Commit Graph

38 Commits

Author SHA1 Message Date
Edward Z. Yang
bc6ec97e02 Switch dynamic_shapes to True by default (#103597)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103597
Approved by: https://github.com/voznesenskym
2023-06-15 15:16:20 +00:00
Michael Voznesensky
aece6705d1 Move locals/globals to output graph, make it easier to access them anywhere (#103456)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103456
Approved by: https://github.com/jansel
2023-06-14 20:04:33 +00:00
Edward Z. Yang
2f5fef5912 Refactor tests for dynamic shapes (#103542)
First, infra improvements: new combinator `expectedFailureDynamic` which subsumes expectedFailure calls in test_dynamic_shapes.py. It's just nicer to have these right with the test. Implementation in torch/_dynamo/testing.py and it works by putting an attr on the test, which is then converted into a real expectedFailure when we actually generate the dynamic shapes test class

Next, some housekeeping:
* test/dynamo/test_unspec.py accidentally was running mostly statically due to the `assume_static_by_default` config flip. Don't assume static by default and xfail some tests which regressed in that time.
* New test file test/dynamo/test_config.py, for testing permutations of configuration options. `test_dynamic_shapes` got moved there.

Finally, grinding through tests in a way that will make them more compatible with dynamic by default:
* If the test explicitly requires dynamic_shapes=False, remove that patch (and probably xfail it)
* If the test checks dynamic_shapes internally, remove that test and patch the test so it ALWAYS runs with dynamic_shapes (this is not coverage loss because we're going to switch the default)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103542
Approved by: https://github.com/anijain2305
2023-06-14 02:04:54 +00:00
Larry Liu
687afeb686 [dynamo][numpy] Add NumpyTensorVariable to translate ndarray attribute calls to tensor attributes (#95849)
Issue: #93684

# Problem

Reduce graph breaks when dynamo compiles python functions containing numpy functions and ndarray operations.

# Design (as I know it)

* Use torch_np.ndarray(a wrapper of tensor) to back a `VariableTracker`: `NumpyTensorVariable`.
* Translate all attributes and methods calls, on ndarray, to torch_np.ndarray equivalent.

This PR adds `NumpyTensorVariable` and supports:
1.  tensor to ndarray, ndarray to tensor
2. numpy functions such as numpy.meshgrid()
3. ndarray attributes such as `itemsize`, `stride`

Next PR will handle returning `np.ndarray` and add support for ndarray methods
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95849
Approved by: https://github.com/ezyang
2023-04-27 16:18:35 +00:00
Aaron Gokaslan
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
Jason Ansel
220712f4de Fix torch.compile() on a skipped module (#98894)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98894
Approved by: https://github.com/xw285cornell
2023-04-22 16:10:55 +00:00
William Wen
88c8c2b71b [dynamo 3.11] implement 3.11 exceptiontable (#96511)
Summary of changes:
- Add CPython exceptiontable parsing/assembling functions in torch/_dynamo/bytecode_transformation.py, based on https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt.
- Add optional `exn_tab_entry` field to dynamo `Instruction`s in torch/_dynamo/bytecode_transformation.py in order to virtualize exception table entries (start, end, target instructions).
- Add checks guarding against duplicate instructions in dynamo, so that jump/exceptiontable targets are unambiguous. See `get_indexof` in torch/_dynamo/bytecode_analysis.py. Ensure that bytecode generation throughout dynamo does not generate duplicate instructions.
- Allow dynamo bytecode generation logic to generate nested exception table entries for developer convenience. CPython expects entries to not overlap, so we flatten nested entries during assembly in torch/_dynamo/bytecode_transformation.py:compute_exception_table.
- Simulate the block stack in torch/_dynamo/symbolic_convert.py. CPython removed the block stack in 3.11, but dynamo needs it in order to keep track of active contexts. So we simulate the block stack as before by looking at exceptiontable entries in order to determine the current blocks.
- Update context codegen in torch/_dynamo/resume_execution.py. The `SETUP_FINALLY` bytecode, which conveniently had a jump target to the finally block, was removed in 3.11, so we need to keep track of the jump target of the finally block using exceptiontables. Generating resume functions is more difficult since the original exceptiontable entries pointing to old cleanup code need to be modified to point to new cleanup code.
- Fix a push_null bug in torch/_dynamo/variables/functions.py introduced by https://github.com/pytorch/pytorch/pull/98699

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96511
Approved by: https://github.com/jansel, https://github.com/yanboliang, https://github.com/albanD
2023-04-18 07:53:24 +00:00
Michael Voznesensky
ccc9a3d726 Automatic Dynamic Shapes (#98923)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98923
Approved by: https://github.com/ezyang
2023-04-13 02:39:23 +00:00
PyTorch MergeBot
629377ea8b Revert "Replace _dynamo.config with an object instead of module (#96455)"
This reverts commit 420104a886.

Reverted https://github.com/pytorch/pytorch/pull/96455 on behalf of https://github.com/jansel due to BC breaking, was landed prematurely
2023-04-12 15:06:14 +00:00
Han Qi
420104a886 Replace _dynamo.config with an object instead of module (#96455)
Summary:
    Replace _dynamo.config with an object instead of module

    Current usage patterns of setting and reading fields on config will work
    unchanged.

    Only changes needed going forward:
    1. import torch._dynamo.config will not work. However, just doing
       import torch._dynamo is sufficient to access dynamo config
       as torch._dynamo.config.

    2. Files inside of _dynamo folder need to access config via
       from torch._dynamo.config_util import config instead of
       from torch._dynamo import config. Because _dynamo/__init__.py
       imports some of the files so it would be circular import.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96455
Approved by: https://github.com/williamwen42
2023-04-11 21:23:32 +00:00
William Wen
117da58b65 [dynamo 3.11] enable dynamo unittests in 3.11 (#98104)
Enable most dynamo unittests for 3.11. There are a few tests that are skipped due to failures that will be addressed in upcoming PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98104
Approved by: https://github.com/yanboliang, https://github.com/voznesenskym, https://github.com/albanD, https://github.com/jansel, https://github.com/jerryzh168, https://github.com/malfet
2023-04-10 20:04:10 +00:00
PyTorch MergeBot
22411b6f02 Revert "[dynamo 3.11] enable dynamo unittests in 3.11 (#98104)"
This reverts commit 0066f3405f.

Reverted https://github.com/pytorch/pytorch/pull/98104 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it is failing on CPU 3.11 test in trunk 0066f3405f.  This is probably a landrace
2023-04-07 00:05:30 +00:00
William Wen
0066f3405f [dynamo 3.11] enable dynamo unittests in 3.11 (#98104)
Enable most dynamo unittests for 3.11. There are a few tests that are skipped due to failures that will be addressed in upcoming PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98104
Approved by: https://github.com/yanboliang, https://github.com/voznesenskym, https://github.com/albanD, https://github.com/jansel, https://github.com/jerryzh168, https://github.com/malfet
2023-04-06 23:15:48 +00:00
Edward Z. Yang
057911741a [EASY] Teach requires_bwd_pass how to interpret int. (#98312)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98312
Approved by: https://github.com/wconstab
2023-04-04 20:41:26 +00:00
Edward Z. Yang
e83d0a1893 Improve unittest class printing for generated classes (#95806)
Previously they printed like `torch._dynamo.testing.make_test_cls_with_patches.<locals>.DummyTestClass`; now they print as `torch._dynamo.testing.StaticDefaultDynamicShapesUnspecTests`

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95806
Approved by: https://github.com/dagitses
2023-03-02 17:03:41 +00:00
Jason Ansel
ee2729890c Refactor dynamo register_backend/BACKENDS (#93389)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93389
Approved by: https://github.com/voznesenskym
2023-02-02 19:41:48 +00:00
Jason Ansel
10910758f4 Make dynamo tests work under pytest (#93251)
This now runs without error:
```
pytest test/dynamo
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93251
Approved by: https://github.com/ezyang, https://github.com/voznesenskym, https://github.com/mlazos
2023-02-01 02:11:52 +00:00
Andrew Gu
3e4d0e8d82 [Reland][FSDP] Do not clean FQNs for use_orig_params=True (#92662)
The last PR (https://github.com/pytorch/pytorch/pull/91767/) had a land race relating to `_NamedOptimizer` + FSDP and got reverted. This is a re-land.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92662
Approved by: https://github.com/rohan-varma
2023-01-30 16:07:44 +00:00
Nikita Karetnikov
53bfba0d72 [inductor] run CPU and CUDA tests with dynamic shapes (#92667)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92667
Approved by: https://github.com/ezyang
2023-01-23 08:54:31 +00:00
PyTorch MergeBot
6bc62a6392 Revert "[inductor] run CPU and CUDA tests with dynamic shapes (#92667)"
This reverts commit 425e506ffe.

Reverted https://github.com/pytorch/pytorch/pull/92667 on behalf of https://github.com/kit1980 due to test_topk_dynamic_shapes_cpu failing after this PR
2023-01-22 03:43:57 +00:00
Nikita Karetnikov
425e506ffe [inductor] run CPU and CUDA tests with dynamic shapes (#92667)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92667
Approved by: https://github.com/ezyang
2023-01-21 22:03:41 +00:00
PyTorch MergeBot
88942a3199 Revert "[FSDP] Do not clean FQNs even for use_orig_params=True (#91767)"
This reverts commit d6f3265e1a.

Reverted https://github.com/pytorch/pytorch/pull/91767 on behalf of https://github.com/malfet due to Looks like it broke `test_compatible_with_named_optimizer` distribued tests, see d6f3265e1a
2023-01-17 20:04:52 +00:00
Andrew Gu
d6f3265e1a [FSDP] Do not clean FQNs even for use_orig_params=True (#91767)
Cleaning FQN for `FullyShardedDataParallel(use_orig_params=True)` can cause some discrepancies with respect to the FQN compared to manually looping over `named_modules()` and `named_parameters()` together.

There is no requirement for the FQNs to be clean when using wrapper FSDP + `use_orig_params=True`. We can leave clean FQNs to `fully_shard`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91767
Approved by: https://github.com/zhaojuanmao
2023-01-17 17:41:28 +00:00
Jason Ansel
7c1c239db1 [inductor] Rewrite Triton templates + epilogue fusion (retry) (#91575)
This reverts commit 94262efc7d to reland #91105 / #90738.

Fixes https://github.com/pytorch/torchdynamo/issues/2015

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91575
Approved by: https://github.com/ngimel
2023-01-11 00:08:03 +00:00
PyTorch MergeBot
94262efc7d Revert "[inductor] Rewrite Triton templates + epilogue fusion (retry) (#91105)"
This reverts commit d6dd2e97da.

Reverted https://github.com/pytorch/pytorch/pull/91105 on behalf of https://github.com/atalman due to Broke internal builds
2022-12-21 00:02:38 +00:00
William Wen
289f06434c [dynamo] check buffers when checking accuracy (#91037)
Tested by running `python benchmarks/dynamo/torchbench.py --accuracy --float32 -dcuda --output=inductor_torchbench_float32_training_cuda_performance.csv --training --inductor --no-skip --dashboard --only mobilenet_v2 --cold_start_latency` and breakpointing after the changes to inspect buffers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91037
Approved by: https://github.com/anijain2305
2022-12-20 13:57:25 +00:00
Jason Ansel
d6dd2e97da [inductor] Rewrite Triton templates + epilogue fusion (retry) (#91105)
https://github.com/pytorch/pytorch/pull/90738 seems a bit borked. ghimport fails on it, and I unlinked it from the Phabricator diff, but it still won't land.  This is an exact copy that PR without using ghstack.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91105
Approved by: https://github.com/ngimel
2022-12-20 02:38:23 +00:00
Michael Voznesensky
4cdc96fb4f Add hooks structure for passing around user provided hooks, add a new guard_failure_fn (#90371)
This PR introduces a new function we can pass to torch._dynamo.optimize - guard_failure_fn. Usage is in the PR, and the one stacked on top of it, but the gist of it is that it emits failed guard reason strings alongside code. This is useful for tests and debugging, as it gives far finer grained assertions and control than the compile counter alone.

This is a resubmit of https://github.com/pytorch/pytorch/pull/90129

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90371
Approved by: https://github.com/ezyang
2022-12-07 17:51:53 +00:00
Animesh Jain
cad5772c2c [dashboard][huggingface] skip accuracy checks for really large models… (#89273)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89273
Approved by: https://github.com/desertfire
2022-11-19 00:22:45 +00:00
Animesh Jain
74610a1ced [dynamo][benchmarks] HF - Fix seq len and batch sizes (#89165)
Fixes many models in https://github.com/pytorch/torchdynamo/issues/1842
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89165
Approved by: https://github.com/ngimel
2022-11-17 06:14:24 +00:00
Animesh Jain
30d9fb9157 [dynamo][reland] API Support for nn.Module (#89113)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89113
Approved by: https://github.com/ezyang
2022-11-17 02:03:48 +00:00
PyTorch MergeBot
98bcb4acb6 Revert "[reland][dynamo] Better support for nn.Module (#88959)"
This reverts commit e950afc395.

Reverted https://github.com/pytorch/pytorch/pull/88959 on behalf of https://github.com/malfet due to Broke `test_accuracy_issue1`
2022-11-13 16:21:14 +00:00
Animesh Jain
e950afc395 [reland][dynamo] Better support for nn.Module (#88959)
Relanding https://github.com/pytorch/pytorch/pull/88629

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88959
Approved by: https://github.com/msaroufim
2022-11-13 08:19:45 +00:00
PyTorch MergeBot
ae2c668cc0 Revert "[dynamo][api] Better support of torch.nn.Module (#88629)"
This reverts commit c83348597b.

Reverted https://github.com/pytorch/pytorch/pull/88629 on behalf of https://github.com/anijain2305 due to job failing on master https://github.com/pytorch/pytorch/actions/runs/3449914495/jobs/5758267231
2022-11-12 07:52:56 +00:00
Animesh Jain
c83348597b [dynamo][api] Better support of torch.nn.Module (#88629)
This is an API change, so please review carefully.

With this PR, torchdynamo returns an `OptimizedModule` class object, a subclass of `torch.nn.Module`, when asked to optimize a `nn.Module` object. Most of the methods are redirected to the original `nn.Module`, which is installed as `_mod` in the `OptimizedModule`.

This is helpful for many cases

```
mod = MockModule()

opt_mod = torch._dynamo.optimize()(mod)

print(opt_mod) # Works

opt_mod = opt_mod.to(device="cuda")
print(opt_mod) # Works
opt_mod(input) # Triggers recompile if necessary, earlier we were shedding the TorchDynamo wrapper

opt_mod.parameters() # Refers to the original module

```

Topics unclear to me
* I have overridden many methods to raise NotImplementedError. A careful review of those will be good.
* hooks
* For the optimized forward, should we call torchdynamo optimization on `__call__` or `forward`
* What else to test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88629
Approved by: https://github.com/Chillee, https://github.com/jansel, https://github.com/msaroufim
2022-11-12 04:45:17 +00:00
Horace He
2418ddb1ec Unified symbolic shape variables between Inductor and AOTDispatcher (#87161)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87161
Approved by: https://github.com/jansel
2022-10-19 04:50:34 +00:00
Jason Ansel
8f71e8de7e Sync changes from pytorch/torchdynamo, enable tests (#86950)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86950
Approved by: https://github.com/Chillee
2022-10-14 23:08:58 +00:00
Jason Ansel
c7c09722ad Move TorchDynamo into PyTorch core (#86461)
Context:
https://github.com/pytorch/torchdynamo/issues/1588

This PR moves [TorchDynamo](https://github.com/pytorch/torchdynamo) and TorchInductor into PyTorch core.
- `torchdynamo` becomes `torch._dynamo`
- `torchinductor` becomes `torch._inductor`

This PR was generated by running `copy_to_core.sh` in https://github.com/pytorch/torchdynamo/pull/1538

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86461
Approved by: https://github.com/voznesenskym
2022-10-13 23:18:06 +00:00