Commit Graph

15 Commits

Author SHA1 Message Date
Aaron Orenstein
086d146f6f Update ruff linter for PEP585 (#147540)
This turns on PEP585 enforcement in RUFF.

- Updates the target python version
- Stops ignoring UP006 warnings (PEP585)
- Fixes a few issues which crept into the tree in the last day

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147540
Approved by: https://github.com/justinchuby, https://github.com/Skylion007
2025-02-22 04:45:17 +00:00
Riley Dulin
93316cfe94 Move ir_pre_fusion.txt and ir_post_fusion.txt to TORCH_LOGS (#147248)
Fixes #147002

Moves ir_{pre, post}_fusion.txt to be controlled by TORCH_LOGS instead of TORCH_COMPILE_DEBUG.
Updated tests of these logs as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147248
Approved by: https://github.com/eellison
2025-02-20 00:26:17 +00:00
Sam Larsen
74e8817311 [inductor] Minor fixes to various tests before enabling fx graph caching in OSS by default (#125258)
Summary: Discovered breakages by enabling codecache by default and doing a CI run. I'll commit these fixes first and eventually enabling caching by default will (hopefully) be a one-liner.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125258
Approved by: https://github.com/eellison
2024-05-01 02:34:01 +00:00
Guilherme Leobas
4eaa000acc Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-22 20:25:47 +00:00
PyTorch MergeBot
0696db8202 Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit 17489784b6.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/peterbell10 due to broken mac jobs on main ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2010327997))
2024-03-20 18:34:43 +00:00
Guilherme Leobas
17489784b6 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-20 13:09:19 +00:00
PyTorch MergeBot
36e5c1dcab Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit edd04b7c16.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/jeanschmidt due to lots of breakages in pull jobs, checking if reverting this one will help ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2007915919))
2024-03-19 18:59:46 +00:00
Guilherme Leobas
edd04b7c16 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-19 13:06:42 +00:00
rzou
d534a49767 Reinplace auto_functionalized (#120829)
Fixes https://github.com/pytorch/pytorch/issues/120441

We follow how triton_kernel_wrapper_functional gets re-inplaced:
- If we see auto_functionalized, then first we compute what inputs we
  actually need to clone ("tensors_to_clone") and fixup the graph. This happens in
  `reinplace_and_refine_tensors_to_clone`, which I have refactored out
  of the triton_kernel_wrapper_functional reinplacing code.
- Later on, after the reinplacing pass, we have a decomposition pass for
  auto_functionalized. In that decomposition pass, we make use of the
  "tensor_to_clone" info and only clone those inputs in the
  decomposition.
- We shepherd "tensor_to_clone" from the first step to the second step
  by setting the .meta field on the auto_functionalized node.

Test Plan:
- existing tests
- tested locally by reading the output of TORCH_LOGS="post_grad_graphs"
- added assertExpectedInline tests for the post_grad_graphs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120829
Approved by: https://github.com/oulgen
2024-03-01 00:55:19 +00:00
Edward Z. Yang
9bce208dfb Replace follow_imports = silent with normal (#118414)
This is a lot of files changed! Don't panic! Here's how it works:

* Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file.
* When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded.
* The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors.
* Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list.
* Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves.
* torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state.
* There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many.

In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file.

The codemod was done with this script authored by GPT-4:

```
import glob

exclude_patterns = [
    ...
]

for pattern in exclude_patterns:
    for filepath in glob.glob(pattern, recursive=True):
        if filepath.endswith('.py'):
            with open(filepath, 'r+') as f:
                content = f.read()
                f.seek(0, 0)
                f.write('# mypy: ignore-errors\n\n' + content)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414
Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
2024-01-27 02:44:11 +00:00
Michael Lazos
14266b4955 make sure log tests are run in non-verbose mode (#106496)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106496
Approved by: https://github.com/voznesenskym
2023-08-03 02:45:35 +00:00
Edward Z. Yang
76163a56c0 Refactor stack handling to always use TracingContext to populate real stack on exception (#106277)
The basic gist of the PR is simple, but it's accompanied with some careful modifications and unit tests to make sure I got it right. Check inline comments for more details.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106277
Approved by: https://github.com/albanD, https://github.com/voznesenskym
2023-08-02 00:09:16 +00:00
Yanbo Liang
4c73016ff2 [Dynamo] Enable torch._dynamo.config.suppress_errors by default (#105307)
Summary:
We are working toward full model compilation, where when compilation error happens, we just fall back to eager mode rather than error out.
But at the same time, we should fix these issues if they are bugs. We will:
* 1/ log warnings in OSS;
* 2/ log warnings and write them into Scuba in fbcode;

to prevent us from ignoring these issues.

Test Plan: Manual test

Differential Revision: D47506314

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105307
Approved by: https://github.com/jansel
2023-07-21 19:17:46 +00:00
Michael Lazos
3a400a5adc Enable passing a dict of module names: log level to set_logs python api (#98989)
Adds "module" kwarg to set_logs to allow a user to pass a dict of module qualified names to log level to the API.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98989
Approved by: https://github.com/ezyang
2023-04-13 09:42:32 +00:00
Michael Lazos
a1c46e5f8f component-level configurable logging for dynamo, inductor, aot (#94858)
Summary:

Adds NNC-like logging that is configured through an env var `TORCH_COMPILE_LOGS`
Examples:
`TORCH_LOGS="dynamo,guards" python script.py` - prints dynamo logs at level INFO with guards of all functions that are compiled

`TORCH_LOGS="+dynamo,guards,graph" python script.py` - prints dynamo logs at level DEBUG with guards and graphs (in tabular) format of all graphs that are compiled

[More examples with full output](https://gist.github.com/mlazos/b17f474457308ce15e88c91721ac1cce)

Implementation:
The implementation parses the log settings from the environment, finds any components (aot, dynamo, inductor) or other loggable objects (guards, graph, etc.) and generates a log_state object. This object contains all of the enabled artifacts, and a qualified log name -> level mapping. _init_logs then adds handlers to the highest level logs (the registered logs), and sets any artifact loggers to level DEBUG if the artifact is enabled.

Note: set_logs is an alternative for manipulating the log_state, but if the environment contains TORCH_LOGS, the environment settings will be prioritized.

Adding a new log:
To add a new log, a dev should add their log name to torch._logging._registrations (there are examples there already).

Adding a new artifact:
To add a new artifact, a dev should add their artifact name to torch._logging._registrations as well.
Additionally, wherever the artifact is logged, `torch._logging.getArtifactLogger(__name__, <artifact_name>)` should be used instead of the standard logging implementation.

[design doc](https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94858
Approved by: https://github.com/ezyang
2023-03-18 04:17:31 +00:00