Summary:
The init-list form of `at::indexing::Slice` (i.e. `tensor.index({{1, None, 2}, ...})` instead of `tensor.index({Slice(1, None, 2), ...})`) in C++ API can be easily confused with the list-form indexing in Python API (e.g. `tensor[[1, 3, 2], ...]`), which is not good from readability perspective. This PR removes the init-list form of `at::indexing::Slice` to make the API less confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34255
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20290166
Pulled By: yf225
fbshipit-source-id: abbcbeca0b179219e5e1f196a33ef8aec87ebb76
Summary:
This PR adds the following items:
- **1st item**: `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads for `Tensor::index` and `Tensor::index_put_`, to be used specifically for multi-dim indexing purpose.
Design rationale:
* C++ `Tensor::index` and `Tensor::index_put_` are both existing tensor APIs, and they currently (before this PR) only accept a list of tensors (i.e. `ArrayRef<Tensor>`) as indices. If we change their signatures to also accept non-tensors as indices (i.e. `ArrayRef<TensorIndex>`, and `TensorIndex` is convertible from `Tensor` / `Slice` / `None` / `Ellipsis`), it would slow down the original code path (since now it has to go through more steps), which is undesirable.
To get around this problem, the proposed solution is to keep the original `ArrayRef<Tensor>` overload, and add `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads to `Tensor::index` and `Tensor::index_put_`. This way, the original code path won’t be affected, and the tensor multi-dim indexing API is only used when the user explicitly pass an `ArrayRef<TensorIndex>` or a braced-init-list of `TensorIndex`-convertible types to `Tensor::index` and `Tensor::index_put_` .
Note that the above proposed solution would still affect perf for the user’s original `Tensor::index` or `Tensor::index_put_` call sites that use a braced-init-list of tensors as input, e.g. `tensor.index({...})` or `tensor.index_put_({...}, value)`, since now such function calls would take the multi-dim indexing path instead of the original advanced indexing path. However, there are only two instances of this in our codebase (one in ATen cpp test, one in a C++ API nn init function), and they can be easily changed to explicitly use `ArrayRef<Tensor>` as input (I changed them in this PR). For external user’s code, since this is part of the C++ frontend which is still considered experimental, we will only talk about this change in the release note, and ask users to switch to using `ArrayRef<Tensor>` explicitly if they want to keep using the original advanced indexing code path.
- **2nd item**: Mechanisms for parsing `ArrayRef<TensorIndex>` indices and performing indexing operations (mirroring the functions in `torch/csrc/autograd/python_variable_indexing.cpp`).
- **3rd item**: Simple tests to demonstrate that the `Tensor::index()` and `Tensor::index_put_()` APIs work. I will add more tests after the first few PRs are reviewed.
- **4th item**: Merge Python/C++ indexing code paths, for code simplicity. I tested locally and found that there is no perf regression resulting from the merge. I will get more concrete numbers for common use cases when we settle on the overall design.
This PR supersedes https://github.com/pytorch/pytorch/pull/30425.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32841
Differential Revision: D19919692
Pulled By: yf225
fbshipit-source-id: 7467e64f97fc0e407624809dd183c95ea16b1482
Summary:
Currently, libtorch build and test are not running in macOS CI. This PR fixes the issue.
**Test Plan:**
Check that libtorch build and test are running again in macOS CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32072
Differential Revision: D19391909
Pulled By: yf225
fbshipit-source-id: 1ab345b099869f78e1124f1a8bd185fa51371b6a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30424
`at::indexing::TensorIndex` is used for converting C++ tensor indices such as `{None, "...", Ellipsis, 0, true, {1, None, 2}, torch::tensor({1, 2})}` into its equivalent `std::vector<TensorIndex>`, so that further tensor indexing operations can be performed using the supplied indices.
Test Plan: Imported from OSS
Differential Revision: D18695902
Pulled By: yf225
fbshipit-source-id: d73e14a411cdbec815866b02e75ffd71a9186e89