Commit Graph

136 Commits

Author SHA1 Message Date
Tugsbayasgalan Manlaibaatar
bb31e3f57e Add original forward names to schema so that prettify pass works (#136887)
When we run_decomp, we retrace if it is training IR. As a result, we do need to reliably store the oroiginal forward names when we run decomp.

Differential Revision: [D63064453](https://our.internmc.facebook.com/intern/diff/D63064453/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136887
Approved by: https://github.com/angelayi
2024-10-08 04:21:02 +00:00
Yiming Zhou
068fdd602f [export] enable custom tag metadata re-export test (#136048)
Improves and enables a commented out test originally introduced in #131912

In `test_custom_tag_metadata_re_export()`, we check the added "custom" metadata to given nodes is preserved and not copied to other nodes after re-exporting
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136048
Approved by: https://github.com/zhxchen17
2024-09-23 04:37:58 +00:00
angelayi
ea10c072f3 [export] Deserialize args with python keyword names (#136036)
Currently when we deserialize inputs to nodes, we deserialize arguments with default values as kwargs. So deserializing `aten.uniform`, which has the signature `uniform(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)`, will get become `uniform(x, from=0, to=1)`. However, this fails when running in python because `from` is a python keyword. So the solution here is to not deserialize it as a kwarg.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136036
Approved by: https://github.com/zhxchen17
2024-09-17 18:13:14 +00:00
Yiming Zhou
71d0eff6e7 Back out "[pytorch][PR] [export] Schematize nn_module_stack serialization" (#134628)
Summary: Breaking backward compatibilities for serialization and deserialization

Differential Revision: D61888223

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134628
Approved by: https://github.com/angelayi
2024-08-28 03:45:46 +00:00
Yiming Zhou
69813dbbfd [export] Schematize nn_module_stack serialization (#134049)
`nn_module_stack` was previously serialized to string by adding commas between the module_path and module_type. This error prone when the `nn_module_stack` itself contains commas.

This PR fixes this by creating a dictionary to store the `nn_module_stack` and serialize it to string via `json.dumps()`

Fixes #131941

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134049
Approved by: https://github.com/angelayi
2024-08-23 21:50:01 +00:00
Nicolas Macchioni
854a5ba958 [lint] fix lint broken by #131912 (#133428)
lint

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133428
Approved by: https://github.com/aaronenyeshi
2024-08-14 14:50:18 +00:00
Zhengxu Chen
f23dbefe52 [export] Support "custom" metadata field. (#131912)
Summary:
Add a special field in Graph and Node level metadata called "custom" which should be mapped to a json-serializable object, and we guarantee this field should be always preversed across the following transformations:
1. copy/deepcopy
2. run_decompositions()
3. serialization
4. re-exporting

Test Plan: :test_export -- -r custom_tag

Reviewed By: angelayi

Differential Revision: D60291839

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131912
Approved by: https://github.com/angelayi
2024-08-14 01:09:01 +00:00
Shangdi Yu
af67b8df6d [export] Fix exportdb test (#132678)
Summary:
FIx exportdb test  for tensor_setattr.

copy.deepcopy(deepcopy) can fail if tensor inputs have attribute (i.e. __dict__).

We remove it before deepcopy.

Before the fix, we have

```
inputs[0].__dict__
{'attr': FakeTensor(..., size=(3, 2))}
```

the test errors out with

```
======================================================================
ERROR: test_exportdb_supported_case_tensor_setattr (caffe2.test.export.test_serialize.TestDeserialize)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/torch/testing/_internal/common_utils.py", line 529, in instantiated_test
    test(self, **param_kwargs)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/caffe2/test/export/test_serialize.py", line 878, in test_exportdb_supported
    self.check_graph(model, case.example_args, _check_meta=_check_meta)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/caffe2/test/export/test_serialize.py", line 548, in check_graph
    _check_graph(pre_dispatch=True)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/caffe2/test/export/test_serialize.py", line 506, in _check_graph
    copy.deepcopy(inputs),
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 146, in deepcopy
    y = copier(x, memo)
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 211, in _deepcopy_tuple
    y = [deepcopy(a, memo) for a in x]
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 211, in <listcomp>
    y = [deepcopy(a, memo) for a in x]
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 153, in deepcopy
    y = copier(memo)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/torch/_tensor.py", line 206, in __deepcopy__
    new_tensor.__dict__ = deepcopy(self.__dict__, memo)
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 146, in deepcopy
    y = copier(x, memo)
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 231, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/usr/local/fbcode/platform010/lib/python3.10/copy.py", line 153, in deepcopy
    y = copier(memo)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/a915c8ae5cba5b70/caffe2/test/__test_export__/test_export#link-tree/torch/_tensor.py", line 108, in __deepcopy__
    or (type(self) is not Tensor and self.data_ptr() == 0)
RuntimeError: Cannot access data pointer of Tensor (e.g. FakeTensor, FunctionalTensor). If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
```

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r  test_exportdb_supported_case_tensor_setattr
```

Differential Revision: D60610860

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132678
Approved by: https://github.com/zhxchen17
2024-08-06 17:45:10 +00:00
angelayi
010fc7858a [export] Fix serialization of OpOverload w/ SymInt outputs (#132126)
Fixes https://fb.workplace.com/groups/1075192433118967/permalink/1473575486613991/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132126
Approved by: https://github.com/ydwu4
2024-08-01 17:22:04 +00:00
Oguz Ulgen
221350e3a4 Add None return type to init -- tests (#132352)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132352
Approved by: https://github.com/ezyang
ghstack dependencies: #132335, #132351
2024-08-01 15:44:51 +00:00
Zhengxu Chen
5484c86021 [export] Fully support extension op in serialization/deserialization. (#130851)
Summary: Finishing up the mechanism to "register" certain types of operators to a registry so that the serializer can handle them correctly. This is expected to be firstly used by executorch.

Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_export_with_extension_op_serialization

Differential Revision: D59825148

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130851
Approved by: https://github.com/angelayi
2024-07-18 16:47:53 +00:00
Tarun Karuturi
ff25dfca5a Save quantization_tag in export graph serialization (#127473)
Summary: `quantization_tag` is a first class citizen metadata in quantization flows that is preserved by it. As we'll want to store the quantized exported graphs we also need to preserve this metadata as it's used in later flows. Only json supported metadata will be allowed to be serialized.

Test Plan: Added test case

Differential Revision: D57939282

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127473
Approved by: https://github.com/angelayi
2024-07-12 05:06:40 +00:00
Shangdi Yu
d95a019704 [export] construct empty graph when there's no tensor computation (#129541)
Fixes [#127110](https://github.com/pytorch/pytorch/issues/127110).

When input module does not contain any tensor computation, we would create a graph with inputs and outputs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129541
Approved by: https://github.com/angelayi
2024-07-04 00:26:17 +00:00
Zhengxu Chen
042d764872 [export] Update example inputs format for DB. (#129982)
Summary: To give user a simpler example code, we are getting rid of ExportArgs in favor of example_args and example_kwargs.

Test Plan: CI

Differential Revision: D59288920

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129982
Approved by: https://github.com/angelayi
2024-07-03 17:53:15 +00:00
Colin Peppler
39357ba06f [dynamo] don't constrain range on the replacement for a symbol (#129907)
# Error
```
  File "/data/users/colinpeppler/pytorch/torch/_meta_registrations.py", line 704, in sym_constrain_range
    constrain_range(size, min=min, max=max)
  File "/data/users/colinpeppler/pytorch/torch/fx/experimental/symbolic_shapes.py", line 898, in constrain_range
    a.node.shape_env._constrain_range(a.node.expr, min, max)
  File "/data/users/colinpeppler/pytorch/torch/fx/experimental/recording.py", line 245, in wrapper
    return fn(*args, **kwargs)
  File "/data/users/colinpeppler/pytorch/torch/fx/experimental/symbolic_shapes.py", line 2813, in _constrain_range
    assert isinstance(a, sympy.Symbol), f"constraining non-Symbols NYI, {a} is {type(a)}"
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
AssertionError: constraining non-Symbols NYI, s1 + s2 is <class 'sympy.core.add.Add'>
```

# Context
I ran into the following scenario:
```
getitem = ...
sym_size_int = torch.ops.aten.sym_size.int(getitem, 0) # this is u0 = s0 + s1
_check_is_size = torch._check_is_size(sym_size_int)
# we fail at this guy
sym_constrain_range_default = torch.ops.aten.sym_constrain_range.default(sym_size_int, min = 4, max = 1234)

# runtime assertion
add = sym_size_int + sym_size_int_1
eq = add == sym_size_int
_assert_scalar_default = torch.ops.aten._assert_scalar(eq, "Runtime assertion failed for expression Eq(s0 + s1, u0) on node 'eq'")
```

everything but getitem was asserted into the FX graph by insert_deferred_runtime_asserts()
7e4329c258/torch/fx/passes/runtime_assert.py (L38-L52)

In the above scenario, we fail trying to constraint the range on `s0 + s1` which is not a `sympy.Symbol`.

And why exactly are we constraining the range on `s0 + s1`? Because it's the replacement for `u0`.

# Approach
Whenever we try to constrain the range on the replacement of ~~an unbacked symint~~ a non-symbol, just ignore it.

In the scenario above, we'll be okay to ignore it because whenever there's a replacement on an unbacked symint, we will update its range. Hence, no need to constrain the range on `s1 + s1`. We can confirm this with `TORCH_LOGS="+dynamic"`.
```
torch/fx/experimental/symbolic_shapes.py:4737: _update_var_to_range u0 = VR[4, 198] (update)
torch/fx/experimental/symbolic_shapes.py:4856: set_replacement u0 = s1 + s2 (trivial_lhs) VR[4, 198]
```

600bf978ba/torch/fx/experimental/symbolic_shapes.py (L4759-L4764)

Differential Revision: [D59257079](https://our.internmc.facebook.com/intern/diff/D59257079)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129907
Approved by: https://github.com/jingsh
2024-07-02 21:46:40 +00:00
Xuehai Pan
4ee1cb9b95 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-30 01:36:07 +00:00
PyTorch MergeBot
2effbcfcd8 Revert "[BE][Easy] replace import pathlib with from pathlib import Path (#129426)"
This reverts commit 6d75604ef1.

Reverted https://github.com/pytorch/pytorch/pull/129426 on behalf of https://github.com/XuehaiPan due to recognize `Path` as new exported API ([comment](https://github.com/pytorch/pytorch/pull/129426#issuecomment-2198371625))
2024-06-29 23:24:06 +00:00
Xuehai Pan
6d75604ef1 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-29 15:42:09 +00:00
Zhengxu Chen
bfad0aee44 [export] Preserve requires_grad for export inputs. (#128656)
Summary: Today meta['val'] on placeholder nodes doesn't preserve the consistent requires_grad information with the original inputs. Seems there's no easy way to fix this directly at proxy tensor layer. This is useful for reexporting joint graph.

Test Plan: test_preserve_requires_grad_placeholders

Differential Revision: D58555651

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128656
Approved by: https://github.com/tugsbayasgalan
2024-06-17 16:26:08 +00:00
angelayi
4d32de14b6 [export] Handle serializing duplicate getitem nodes (#127633)
We ran into a graph that looks something like the following, where we have 2 getitem calls to the same index (%getitem, %getitem_2 both query topk[0]):
```
graph():
    %x : [num_users=1] = placeholder[target=x]
    %topk : [num_users=3] = call_function[target=torch.ops.aten.topk.default](args = (%x, 2), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%topk, 0), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%topk, 1), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%topk, 0), kwargs = {})
    %mul_tensor : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %getitem_2), kwargs = {})
    %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_tensor, 2), kwargs = {})
    return (mul, getitem_1)
```

The duplicate getitem call gets created during a pass.. so there are a couple of solutions:

1. Change serializer to support the case of duplicate getitem calls
2. Change the pass so that it doesn’t produce duplicate getitem calls
3. Add a pass which dedups the getitem calls

As a framework, we should do 1 and 3 (through a CSE pass).

This PR implements solution 1. However, the serializer currently does some special handling for getitem nodes -- instead of directly serializing the getitem nodes, we serialize the output of the node that outputting a list of tensors (the %topk node in this example) into a list nodes for each output ([%getitem, %getitem_1]). This fails when we have duplicate getitem nodes to the same index (%getitem_2), since we do not record that duplicate getitem node anywhere. So, the solution this PR takes is that the serializer will deduplicate the getitem nodes (%getitem_2 will be replaced with %getitem). This would result in a sematically correct graph, but not necessarily node-to-node identical as the original fx graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127633
Approved by: https://github.com/ydwu4
2024-06-03 17:25:51 +00:00
Jiashen Cao
10d2373abd Add a registry for GraphModuleSerializer (#126550)
This PR adds a registration function and a global registry for GraphModuleSerializer. After this PR, custom serialization methods can be done through registration instead of subclassing for ease of maintenance.

## Changes
- Add a test case where it injects custom op to test serialization.
- Add custom op handler
- Change allowed op for verifier
Co-authored-by: Zhengxu Chen <zhxchen17@outlook.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126550
Approved by: https://github.com/zhxchen17
2024-05-29 03:12:48 +00:00
Tugsbayasgalan Manlaibaatar
d7fe3c4123 [RELAND] Switch default behavoir of export IR to be predispatch (#125860)
This PR switches export IR from aot-dispatch to pre-dispatch IR.

**What is pre-dispatch IR and why should you care?**

Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.

In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:

You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
You can write sound graph transformations more easily as the IR is functional.
Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.
If you want to get the core aten IR out of torch.export, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```

Differential Revision: [D57172986](https://our.internmc.facebook.com/intern/diff/D57172986)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125860
Approved by: https://github.com/zhxchen17
2024-05-10 17:36:53 +00:00
Zhengxu Chen
3ccf107f01 [export] remove upgrader. (#125625)
Summary: talked to executorch team, seems we can remove this now.

Test Plan: CI

Differential Revision: D57013451

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125625
Approved by: https://github.com/larryliu0820
2024-05-09 16:30:12 +00:00
angelayi
8be4c1bc2f [export] Add metadata for nodes insert_deferred_runtime_asserts (#125414)
Fixes [internal error](https://fb.workplace.com/groups/1075192433118967/permalink/1416709435633930/).

The issue is that the asserting nodes added in the `insert_deferred_runtime_assertion` pass do not contain metadata that the ExportedProgram requires the graph to have. One solution to fix this is to retrace the entire module, or another solution is to manually add back this metadata.

This diff implements the latter solution (manually add back the metadata) through hooking into fx.graph's `create_node` function, and adding export-specific metadata for every node that is created. The reason I did this is so that the `insert_deferred_runtime_assertion` does not have to know about what metadata export wants.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125414
Approved by: https://github.com/zhxchen17, https://github.com/BoyuanFeng
2024-05-07 23:15:21 +00:00
angelayi
0de9ce9bb3 [export] Fix serialization of empty torch artifact (#125542)
A previous PR added support for serializing/deserializing example inputs, but this fails when `example_inputs` is none.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125542
Approved by: https://github.com/pianpwk, https://github.com/BoyuanFeng, https://github.com/ydwu4
2024-05-07 15:54:45 +00:00
ydwu4
0302dc68bf [Reland] Fakify script object inputs and attributes for non-strict ex… (#125490)
A re-land of #124239.

This PR fakify ScriptObject inputs and attributes in export non-strict mode by default.

The basic idea is to only fakify the script object during tracing (i.e. aot_export). After we get the traced graph module, eagerly executing, serializing, or running more passes will use the real script objects. This is essentially treating the script object as constant tensor.

Concretely, we

fakify all the script object inputs, and module attributes (gathered by constant_attrs).
patch the module's attributes with fakified script object
right after aot_export, remove the patching (to avoid changing the original module) then modify the exported graph module's attribute to real script object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125490
Approved by: https://github.com/angelayi
2024-05-04 02:39:42 +00:00
PyTorch MergeBot
f1f142c44f Revert "Fakify script object inputs and attributes for non-strict export (#124239)"
This reverts commit ecc2e034f7.

Reverted https://github.com/pytorch/pytorch/pull/124239 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/124239#issuecomment-2089305447))
2024-05-01 23:56:00 +00:00
Avik Chaudhuri
746da8755c switch tests from constrain_as* to torch._check* (#125253)
To fix data-dependent errors we want to recommend that people use `torch._check*` APIs. The `constrain_as*` APIs should be fully subsumed by them, and in the future we should kill them entirely.

Differential Revision: D56774333

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125253
Approved by: https://github.com/ezyang
2024-05-01 21:01:27 +00:00
ydwu4
ecc2e034f7 Fakify script object inputs and attributes for non-strict export (#124239)
This PR fakify ScriptObject inputs and attributes in export non-strict mode by default.

The basic idea is to `only fakify the script object during tracing (i.e. aot_export)`. After we get the traced graph module, eagerly executing, serializing, or running more passes will use the real script objects. This is essentially treating the script object as constant tensor.

Concretely, we
1. fakify all the script object inputs, and module attributes (gathered by constant_attrs).
2. patch the module's attributes with fakified script object
3. right after aot_export, remove the patching (to avoid changing the original module) then modify the exported graph module's attribute to real script object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124239
Approved by: https://github.com/zou3519
2024-04-30 15:57:25 +00:00
angelayi
724f8dd8c5 [export] Serialize empty list based on argument type (#123748)
Fixes https://github.com/pytorch/pytorch/issues/123480

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123748
Approved by: https://github.com/zhxchen17
2024-04-25 23:03:27 +00:00
angelayi
84fb96130f [export] Fix check for optional tensor returns (#123739)
Sorry for the delay! Addressing issue in https://www.internalfb.com/diff/D55455000?dst_version_fbid=1599488570890576&transaction_fbid=776042617791884
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123739
Approved by: https://github.com/zhxchen17
2024-04-25 20:51:26 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
674e15ae07 Back out "Switch to predispatch" (#124860)
Summary:
Original commit changeset: 1f155b3a0bfc

Original Phabricator Diff: D56273267

Test Plan: CI

Differential Revision: D56526505

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124860
Approved by: https://github.com/angelayi
2024-04-24 17:28:33 +00:00
Tugsbayasgalan Manlaibaatar
c933af2709 Switch to predispatch (#123573)
This PR switches export IR from aot-dispatch to pre-dispatch IR.

**What is pre-dispatch IR and why should you care?**

Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.

In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:
- You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
- You can write sound graph transformations more easily as the IR is functional.
- Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.

If you want to get the core aten IR out of `torch.export`, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```

Differential Revision: [D56273267](https://our.internmc.facebook.com/intern/diff/D56273267)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123573
Approved by: https://github.com/gmagogsfm
2024-04-24 00:51:09 +00:00
angelayi
74bedbb9e1 [export] Serialize rational symint ranges (#123884)
Some symints result in rational ranges like 10/3 which runs into an error ([example](https://www.internalfb.com/intern/everpaste/?handle=GMG2AxkeoFUrh-UDAFcE8pKPgjoUbsIXAAAB)).

Ed will eventually get rid(?) of these rational ranges but as a workaround export can just clamp the results during serialization time
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123884
Approved by: https://github.com/zhxchen17
2024-04-18 18:20:11 +00:00
FFFrog
fe4d1aff05 UFMT formatting on test/export (#123520)
Partially addresses https://github.com/pytorch/pytorch/issues/123062

Ran lintrunner on:
test/export

Detail:
```Shell
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123520
Approved by: https://github.com/ezyang
2024-04-10 05:38:42 +00:00
PyTorch MergeBot
786c6db519 Revert "UFMT formatting on test/export (#123520)"
This reverts commit ec7551d1b7.

Reverted https://github.com/pytorch/pytorch/pull/123520 on behalf of https://github.com/PaliC due to lint is still broken ([comment](https://github.com/pytorch/pytorch/pull/123520#issuecomment-2046223260))
2024-04-10 00:06:30 +00:00
FFFrog
ec7551d1b7 UFMT formatting on test/export (#123520)
Partially addresses https://github.com/pytorch/pytorch/issues/123062

Ran lintrunner on:
test/export

Detail:
```Shell
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123520
Approved by: https://github.com/shink, https://github.com/ezyang
2024-04-09 23:24:13 +00:00
Pian Pawakapan
42c2a5477c [export] nn_module_stack to return class name str (#123308)
Previously, `node.meta["nn_module_stack"]` had type `Dict[str, Tuple[str, class]]` when exported, and later `Dict[str, Tuple[str, str]]` after de/serialization. This PR changes it to consistently be `Dict[str, Tuple[str, str]]` for round-trippability, i.e.
```
{..., 'L__self___conv': ('conv', 'torch.nn.modules.conv.Conv2d')}
```

`source_fn_stack` is left untouched in this PR.

note: the `Union[type, str]` type annotations in ONNX are because ONNX goes through both `export.export()` and `_dynamo.export()` (which still has the original `Dict[str, Tuple[str, class]]` format). nn_module_stack from `export.export()` should consistently have the new format, and we verify/test for that in `_trace.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123308
Approved by: https://github.com/zhxchen17, https://github.com/thiagocrepaldi
2024-04-05 21:48:22 +00:00
Josh Fromm
0c8a165b43 [Export] Improve metadata and output parsing during deserialization (#122793)
Summary:
Deserialization of metadata could encounter a bug where commas are used in valid metadata names. This specifically occurs when a split of a `torch.nn.Sequential` stack is used, but may have other possible triggers. Because the deserialization relies on a comma based string split, such names trigger an error. This change uses a simple regular expression to ignore commas within parentheses to avoid the issue.

I add a test that constructs one such problematic sequential stack and show that it can be properly round-tripped with the improved splitting.

Similarly, deserialization could fail when outputs are not a tensor type. Although such outputs like None or constants are not very useful, they do show up in graphs and export should be able to support them. This change improves output node parsing and adds a corresponding test.

Test Plan: buck test //caffe2/test:test_export -- TestSerialize

Differential Revision: D55391674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122793
Approved by: https://github.com/zhxchen17
2024-04-05 00:25:37 +00:00
angelayi
ed457c7dbe [export] Add torch_fn (#122693)
This PR adds a new metadata, `torch_fn` which is meant to replace `source_fn_stack` as `source_fn_stack` is not entirely well defined between strict/nonstrict. Previous discussion [here](https://docs.google.com/document/d/1sPmmsmh6rZFWH03QBOe49MaXrQkP8SxoG8AOMb-pFk4/edit#heading=h.anmx9qknhvm).

`torch_fn` represents the torch function that a particular aten operator came from. For example, `torch.nn.Linear` goes down to the `torch.nn.functional.linear` at the `__torch_function__` layer, and then `aten.t/aten.addmm` in the `__torch_dispatch__` layer. So the nodes `aten.t/aten.addmm` will now have the `torch_fn` metadata containing the `torch.nn.functional.linear`.

The `torch_fn` metadata is a tuple of 2 strings: a unique identifier for each torch function call, and the actual torch function `f"{fn.__class__}.{fn.__name__}"`. The purpose of the first value is to distinguish between 2 consecutive calls to the same function. For example, if we had 2 calls to `torch.nn.Linear`, the nodes and corresponding metadata would look something like:
```
aten.t - ("linear_1", "builtin_function_or_method.linear"),
aten.addmm - ("linear_1", "builtin_function_or_method.linear"),
aten.t - ("linear_2", "builtin_function_or_method.linear"),
aten.addmm - ("linear_2", "builtin_function_or_method.linear"),
```

Higher order ops -- currently we can get the torch_fn metadata for nodes within the HOO's subgraph, but after retracing, this becomes the `(cond, higher_order_op.cond)` :( This is because `fx_traceback.set_current_meta` points to the cond node in the toplevel graph, rather than the original node in the subgraph. I think this is because `fx.Interpreter` does not go into the cond subgraphs. (will discuss with Yidi more ab this)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122693
Approved by: https://github.com/tugsbayasgalan
2024-03-30 06:47:15 +00:00
Josh Fromm
0c47f8028e Keep example_inputs when saving and loading ExportedProgram (#122618)
Summary:
`torch.export` is a powerful tool for creating a structured and shareable package from arbitrary pytorch code. One great use case of `torch.export` is sharing models or subgraphs in a way that allows results to be easily replicated. However, in the current implementation of `export`, the `example_inputs` field is thrown out. When trying to replicate bugs, benchmarks, or behaviors, losing the original input shapes and values makes the process much messier.

This change adds saving and loading for the `example_inputs` attribute of an `ExportedProgram` when using `torch.export.save` and `torch.export.load`. This simple addition makes `ExportedPrograms`s a fantastic tool for performance and accuracy replication. For example, with this change we enable the following workflow:

```
# Script to create a reproducible accuracy issue with my model.
kwargs = {"fastmath_mode": True}
exp_program = export(my_model, sample_inputs, kwargs)
result = exp_program.module()(*sample_inputs, **kwargs)
# Uhoh, I dont like that result, lets send the module to a colleague to take a look.
torch.export.save(exp_program, "my_model.pt2")
```

My colleague can then easily reproduce my results llike so:

```
# Script to load and reproduce results from a saved ExportedProgram.
loaded_program = torch.export.load("my_model.pt2")
# The following line is enabled by this Diff, we pull out the arguments
# and options that caused the issue.
args, kwargs = loaded_program.example_inputs
reproduced_result = loaded_program.module()(*args, **kwargs)
# Oh I see what happened here, lets fix it.
```

Being able to share exact inputs and arguments makes `ExportedPrograms` much
more clean and powerful with little downside. The main potential issue with this change
is that it does slightly increase the size of saved programs. However, the size of
inputs will be much smaller than parameters in most cases. I am curious to hear
discussion on saved file size though.

The deserialization of `example_inputs` is currently implemented as `Optional`. Although this wont effect users of `export.save` and `export.load`, it does give backwards compatibility to any direct users of `serialize` and `deserialize`.

Test Plan:
This diff includes a new test which exercises the save / load flow with multiple args and kwargs.

```
buck test //caffe2/test:test_export -- TestSerialize
```

Differential Revision: D55294614

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122618
Approved by: https://github.com/zhxchen17
2024-03-26 03:32:44 +00:00
angelayi
ef25d83a62 [export] Add serialization support for tokens (#121552)
Differential Revision: [D54906766](https://our.internmc.facebook.com/intern/diff/D54906766)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121552
Approved by: https://github.com/zhxchen17
2024-03-15 16:15:11 +00:00
Zhengxu Chen
c409292197 [sigmoid] Use deserializer from oss. (#121839)
Summary:
Old path:
thrift -> thrift deserializer -> graph module.
new path:
thrift -> python dataclass -> oss deserializer -> graph_module

Test Plan:
CI
buck2 test mode/dev-nosan caffe2/test/inductor/fb:test_aot_inductor_pt2_inference

Reviewed By: SherlockNoMad

Differential Revision: D54855251

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121839
Approved by: https://github.com/angelayi
2024-03-14 18:38:58 +00:00
Tugsbayasgalan Manlaibaatar
7fc497711d Also test predispatch serialization (#121652)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121652
Approved by: https://github.com/zhxchen17, https://github.com/angelayi
2024-03-12 02:37:59 +00:00
Zhengxu Chen
8aeb247a3d [export] Remove WrapperModule. (#121042)
Summary: WrapperModule seems a good idea but may introduce some surprising behavior to users, for example, it never registers enclosed modules as submodules and therefore it's unclear that's the state dict for the exported program should look like, because some people may argue to include every state in state dict but others want to keep them as constants.

Test Plan: CI

Reviewed By: tugsbayasgalan

Differential Revision: D54326331

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121042
Approved by: https://github.com/angelayi
2024-03-05 18:10:22 +00:00
Michael Suo
12f724c779 [export] preserve constant fqn (#120664)
Summary:
Previously we were renaming constants to `lifted_constant_tensor0` or equivalent. This PR changes things so that the constants retain the same FQN as in the original eager module.

Actually, `symbolic_trace` already is supposed to do this, but the code path is not triggered when used from `make_fx`, since we don't pass an actual `nn.Module` instance to `trace()`, but rather a multiply-wrapped-functionalized-lambda-thing.

So, I reproduced the essential logic outside of make_fx, at the export layer.

Test Plan: added a unit test

Differential Revision: D54221616

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120664
Approved by: https://github.com/SherlockNoMad
2024-02-27 06:35:51 +00:00
ydwu4
ac2ba7889d [export] turn on replace_set_grad_with_hop_pass in pre_dispatch (#119915)
This PR turns on replace_set_grad_with_hop_pass for pre_dispatch export. To do that, we need to propagate the meta-data from original submodule to the new higher order op and fix the names of nodes as is required by the _sig_to_specs pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119915
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732, #119736, #119810, #119913, #119914
2024-02-17 02:18:35 +00:00
gs-olive
e0f6fa6a7c Windows Dynamo Error Removal CI Check (#115969)
Rebase of #111313 onto `main`, for CI validation

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115969
Approved by: https://github.com/PaliC, https://github.com/thiagocrepaldi
2024-02-14 21:14:36 +00:00
PyTorch MergeBot
4a5b2cd6cb Revert "Windows Dynamo Error Removal CI Check (#115969)"
This reverts commit 45e7af5818.

Reverted https://github.com/pytorch/pytorch/pull/115969 on behalf of https://github.com/PaliC due to this pr ended up breaking some of our periodic tests ([comment](https://github.com/pytorch/pytorch/pull/115969#issuecomment-1942934386))
2024-02-14 01:11:46 +00:00
Sergii Dymchenko
bd9db6a9c7 Update to TorchFix 0.4.0 (#119424)
`torch.library.Library` updated to `torch.library._scoped_library` in files with many tests where it seems obvious to do, otherwise `noqa: TOR901` added - see https://github.com/pytorch/pytorch/pull/118318 for more context.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119424
Approved by: https://github.com/zou3519
2024-02-12 23:30:12 +00:00