Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.
I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730
Differential Revision: D18813270
Pulled By: ezyang
fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060
This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.
This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.
The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.
Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.
Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.
My plan is to benchmark a few functions and then post the results in a
comment to this PR.
Test Plan: - [namedtensor ci]
Differential Revision: D17331635
Pulled By: zou3519
fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
Summary:
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: [pytorch-cpu-strided-complex extension](https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex)
Note: These changes do not support AVX/SSE operations on complex tensors.
Changes so far:
- [x] Added complex support of torch.empty.
- [x] Added complex support of CopyKernels
- [x] Added complex support of BinaryOp kernels
Once these changes are applied the rest of the kernels are pretty easy.
ezyang
I have fixed the issues in the original [PR: 25373](https://github.com/pytorch/pytorch/pull/25373).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25534
Differential Revision: D17188390
Pulled By: ezyang
fbshipit-source-id: ade9fb00b2caa89b0f66a4de70a662b62db13a8c
Summary:
Speeds up the common case where Tensor is a torch.Tensor (not a
subclass). This reduces the number of executed instructions for a
torch.add(tensor1, tensor2) by ~328 (should be ~65 ns faster).
Note that most of the PythonArgs accessors are too large to be inlined.
We should move most of them to the cpp file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22782
Differential Revision: D16223592
Pulled By: colesbury
fbshipit-source-id: cc20f8989944389d5a5e3fab033cdd70d581ffb1
Summary:
Currently the build system accepts USE_NAMEDTENSOR from the environment
variable and turns it into NAMEDTENSOR_ENABLED when passing to CMake.
This discrepancy does not seem necessary and complicates the build
system. The naming of this build option is also semantically incorrect
("BUILD_" vis-a-vis "USE_"). This commit eradicate this issue before it
is made into a stable release.
The support of NO_NAMEDTENSOR is also removed, since PyTorch has been
quite inconsistent about "NO_*" build options.
---
Note: All environment variables with their names starting with `BUILD_` are currently automatically passed to CMake with no need of an additional wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22360
Differential Revision: D16074509
Pulled By: zou3519
fbshipit-source-id: dc316287e26192118f3c99b945454bc50535b2ae
Summary:
Another simple bit of syntax that NumPy supports and we don't.
Support int, float, and bool.
```python
>>> torch.randn((2,3), dtype=float)
tensor([[-0.1752, -0.3240, -0.6148],
[ 0.1861, 1.6472, 0.1687]], dtype=torch.float64)
```
A bit confusingly, Python's "float" actually means double, but nothing we can do about that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21215
Differential Revision: D15697012
Pulled By: umanwizard
fbshipit-source-id: 9a38d960a610b8e67023486b0c9265edd3c22246
Summary:
#19975 was separated by 2 PRs.
This one:
Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.
At this moment both functions just operate with strides and doesn't store any tensor state.
(Original RFC #19092)
-----
Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).
Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.
1. `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.
- Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.
`x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.
2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.
- `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.
Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455
Differential Revision: D15341577
Pulled By: VitalyFedyunin
fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
Summary:
Add automatic translations for a few argument names that commonly differ between PyTorch and NumPy.
For now, they are as follows:
* `keepdim` -> `keepdims`
* `dim` -> `axis`
* `input` -> (any of `a`, `x`, `x1`)
* `other` -> `x2`
Basic examples:
```python
>>> t=torch.randn(10,10)
>>> torch.sum(x=t, axis=1)
tensor([ 0.5199, -0.3768, 4.3619, -0.9105, 1.1804, 1.0837, -0.9036, 0.2365,
1.1171, -0.0999])
```
```python
>>> torch.add(x1=5, x2=6)
tensor(11)
```
The additional overhead is zero when using traditional PyTorch argument names, and a few (usually 1) extra PyDict lookups when using NumPy argument names.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20451
Differential Revision: D15337521
Pulled By: umanwizard
fbshipit-source-id: 7a7d389786f4ccf5c86a14ecb2002c61730c51b5
Summary:
Currently the following code gives an error on python 2 because `ret` is a structseq which is not a tuple
```python
ret = a.max(dim=0)
ret1 = torch.max(a, dim=0, out=ret)
```
This PR modify tuple check in python arg parser to allow structseq to be input of operators where tuple is expected, which would make the above code work.
Depend on: https://github.com/pytorch/pytorch/pull/17136
Partially fixes: https://github.com/pytorch/pytorch/issues/16813
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17208
Differential Revision: D14280198
Pulled By: VitalyFedyunin
fbshipit-source-id: beffebfd3951c4f5c7c8fe99a5847616a89491f3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Optional clean up. This PR remove python_default_init from the yaml files, and the code-gen, and utilize optional type to do the work.
This also fix the bug in the #13149 to correctly adopt as_strided backward.
Fixes#9941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15234
Differential Revision: D13502044
Pulled By: wanchaol
fbshipit-source-id: 774b61fc4414482cf11d56e22bd0275aefb352a4
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Make `at::_local_scalar` more "official" by renaming it to `item()`.
gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13676
Differential Revision: D13003020
Pulled By: goldsborough
fbshipit-source-id: 0ac25f5237fb81a1576304a0a02f840ff44168a4
Summary:
In particular, this was breaking the logic for cudnn algorithm to fall back to a less memory hungry algorithm if the selected one OOM when creating the workspace.
c10::Error are subclass of `std::exception` and not `std::runtime_error`.
I removed `runtime_error` in all places in our code and replaced them with `const exception`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13665
Differential Revision: D12958396
Pulled By: soumith
fbshipit-source-id: af557efd9887b013140113d3067de157ffcf8465
Summary:
This PR adds optional type to ATen native, autograd, JIT schema and Python Arg parser, closes#9513. It allows us to use optional default values (including None) for function signature and implementations like clamp, etc., and also let us remove the python_default_init hack.
Follow up:
remove python_default_init completely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12582
Differential Revision: D10417423
Pulled By: wanchaol
fbshipit-source-id: 1c80f0727bb528188b47c595629e2996be269b89
Summary:
There are still a few work to be done:
- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h
This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:
(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.
Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354
Reviewed By: orionr
Differential Revision: D10238910
Pulled By: Yangqing
fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
Summary:
- Just a simple fix to support `fill_`
- And a fix for indexing in `pytorch-complex`
Differential Revision: D9804061
Pulled By: ezyang
fbshipit-source-id: 631129b3fa220a9670770b3766f14a8e03633bdf
Summary:
Many constructors like `torch.zeros` or `torch.randn` didn't support
size tracing correctly which is fixed by this pass. Same issue has been
fixed in legacy tensor constructors.
Additionally, new tensor constructors, which do not participate in
tracing (most notably `torch.tensor`, `torch.as_tensor` and
`torch.from_numpy`) raise a warning when they are used.
Finally, entering a traceable operation disables the tracing in its body.
This is needed because
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11288
Reviewed By: ezyang
Differential Revision: D9751183
Pulled By: apaszke
fbshipit-source-id: 51444a39d76a3e164adc396c432fd5ee3c8d5f7f
Summary:
This PR cleans up the `at::Tensor` class by removing all methods that start with an underscore in favor of functions in the `at::` namespace. This greatly cleans up the `Tensor` class and makes it clearer what is the public and non-public API.
For this I changed `native_functions.yaml` and `Declarations.cwrap` to make all underscore methods `variant: function` (or add such a statement to begin with), and then fixed all code locations using the underscore methods.
ezyang colesbury gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11152
Differential Revision: D9683607
Pulled By: goldsborough
fbshipit-source-id: 97f869f788fa56639c05a439e2a33be49f10f543
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10824
API additions:
- Tensor(c10::intrusive_ptr<TensorImpl,UndefinedTensor>&&)
- Tensor(const c10::intrusive_ptr<TensorImpl,UndefinedTensor>&)
- Tensor::operator=(Tensor&&) && (for completeness sake)
- TensorBase::unsafeGetTensorImpl()
- TensorBase::unsafeReleaseTensorImpl()
- TensorBase::getIntrusivePtr()
- TensorImpl::type_id()
- Tensor::set_data()
- Tensor::is_same(Tensor)
- Tensor::use_count()
- Tensor::type_id()
- Tensor::scalar_type()
- WeakTensor::is_same(WeakTensor)
- intrusive_ptr::weak_use_count()
- weak_intrusive_ptr::weak_use_count()
- c10::raw::intrusive_ptr::{incref,decref,make_weak}
- c10::raw::weak_intrusive_ptr::{incref,decref,lock}
API changes:
- Tensor::pImpl is no longer public (and now named tensor_impl_)
- Most methods accessed this way are now accessible on Tensor
maybe_zero_dim() and set_wrapped_number() being prominent exceptions
(they are now accessed through unsafeGetTensorImpl())
- Type is no longer friend of Tensor
- TensorBase::reset(TensorImpl*) is deleted
- TensorBase::reset(TensorImpl*, bool should_retain) is deleted
- TensorBase::swap(TensorBaseImpl&) is deleted; use std::swap instead
- TensorBase::get() is deleted; use unsafeGetTensorImpl() instead
- TensorBase::detach() is deleted; use unsafeReleaseTensorImpl() instead
- TensorBase::retain() is deleted; use _raw_incref() instead
- TensorBase::release() is deleted; use _raw_decref() instead
- WeakTensor lost most of its methods (it no longer inherits from
TensorBase)
- TensorImpl::storage() is now a const method
- Tensor(TensorBase) constructor removed, instead
we go through getIntrusivePtr(). I'm not sure about
this change; I happened to have accidentally removed the
TensorBase constructor and decided to fix call sites,
but I could go the other way.
- detail::set_data() is deleted; use Tensor::set_data() instead
- c10::raw_intrusive_ptr_target removed; use the functions in c10::raw instead.
(The reason for this change, is that it is invalid to cast an intrusive_ptr_target*
to a raw_intrusive_ptr_target* to take advantage of the methods. But there is
no reason the incref/decref methods shouldn't also work on intrusive_ptr_target;
it is primarily an API consideration. We can be more standards compliant by
keeping them as functions, which are universally applicable.)
- intrusive_ptr::reclaim() and weak_intrusive_ptr::reclaim() now work on
pointers of the NullType. (This counts as a bug fix, because the documentation
specified that pointers produced by release() are valid to reclaim(), and
a release() on a null intrusive_ptr produces the NullType::singleton())
Bug fixes:
- Dispatch code for mutable references incorrectly returned
a reference to a value argument (which would immediately
go out of scope). They now correctly return a tensor by
value.
- intrusive_ptr copy/move assignment did not work correctly when
an object was assigned to itself. We now check for this case and
no-op if so. (This bug manifested itself as a Tensor mysteriously
becoming an UndefinedTensor after lines of code like
'x = x.mul_(y)')
Other changes:
- The checked cast functions in Utils.h have now been
renamed and detemplatized into checked unwrap functions.
- Added type_id() and scalar_type() methods to Tensor
- pImpl is no longer public
- Documented what the && overloads are doing
- All occurrences of 'new TensorImpl' (and similar spellings, like 'new THTensor')
have been expunged. This is NO LONGER a valid way to create a new
tensor, and if you do this, upon your first incref, you will catch an ASSERT
failure saying that only tensors created by intrusive_ptr::release() are valid
to reclaim(). Use c10::make_intrusive instead in this situation.
- IValue is adjusted to use intrusive_ptr instead of Retainable, and all
other sub-classes of Retainable were modified to use intrusive_ptr.
When doing this, I had to make the constructors of sub-classes like
ConstantList public, so that c10::make_intrusive could invoke them. Fortunately,
if you incorrectly stack allocate a ConstantList, and then try to get an
intrusive_ptr to it, it will fail, as stack allocated ConstantLists have refcount 0.
- IValue very narrowly sidesteps the problem of handling NullType, as it
considers intrusive_ptr<TensorImpl> identical to intrusive_ptr<TensorImpl, UndefinedTensor>
which is not always true. This was always the case, but there's now a comment
explaining what's going on.
Some MSVC bugs were uncovered during the preparation of this patch.
They are documented as comments in the code.
Reviewed By: gchanan
Differential Revision: D9481140
fbshipit-source-id: 14a8ea0c231ed88b5715fb86d92730926f9f92fc
Summary:
This is along the way of removing Tensor as a member of the tagged union in Scalar. This simplifies ordering dependencies, because currently Scalar and Tensor both depend on each other (so we introduce a TensorBase). Also, this API isn't particularly useful publicly: we can't autograd through Scalars, so you still need a Tensor overload basically everywhere anyway.
I'm undecided what the final API should be here. We could keep a Tensor constructor on Scalar, but have it generate a local scalar; this is convenient but given this API used to be non-synchronizing, it may not be the best.
For now, I'm just using _local_scalar, which is clear, although we should get rid of the prefix _ if that's the API we intend to promote.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10852
Reviewed By: ezyang
Differential Revision: D9496766
Pulled By: gchanan
fbshipit-source-id: 16f39b57536b9707132a5a4d915650c381bb57db
Summary:
```
Use intrusive_ptr in Storage; replace unique_ptr<Storage> with Storage
This patch does two major changes:
- It replaces the use of Retainable in Storage with a new implementation
based on intrusive_ptr. This will be necessary because Caffe2 will
be using this class to implement intrusive_ptrs, and we need to
line these up for the merge. One good thing about the new implementation is
that the default copy/move constructors/assignment operators and destructor
work automatically, instead of needing to be hardcoded into Storage/Tensor.
- It replaces all places where we returned std::unique_ptr<Storage> with
Storage, collapsing an unnecessary double indirection that is no longer
necessary now that we have correctly working copy/move constructors.
I didn't initially want to do step (2), but it was very important to
eliminate all bare uses of new Storage and new StorageImpl, and this making
the API change was the most straightforward way to do this.
HOW TO FIX YOUR CODE IN THE NEW API
- You no longer need to dereference the result of tensor.storage() to pass
it to set. So, instead of:
x.set_(*y.storage());
just write:
x.set_(y.storage());
- If you were accessing methods on StorageImpl via the pImpl() method, you
must use the dot operator to run pImpl(). Even better; just drop pImpl,
we now have method forwarding. So, instead of:
storage->pImpl()->data();
just do:
storage->data();
// storage.pImpl()->data() works too but is not as recommended
- storage->getDevice() is no more; instead use storage->device().index()
MISC CODE UPDATES
- retain, release, weak_retain, weak_release and weak_lock are now
reimplemented using the "blessed API", and renamed to make it
clearer that their use is discouraged.
- nvcc OS X and general OS X portability improvements to intrusive_ptr
- A new comment in intrusive_ptr describing how stack allocated
intrusive_ptr_targets work differently than heap allocated ones
from c10::make_intrusive
CAVEAT EMPTOR
- THStorage_weakRetain used to work on strong pointers, but it NO LONGER
works with intrusive_ptr. You must reclaim the strong pointer into a
real strong pointer, construct a weak pointer from it, and then release
the strong and weak pointers. See StorageSharing.cpp for an example.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10488
Reviewed By: gchanan
Differential Revision: D9306134
Pulled By: ezyang
fbshipit-source-id: 02d58ef62dab8e4da6131e1a24834a65c21048e2