 17:02:56 +00:00
cyy
2988d33c80 [3/N] Fix clang-tidy warnings in jit (#131830)
Follows #131735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131830
Approved by: https://github.com/ezyang
2024-07-26 15:46:28 +00:00
Brian Hirsh
5612408735 _get_operation_overload: dont raise exception when overload does not exist (#131554)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131554
Approved by: https://github.com/ezyang, https://github.com/zou3519
ghstack dependencies: #131403, #131482, #131665
2024-07-26 15:38:11 +00:00
Xuehai Pan
ace6decc99 Fix static py::object dangling pointer with py::gil_safe_call_once_and_store (#130341)
Fix static `py::object`s with `py::gil_safe_call_once_and_store`.

The following code will leak a `py::object` which will call its destructor when shutdown the program. The destructor will call `Py_DECREF(obj.m_ptr)` which may raise a segmentation fault.

```c++
void func() {
    static py::object obj = py::module_::import("foo").attr("bar");

    ...
}
```

The correct code is to use raw pointers rather than the instance.

```c++
void func() {
    static py::object* obj_ptr = new py::object{py::module_::import("foo").attr("bar")};
    py::object obj = *obj_ptr;

    ...
}
```

This PR uses the `py::gil_safe_call_once_and_store` function from `pybind11`, which can run arbitrary initialization code only once under the Python GIL thread safely.

```c++
void func() {
    PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object> storage;
    py::object obj = storage
                         .call_once_and_store_result(
                             []() -> py::object {
                                 return py::module_::import("foo").attr("bar");
                             }
                         )
                         .get_stored();

    ...
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130341
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-07-25 05:53:09 +00:00
PyTorch MergeBot
ea78b0c177 Revert "Fix static py::object dangling pointer with py::gil_safe_call_once_and_store (#130341)"
This reverts commit a17d1e5322.

Reverted https://github.com/pytorch/pytorch/pull/130341 on behalf of https://github.com/izaitsevfb due to internal needs pybind update ([comment](https://github.com/pytorch/pytorch/pull/130341#issuecomment-2226499397))
2024-07-12 23:07:37 +00:00
Bertrand Thia
43b98fa521 Add debug repr to SymNode (#129925)
Fixes #129403

Create a separate printing function to debug SymNode, since we can't easily change `__repr__` that is used by GraphModule.recompile() to create a pythonic version of a graph

This is my first contribution, please let me know if there is anything that I should look into in further details

Thank you for you guidance! 🙏 I hope to contribute more in the future!

@aorenste
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129925
Approved by: https://github.com/aorenste
2024-07-12 18:31:23 +00:00
Xuehai Pan
a17d1e5322 Fix static py::object dangling pointer with py::gil_safe_call_once_and_store (#130341)
Fix static `py::object`s with `py::gil_safe_call_once_and_store`.

The following code will leak a `py::object` which will call its destructor when shutdown the program. The destructor will call `Py_DECREF(obj.m_ptr)` which may raise a segmentation fault.

```c++
void func() {
    static py::object obj = py::module_::import("foo").attr("bar");

    ...
}
```

The correct code is to use raw pointers rather than the instance.

```c++
void func() {
    static py::object* obj_ptr = new py::object{py::module_::import("foo").attr("bar")};
    py::object obj = *obj_ptr;

    ...
}
```

This PR uses the `py::gil_safe_call_once_and_store` function from `pybind11`, which can run arbitrary initialization code only once under the Python GIL thread safely.

```c++
void func() {
    PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object> storage;
    py::object obj = storage
                         .call_once_and_store_result(
                             []() -> py::object {
                                 return py::module_::import("foo").attr("bar");
                             }
                         )
                         .get_stored();

    ...
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130341
Approved by: https://github.com/ezyang
2024-07-10 04:23:37 +00:00
cyy
29861779ce [2/N] Change #include <c10/util/Optional.h> to #include <optional> (#130236)
Follows  #128301. The changes were made by grep and sed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130236
Approved by: https://github.com/ezyang
2024-07-09 03:17:24 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
Shiyan Deng
1e27af335e [easy] enhance local model loading (#129897)
Summary:
1. add one more model lib dep.
2. add error message when torchscript failed to find a class in python compilation unit.

Test Plan: CI

Reviewed By: jingsh

Differential Revision: D59243250

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129897
Approved by: https://github.com/jingsh
2024-07-03 00:29:02 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
angelayi
e9c6e8369c Torchbind call method + effects support (#128397)
Adds effect token support to torchbind method calls by allowing `with_effects` to take in `torch.ops._higher_order_ops.call_torchbind` as an input.

Here is the print from `TORCH_LOGS="aot" python test/export/test_torchbind.py -k test_compile_obj_torchbind_op`:
```python
def forward(self, arg0_1: "f32[0]", arg1_1: "f32[2]", arg2_1):
    # File: /data/users/angelayi/pytorch2/test/export/test_torchbind.py:1266 in f, code: torch.ops._TorchScriptTesting.queue_push(tq, x.cos())
    cos: "f32[2]" = torch.ops.aten.cos.default(arg1_1)
    with_effects = torch._higher_order_ops.effects.with_effects(arg0_1, torch.ops._TorchScriptTesting.queue_push.default, arg2_1, cos);  arg0_1 = cos = None
    getitem: "f32[0]" = with_effects[0];  with_effects = None

    # File: /data/users/angelayi/pytorch2/test/export/test_torchbind.py:1267 in f, code: torch.ops._TorchScriptTesting.queue_push(tq, x.cos() + 1)
    cos_1: "f32[2]" = torch.ops.aten.cos.default(arg1_1)
    add: "f32[2]" = torch.ops.aten.add.Tensor(cos_1, 1);  cos_1 = None
    with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops._TorchScriptTesting.queue_push.default, arg2_1, add);  getitem = add = None
    getitem_2: "f32[0]" = with_effects_1[0];  with_effects_1 = None

    # File: /data/users/angelayi/pytorch2/test/export/test_torchbind.py:1268 in f, code: torch.ops._TorchScriptTesting.queue_pop(tq)
    with_effects_2 = torch._higher_order_ops.effects.with_effects(getitem_2, torch.ops._TorchScriptTesting.queue_pop.default, arg2_1);  getitem_2 = None
    getitem_4: "f32[0]" = with_effects_2[0];  with_effects_2 = None

    # File: /data/users/angelayi/pytorch2/test/export/test_torchbind.py:1269 in f, code: torch.ops._TorchScriptTesting.queue_push(tq, x.sin())
    sin: "f32[2]" = torch.ops.aten.sin.default(arg1_1);  arg1_1 = None
    with_effects_3 = torch._higher_order_ops.effects.with_effects(getitem_4, torch.ops._TorchScriptTesting.queue_push.default, arg2_1, sin);  getitem_4 = sin = None
    getitem_6: "f32[0]" = with_effects_3[0];  with_effects_3 = None

    # File: /data/users/angelayi/pytorch2/test/export/test_torchbind.py:1270 in f, code: return tq.pop(), tq.pop() + tq.size(), tq
    with_effects_4 = torch._higher_order_ops.effects.with_effects(getitem_6, torch.ops._higher_order_ops.call_torchbind, arg2_1, 'pop');  getitem_6 = None
    getitem_8: "f32[0]" = with_effects_4[0]
    getitem_9: "f32[2]" = with_effects_4[1];  with_effects_4 = None
    with_effects_5 = torch._higher_order_ops.effects.with_effects(getitem_8, torch.ops._higher_order_ops.call_torchbind, arg2_1, 'pop');  getitem_8 = None
    getitem_10: "f32[0]" = with_effects_5[0]
    getitem_11: "f32[2]" = with_effects_5[1];  with_effects_5 = None
    with_effects_6 = torch._higher_order_ops.effects.with_effects(getitem_10, torch.ops._higher_order_ops.call_torchbind, arg2_1, 'size');  getitem_10 = arg2_1 = None
    getitem_12: "f32[0]" = with_effects_6[0];  with_effects_6 = None
    add_1: "f32[2]" = torch.ops.aten.add.Tensor(getitem_11, 0);  getitem_11 = None
    return (getitem_12, getitem_9, add_1)
```

In order to support this, this PR makes the following changes:
* Adds `FakeScriptObject` to `CustomObjArgument`, which will be put on the `meta["val"]` of nodes representing torchbind objects.
* Adds pickle/deepcopy support to FunctionSchema.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128397
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2024-06-14 21:28:17 +00:00
cyy
99f5a85a09 [Clang Tidy] Fix misc-header-include-cycle errors in clang-tidy and ignore some files (#127233)
Since there are such cycles in libfmt and PyTorch, which are detected by clang-tidy.
```
/home/cyy/pytorch/third_party/fmt/include/fmt/format-inl.h:25:10: error: circular header file dependency detected while including 'format.h', please check the include path [misc-header-include-cycle,-warnings-as-errors]
   25 | #include "format.h"
      |          ^
/home/cyy/pytorch/third_party/fmt/include/fmt/format.h:4530:12: note: 'format-inl.h' included from here
 4530 | #  include "format-inl.h"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127233
Approved by: https://github.com/ezyang
2024-06-10 23:49:58 +00:00