Summary: Discovered breakages by enabling codecache by default and doing a CI run. I'll commit these fixes first and eventually enabling caching by default will (hopefully) be a one-liner.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125258
Approved by: https://github.com/eellison
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/120441
We follow how triton_kernel_wrapper_functional gets re-inplaced:
- If we see auto_functionalized, then first we compute what inputs we
actually need to clone ("tensors_to_clone") and fixup the graph. This happens in
`reinplace_and_refine_tensors_to_clone`, which I have refactored out
of the triton_kernel_wrapper_functional reinplacing code.
- Later on, after the reinplacing pass, we have a decomposition pass for
auto_functionalized. In that decomposition pass, we make use of the
"tensor_to_clone" info and only clone those inputs in the
decomposition.
- We shepherd "tensor_to_clone" from the first step to the second step
by setting the .meta field on the auto_functionalized node.
Test Plan:
- existing tests
- tested locally by reading the output of TORCH_LOGS="post_grad_graphs"
- added assertExpectedInline tests for the post_grad_graphs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120829
Approved by: https://github.com/oulgen
This is a lot of files changed! Don't panic! Here's how it works:
* Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file.
* When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded.
* The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors.
* Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list.
* Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves.
* torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state.
* There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many.
In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file.
The codemod was done with this script authored by GPT-4:
```
import glob
exclude_patterns = [
...
]
for pattern in exclude_patterns:
for filepath in glob.glob(pattern, recursive=True):
if filepath.endswith('.py'):
with open(filepath, 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write('# mypy: ignore-errors\n\n' + content)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414
Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
Summary:
We are working toward full model compilation, where when compilation error happens, we just fall back to eager mode rather than error out.
But at the same time, we should fix these issues if they are bugs. We will:
* 1/ log warnings in OSS;
* 2/ log warnings and write them into Scuba in fbcode;
to prevent us from ignoring these issues.
Test Plan: Manual test
Differential Revision: D47506314
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105307
Approved by: https://github.com/jansel
Summary:
Adds NNC-like logging that is configured through an env var `TORCH_COMPILE_LOGS`
Examples:
`TORCH_LOGS="dynamo,guards" python script.py` - prints dynamo logs at level INFO with guards of all functions that are compiled
`TORCH_LOGS="+dynamo,guards,graph" python script.py` - prints dynamo logs at level DEBUG with guards and graphs (in tabular) format of all graphs that are compiled
[More examples with full output](https://gist.github.com/mlazos/b17f474457308ce15e88c91721ac1cce)
Implementation:
The implementation parses the log settings from the environment, finds any components (aot, dynamo, inductor) or other loggable objects (guards, graph, etc.) and generates a log_state object. This object contains all of the enabled artifacts, and a qualified log name -> level mapping. _init_logs then adds handlers to the highest level logs (the registered logs), and sets any artifact loggers to level DEBUG if the artifact is enabled.
Note: set_logs is an alternative for manipulating the log_state, but if the environment contains TORCH_LOGS, the environment settings will be prioritized.
Adding a new log:
To add a new log, a dev should add their log name to torch._logging._registrations (there are examples there already).
Adding a new artifact:
To add a new artifact, a dev should add their artifact name to torch._logging._registrations as well.
Additionally, wherever the artifact is logged, `torch._logging.getArtifactLogger(__name__, <artifact_name>)` should be used instead of the standard logging implementation.
[design doc](https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94858
Approved by: https://github.com/ezyang