Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27294Fixes#27291
I'm a little annoyed that I have to reintroduce manual binding code. But it's
probably not a good idea to teach the codegen how to do fastpath functions
(is it?)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D17763486
Pulled By: ezyang
fbshipit-source-id: 5793b53e2db80b044e57faae325a95c649d9d459
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
Improve handling of mixed-type tensor operations.
This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).
For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.
The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst
Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.
See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273
Reviewed By: gchanan
Differential Revision: D16582230
Pulled By: nairbv
fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25475
I got sucked into this rabbit hole when I was trying to understand
what I should do with TensorTypeId occurrences in
torch/csrc/utils/tensor_new.cpp. I eventually concluded that all of my problems
were because Tensor.new_empty was hand implemented and not actually a native
function. So I made it a native function.
There are a bunch of other new_* functions which should get this
treatment, but I'm sending out this PR just to show how it can
be done.
The general recipe:
1. Implement a concept of TensorOptions merging (TensorOptions::merge_in).
This represents the notion of taking a tensor, but "overriding" some
of its values with specific overrides. One subtlety here is how
devices get merged; see the comments for what our existing behavior is,
and how I preserve it.
2. Implement new_empty as a native function, using options merging.
3. Add another special case to Python binding generation to treat new_*
similar to *_like (i.e., handle TensorOptions correctly). The logic
here is probably wrong, actually; we should codegen TensorOptions
correctly no matter what happens, but new_empty follows the same
pattern as empty_like so I opted not to touch this code too much.
4. Delete the now defunct manual binding code.
5. Delete manual type annotations that are no longer necessary since
we're going through native.
I didn't handle memory format correctly here. I don't know if this function
should accept memory format; prior memory format patches didn't add support
for memory format to new_like. If we had put memory format in TensorOptions
this wouldn't have been a question.
ghstack-source-id: 89294185
Test Plan: sandcastle & ossci
Differential Revision: D17133000
fbshipit-source-id: 00f4e98bd5174f6fd54e8aba2910ea91824771d9
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.
Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```
Part of the bigger: `Remove Storage` plan.
Now compatible with both torch scripts:
` _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
` _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`
Same checked for all similar functions `rand_like`, `empty_like` and others
It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952
Differential Revision: D14801792
Pulled By: VitalyFedyunin
fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991
changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.
Reviewed By: ezyang
Differential Revision: D14443117
fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.
Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```
Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455
Reviewed By: ezyang
Differential Revision: D14672084
Pulled By: VitalyFedyunin
fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342
This PR introduces a few new concepts:
- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
provide a generic interface for interfacing with device and stream state,
without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
and dynamically dispatched device guard implementations. Dynamic
dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
devices.
- Optional variants of all the aforementioned guards, which are a no-op if
no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
a device on every guard.
There are some subtle semantic changes, which have been thoroughly documented
in the class definition.
BC-breaking changes:
- Move constructor/assignment have been removed from all device guard
implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
'reset_device', because if you switch devices/device types, the stream/device on the
previous device is unset. This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams. Use CUDAStreamGuard
or CUDAMultiStreamGuard as appropriate for your use case.
Reviewed By: dzhulgakov
Differential Revision: D12849620
fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
Summary:
…cuda())
While I was at it, I audited all other ways I know how we might get a CUDA
type from PyTorch and fixed more constructors which don't work.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11533
Differential Revision: D9775786
Pulled By: ezyang
fbshipit-source-id: cd07cdd375fdf74945539ec475a48bf08cbc0c17
Summary:
Also, fix a performance bug in `ensureUnique`. Previously it formatted the warning string even though we weren't tracing, so all that work would *always* happen in the hot path and be for nothing.
A sample of how the new warnings look like:
```
tmp.py:4: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Pytho
n values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
int(x)
tmp.py:5: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this fun
ction to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might caus
e the trace to be incorrect.
torch.tensor([1.])
tmp.py:6: TracerWarning: There are 2 live references to the data region being modified when tracing in-place operator add_. This might cause t
he trace to be incorrect, because all other views that also reference this data will not not reflect this change in the trace! On the other ha
nd, if all other views use the same memory, but are disjoint (e.g. are outputs of torch.split), this might still be safe.
torch.split(y, 2, dim=1)[0].add_(2)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11545
Differential Revision: D9782975
Pulled By: apaszke
fbshipit-source-id: 5b3abd31366e59c69e0b7ff278042b5563deb5a9
Summary:
Many constructors like `torch.zeros` or `torch.randn` didn't support
size tracing correctly which is fixed by this pass. Same issue has been
fixed in legacy tensor constructors.
Additionally, new tensor constructors, which do not participate in
tracing (most notably `torch.tensor`, `torch.as_tensor` and
`torch.from_numpy`) raise a warning when they are used.
Finally, entering a traceable operation disables the tracing in its body.
This is needed because
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11288
Reviewed By: ezyang
Differential Revision: D9751183
Pulled By: apaszke
fbshipit-source-id: 51444a39d76a3e164adc396c432fd5ee3c8d5f7f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11023
I'd like TensorOptions to not know anything about Context, so I can
move it to ATen/core without pulling in Context. To do this, the
type() method has to go, since it consults the context to get a Type.
Reviewed By: cpuhrsch
Differential Revision: D9562467
fbshipit-source-id: 61a18a76eb042a5e70b64b963501e9d68c25d4f0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11095
We used getType to mean a lot of things.
- getVariableTypeFromBaseType: given a base Type (non-Variable type)
compute the Variable Type which corresponds to it.
- getVariableType: like at::getType, but return the Variable type
rather than the plain type.
This rename makes it clearer at the use-site what things are what,
and will make a subsequent rename of at::getType easier.
Reviewed By: gchanan, cpuhrsch
Differential Revision: D9583630
fbshipit-source-id: 2667ec98e7607bc466920c7415a8c651fd56dfca
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10824
API additions:
- Tensor(c10::intrusive_ptr<TensorImpl,UndefinedTensor>&&)
- Tensor(const c10::intrusive_ptr<TensorImpl,UndefinedTensor>&)
- Tensor::operator=(Tensor&&) && (for completeness sake)
- TensorBase::unsafeGetTensorImpl()
- TensorBase::unsafeReleaseTensorImpl()
- TensorBase::getIntrusivePtr()
- TensorImpl::type_id()
- Tensor::set_data()
- Tensor::is_same(Tensor)
- Tensor::use_count()
- Tensor::type_id()
- Tensor::scalar_type()
- WeakTensor::is_same(WeakTensor)
- intrusive_ptr::weak_use_count()
- weak_intrusive_ptr::weak_use_count()
- c10::raw::intrusive_ptr::{incref,decref,make_weak}
- c10::raw::weak_intrusive_ptr::{incref,decref,lock}
API changes:
- Tensor::pImpl is no longer public (and now named tensor_impl_)
- Most methods accessed this way are now accessible on Tensor
maybe_zero_dim() and set_wrapped_number() being prominent exceptions
(they are now accessed through unsafeGetTensorImpl())
- Type is no longer friend of Tensor
- TensorBase::reset(TensorImpl*) is deleted
- TensorBase::reset(TensorImpl*, bool should_retain) is deleted
- TensorBase::swap(TensorBaseImpl&) is deleted; use std::swap instead
- TensorBase::get() is deleted; use unsafeGetTensorImpl() instead
- TensorBase::detach() is deleted; use unsafeReleaseTensorImpl() instead
- TensorBase::retain() is deleted; use _raw_incref() instead
- TensorBase::release() is deleted; use _raw_decref() instead
- WeakTensor lost most of its methods (it no longer inherits from
TensorBase)
- TensorImpl::storage() is now a const method
- Tensor(TensorBase) constructor removed, instead
we go through getIntrusivePtr(). I'm not sure about
this change; I happened to have accidentally removed the
TensorBase constructor and decided to fix call sites,
but I could go the other way.
- detail::set_data() is deleted; use Tensor::set_data() instead
- c10::raw_intrusive_ptr_target removed; use the functions in c10::raw instead.
(The reason for this change, is that it is invalid to cast an intrusive_ptr_target*
to a raw_intrusive_ptr_target* to take advantage of the methods. But there is
no reason the incref/decref methods shouldn't also work on intrusive_ptr_target;
it is primarily an API consideration. We can be more standards compliant by
keeping them as functions, which are universally applicable.)
- intrusive_ptr::reclaim() and weak_intrusive_ptr::reclaim() now work on
pointers of the NullType. (This counts as a bug fix, because the documentation
specified that pointers produced by release() are valid to reclaim(), and
a release() on a null intrusive_ptr produces the NullType::singleton())
Bug fixes:
- Dispatch code for mutable references incorrectly returned
a reference to a value argument (which would immediately
go out of scope). They now correctly return a tensor by
value.
- intrusive_ptr copy/move assignment did not work correctly when
an object was assigned to itself. We now check for this case and
no-op if so. (This bug manifested itself as a Tensor mysteriously
becoming an UndefinedTensor after lines of code like
'x = x.mul_(y)')
Other changes:
- The checked cast functions in Utils.h have now been
renamed and detemplatized into checked unwrap functions.
- Added type_id() and scalar_type() methods to Tensor
- pImpl is no longer public
- Documented what the && overloads are doing
- All occurrences of 'new TensorImpl' (and similar spellings, like 'new THTensor')
have been expunged. This is NO LONGER a valid way to create a new
tensor, and if you do this, upon your first incref, you will catch an ASSERT
failure saying that only tensors created by intrusive_ptr::release() are valid
to reclaim(). Use c10::make_intrusive instead in this situation.
- IValue is adjusted to use intrusive_ptr instead of Retainable, and all
other sub-classes of Retainable were modified to use intrusive_ptr.
When doing this, I had to make the constructors of sub-classes like
ConstantList public, so that c10::make_intrusive could invoke them. Fortunately,
if you incorrectly stack allocate a ConstantList, and then try to get an
intrusive_ptr to it, it will fail, as stack allocated ConstantLists have refcount 0.
- IValue very narrowly sidesteps the problem of handling NullType, as it
considers intrusive_ptr<TensorImpl> identical to intrusive_ptr<TensorImpl, UndefinedTensor>
which is not always true. This was always the case, but there's now a comment
explaining what's going on.
Some MSVC bugs were uncovered during the preparation of this patch.
They are documented as comments in the code.
Reviewed By: gchanan
Differential Revision: D9481140
fbshipit-source-id: 14a8ea0c231ed88b5715fb86d92730926f9f92fc
Summary:
Supersedes #8925
This PR fixes#8502, it fixes the gradients problem for clamp when passing None to the function, and add support for the NoneLiteral and NoneType in script to enable clamp tests. Now we could have corner cases like:
```python
torch.jit.script
def func():
x = torch.randn(3, 3, requires_grad=True)
y = torch.clamp(x, None, 0) # max = 0
y = torch.clamp(x, min=None, max=0)
```
In both JIT and Aten, we use Scalar(NAN) as a sentinel value when passing None type to function clamp, this is the current way we used to support None type in JIT and to solve the gradient problem when user explicitly passing None into clamp.
In JIT side, we create a tensor(NAN) and undefinedTensor if we encounter None when matching the function schema, and later in the interpreter, it will translate to Scalar(NAN) if needed.
Ideally we don't need clamp_min and clamp_max in ATenNative/Autograd and could only support clamp after this change, but since bunch of other operators (e.g. Activation.cpp, Loss.cpp) is using clamp_min in several places, we will still have the functions available, but all python invocations will only call clamp instead of clamp_min/max (with calling underlying th_max/th_min in clamp).
zdevito jamesr66a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9596
Reviewed By: zdevito
Differential Revision: D8940839
Pulled By: wanchaol
fbshipit-source-id: c543a867b82e0ab8c99384773b173fdde2605d28
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
* Don't allow requires_grad to be set on integer Tensor constructors in tensor_new.
* Fix autograd test.
* Fix test_distributions.
* Fix test_jit.
* Fix NN tests.
* Implement torch.as_tensor, similar to numpy.asarray.
torch.as_tensor behaves like torch.tensor except it avoids copies if possible; so also somewhat like tensor.new but without the size overloads.
I didn't add a requires_grad field, because we haven't decided on the semantics such as as_param.
* Remove requires_grad for doc.
* Separate cuda-ness from dtype.
There are no longer torch.cuda.int64, etc; only torch.int64 that correspond to at::ScalarType.
At the python arg parser level, the corresponding ATen type is selected from the combination of (ScalarType, Layout, Device).
There is also currently unused code in here for support ScalarType in native_functions; this will be used for specifying aggregate types
on reduction functions.
* Fix test_autograd.
* Add defaults to randint_like.
* Track is_cuda in py tensor types.
* Fix test_sparse.
* Fix multiprocessing.
* Fix rnn.
* Fix test_nn.
* Fix flake8.
* Introduce torch.layout and split layout from dtypes.
Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.
Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function). But this doesn't really follow for sparity, which isn't a common case.
It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array). But this should be the same whether or not the tensor is represented via strides, sparsity, etc.
This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.
* Formatting, make init throw python_error.
* Fix cuda not enabled error message.
* Fix test.
* Add numpy.array-like type inference to torch.tensor.
* Temporary fix for int/double types.
* Treat python floats as the default (scalar) dtype.
* Also make 0-length sequences the default scalar type and add more tests.
* Add type inference to sparse_coo_tensor.
* Fix sparse test.
* Remove allow_variables.
* Check numpy platform bits.
* Address review comments.
* Make suggested changes to constraints.
* More checking windows builds.
* Fix test for windows.
* Add torch.sparse_coo_tensor factory.
Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor. We can add
type inference later when we add it to other factories.
* Fix merge.
* Use type_conversion function from python_variable_methods.
Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor. We can add
type inference later when we add it to other factories.
* Support native namespace functions with type dispatch.
Use 'ones' as an example. Note this is a "halfway" solution; i.e. the call chain is:
at::ones(shape, dtype) -> dtype.ones(shape, dtype) -> CPUFloatType.ones(shape, dtype) -> at::native::ones(shape, dtype)
The "nicer" solution would probably be something like:
at::ones(shape, dtype) -> dtype.ones(shape) -> CPUFloatType.ones(shape) -> at::native::ones(shape, this)
* Fix type inference.
* Fix test install.
* Fix extensions.
* Put dtype argument at the beginning.
* Fix extension.cpp.
* Fix rnn.
* Move zeros in the same manner.
* Fix cuda.
* Change randn.
* Change rand.
* Change randperm.
* Fix aten contrib.
* Resize in randperm_out.
* Implement eye.
* Fix sparse zeros.
* linspace, logspace.
* arange.
* range.
* Remove type dispatch from gen_python_functions.
* Properly generate maybe_init_cuda for type dispatch functions not named type.
* Don't duplicate dtype, this parameters for native type dispatched functions.
* Call VariableType factory methods from the base type so it gets version number 0.
* Address review comments.
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.
This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.