Commit Graph

464 Commits

Author SHA1 Message Date
Angela Yi
baf756a785 [reland] [aoti] Selectively package AOTI generated files (#140675)
Summary: Reland  https://github.com/pytorch/pytorch/pull/140022

Test Plan: CI

Differential Revision: D65929964

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140675
Approved by: https://github.com/desertfire
2024-11-15 23:48:34 +00:00
PyTorch MergeBot
222d4b48b1 Revert "cpp_wrapper_cpu: Ensure reinterpret_view results in RAIIAtenTensorHandle (#139411)"
This reverts commit 761b42bc08.

Reverted https://github.com/pytorch/pytorch/pull/139411 on behalf of https://github.com/kit1980 due to breaking internal inductor test ([comment](https://github.com/pytorch/pytorch/pull/139411#issuecomment-2477235367))
2024-11-14 19:25:46 +00:00
Bin Bao
85deef9ede [AOTI][refactor] Rename generate_extern_kernel_alloc_and_find_schema_if_needed (#140447)
Summary: Rename generate_extern_kernel_alloc_and_find_schema_if_needed to better reflect its meaning.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140447
Approved by: https://github.com/chenyang78
2024-11-14 01:40:58 +00:00
Oguz Ulgen
26fde110db Refactor user-defined triton kernel source code collection (#140577)
Differential Revision: [D65895743](https://our.internmc.facebook.com/intern/diff/D65895743)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140577
Approved by: https://github.com/zou3519
2024-11-13 22:12:17 +00:00
PyTorch MergeBot
b4cc5d38b4 Revert "[aoti] Remove dir after packaging (#140022)"
This reverts commit ba136a78ba.

Reverted https://github.com/pytorch/pytorch/pull/140022 on behalf of https://github.com/angelayi due to sorry I realized I need to land from internal ([comment](https://github.com/pytorch/pytorch/pull/140022#issuecomment-2473814720))
2024-11-13 14:43:15 +00:00
angelayi
ba136a78ba [aoti] Remove dir after packaging (#140022)
Update AOTI to return a list of files that it generates when `aot_inductor.package=True`. Then we will only package the files that are in that list.

This should fix the [caching issue](https://fb.workplace.com/groups/1028545332188949/permalink/1081702043539944/) and hopefully https://github.com/pytorch/pytorch/issues/140053.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140022
Approved by: https://github.com/larryliu0820, https://github.com/desertfire, https://github.com/malfet
2024-11-13 12:17:19 +00:00
PyTorch MergeBot
d48ea29b9a Revert "[aoti] Remove dir after packaging (#140022)"
This reverts commit 8c6abe5a8c.

Reverted https://github.com/pytorch/pytorch/pull/140022 on behalf of https://github.com/huydhn due to Sorry for reverting your change but the lint failure is legit ([comment](https://github.com/pytorch/pytorch/pull/140022#issuecomment-2471847439))
2024-11-12 23:35:27 +00:00
Bin Bao
1f590feaf7 [AOTI][refactor] Update codegen_int_array_var API (#140299)
Summary: codegen_int_array_var and codegen_reinterpret_view need to call different writeline functions depending on which part of code it's writing. Previously their APIs take a writer and implicitly assign a default writer if needed, which is not intuitive. Update their APIs to explicitly take a writeline function.

Differential Revision: [D65774584](https://our.internmc.facebook.com/intern/diff/D65774584)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140299
Approved by: https://github.com/frank-wei, https://github.com/chenyang78
2024-11-12 21:39:41 +00:00
angelayi
8c6abe5a8c [aoti] Remove dir after packaging (#140022)
Update AOTI to return a list of files that it generates when `aot_inductor.package=True`. Then we will only package the files that are in that list.

This should fix the [caching issue](https://fb.workplace.com/groups/1028545332188949/permalink/1081702043539944/) and hopefully https://github.com/pytorch/pytorch/issues/140053.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140022
Approved by: https://github.com/larryliu0820, https://github.com/desertfire, https://github.com/malfet
2024-11-12 21:36:24 +00:00
Benjamin Glass
761b42bc08 cpp_wrapper_cpu: Ensure reinterpret_view results in RAIIAtenTensorHandle (#139411)
Fixes segfaults caused by views being implicitly converted to AtenTensorHandle, then being destroyed before use.

Closes #135559.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139411
Approved by: https://github.com/desertfire
2024-11-12 15:22:38 +00:00
Bin Bao
2c77352fe2 [AOTI][refactor] Clean up call chain in wrapper codegen (#136531)
Summary: For cpp wrapper, generate_kernel_call and define_kernel need to handle both cpu and gpu kernels. Refactor the code to remove nested super() calls.

Differential Revision: [D65639095](https://our.internmc.facebook.com/intern/diff/D65639095)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136531
Approved by: https://github.com/frank-wei
2024-11-11 22:00:42 +00:00
Adnan Akhundov
838958de94 [inductor] Support autotune restore_value for user-defined Triton kernels (#139851)
This PR adds support for the `restore_value` argument of the
`@triton.autotune` for the user-defined Triton kernels in PT2.

The `kernel.restore_idx` are extracted in the
`ir.UserDefinedTritonKernel` and the corresponding arg names are
placed into the `triton_meta["restore_value"]`. From there, those
are added to the existing `mutated_arg_names` in the caching autotuner
infra which already exists and leads to the listed argss being cloned.
This achieves the equivalent effect to the native `restore_value`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139851
Approved by: https://github.com/oulgen
2024-11-08 14:59:00 +00:00
Wu, Chunyuan
a3052b3b7c Inductor cpp wrapper: clean-up hard-coded schema and related code (#139873)
Fixes https://github.com/pytorch/pytorch/issues/112552.

non-ABI compatible mode has been removed thus the following values are not needed anymore:
`extern_call_ops`
`cpp_op_schema`
`cpp_kernel_key`
`cpp_kernel_overload_name`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139873
Approved by: https://github.com/jgong5, https://github.com/desertfire
2024-11-08 08:15:51 +00:00
PyTorch MergeBot
f3238106fd Revert "Allow inplacing buffer when other users are inconsequential (#138383)"
This reverts commit 030f70b40b.

Reverted https://github.com/pytorch/pytorch/pull/138383 on behalf of https://github.com/huydhn due to Sorry for reverting this again, but I think it has a test failing internally and also on ROCm ([comment](https://github.com/pytorch/pytorch/pull/138383#issuecomment-2452898229))
2024-11-02 06:53:48 +00:00
Gabriel Ferns
030f70b40b Allow inplacing buffer when other users are inconsequential (#138383)
Summary:
I think we can inplace a buffer if all of the users of said buffer are "inconsequential", defined as having been removed, being completed, or being part of the ancestors set. In particular, this allows LayerNorm to inplace its input buffer.

Implements:
https://github.com/pytorch/pytorch/issues/132826

Test Plan:
New unit test of matmul followed by LayerNorm, make sure there's an inplaced buffer.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138383
Approved by: https://github.com/eellison
2024-11-01 01:24:40 +00:00
Yifu Wang
7765d1ef70 Preliminary registered-buffer collective support via Inductor (#138029)
```
NOTE [lowering-time collective optimization]

In collective communication libraries such as NCCL, every rank maintains
communication buffers that are remotely accessible by some peers. Depending
on the underlying transport, remote accessibility may be established via
mechanisms such as ib_reg_mr, CUDA P2P, or CUDA multicast. Typically, these
buffers are private to the communication library by default, and
communication ops copy user data in and out of these buffers.

To prevent these copies, an optimization commonly known as "user buffer
registration" can be employed. This allows direct establishment of remote
accessibility on user buffers, eliminating the need for copying. However,
this optimization introduces stringent usage requirements, which are
typically hard to satisfy without being intrusive to the user code:

- Establishing remote accessibility is expensive and often done ahead of
time. In such implementations, all ranks must agree on the set of allocations
used for every collective op. Failing to meet this requirement can
lead to runtime errors or even silent correctness issues.
- Even if the collective communication library supports gracefully falling
back to "unregistered" implementations, the fallback mechanism would nullify
the optimization.
- Some communication mechanisms impose stricter requirements than others. For
example, CUDA's multicast + multi-mem instructions require all ranks to agree
not only on the allocations used for every collective but also on the offsets
within these allocations.

To support all different mechanisms with optimal results, we aim to satisfy
the strictest requirement for this family of optimizations - we ensures that
every collective op invocation is guaranteed to operate on the same
allocation, at the same offset, in every iteration.

For eligible collective ops, we identify communication buffers at lowering
time and optionally choose to lower the op to a different kernel
(ommunication libraries like NCCL handle both registered and non-registered
buffers transparently within the same op, though some may require different
ops for different cases). Later, the codegen will perform "persistent
allocation" to satisfy the aforementioned constraints, and optionally,
perform buffer planning to optimize overall memory usage.
```

### Changes
- Created `comm_lowering.py` for the lowerings of `_c10d_functional` ops. This is to prevent cluttering `lowering.py` as we add more lowering-time collective optimizations. This PR moved the lowerings for `all_reduce` and `all_reduce_` to the file.
- Added `comm_buffer_type: Dict[str, str]` to `GraphLowering` to track whether a buffer is a comm buffer and the type of the comm buffer.
- Added codegen allocation support for comm buffers of type "symm_mem".
- Added support for auto-lowering `_c10d_functional.all_reduce_` to `symm_mem.one_shot_all_reduce`.
- Added an Inductor config for collective optimizations in general (`config._collective`).

### Limitation
Currently, each persistently allocated comm buffer is dedicated to a single callsite. This is not viable in terms of memory usage. However, this is a neccesary intermediate state before we tackle memory planning for comm buffers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138029
Approved by: https://github.com/Chillee
ghstack dependencies: #138028
2024-10-30 18:11:09 +00:00
drisspg
a884462bca Add workspace to TritonTemplates (#138050)
Here's a markdown summary for the PR:

# Add workspace buffer support for Triton templates

## Summary
Adds support for templates to allocate and use temporary workspace buffers

## Key Changes
- Add `WorkspaceArg` support in Triton template system
- Automatic workspace allocation/deallocation around kernel execution
- Zero-initialization support for workspace buffers
- Seamless integration with existing tensor management

## Example Usage
```python
def generate(self, ...):
    workspace_arg = WorkspaceArg(
        count=1024*1024,  # 1MB workspace
        zero_fill=True    # Zero-initialized
    )

    return TritonTemplateCaller(..., workspace_arg=workspace_arg)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138050
Approved by: https://github.com/Chillee, https://github.com/eellison
2024-10-29 18:17:54 +00:00
Sam Ginzburg
93d7f90c3a [inductor] getting AOT inductor to treat None args correctly (#139114)
Differential Revision: [D65102228](https://our.internmc.facebook.com/intern/diff/D65102228)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139114
Approved by: https://github.com/aakhundov
2024-10-29 08:11:53 +00:00
Jason Ansel
2b937e4e6d [inductor] Cooperative reductions (#137756)
Example generated code for `(x+y).sum()`:
```py
@triton.jit
def triton_unk_fused_add_sum_0(in_ptr0, in_ptr1, out_ptr0, ws_ptr, semaphores_ptr, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr, RSPLIT : tl.constexpr):
    xnumel = 1
    rnumel = 1048576
    rsplit_id = tl.program_id(0)
    num_rblocks = (rnumel + RBLOCK - 1) // RBLOCK
    rsplit_chunk = (num_rblocks + RSPLIT - 1) // RSPLIT * RBLOCK
    rsplit_start = rsplit_chunk * rsplit_id
    rsplit_end = rsplit_chunk * (rsplit_id + 1)
    xoffset = tl.program_id(1) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
    xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
    rbase = tl.arange(0, RBLOCK)[None, :]
    _tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
    for roffset in range(rsplit_start, rsplit_end, RBLOCK):
        rindex = roffset + rbase
        rmask = rindex < rnumel
        r0 = rindex
        tmp0 = tl.load(in_ptr0 + (r0), rmask, eviction_policy='evict_first', other=0.0)
        tmp1 = tl.load(in_ptr1 + (r0), rmask, eviction_policy='evict_first', other=0.0)
        tmp2 = tmp0 + tmp1
        tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
        tmp5 = _tmp4 + tmp3
        _tmp4 = tl.where(rmask, tmp5, _tmp4)
    tmp4 = tl.sum(_tmp4, 1)[:, None]
    if RSPLIT > 1:
        tmp4_ws = (ws_ptr + 0).to(tl.pointer_type(tl.float32))
        tl.store(tmp4_ws + (xindex * RSPLIT + rsplit_id), tmp4, None)
    if RSPLIT > 1:
        triton_helpers.gpu_barrier(semaphores_ptr + (2 * tl.program_id(1) + 0), RSPLIT, True)
    if RSPLIT > 1:
        tmp4_peers = tl.load(tmp4_ws + (xindex * RSPLIT + tl.arange(0, RSPLIT)[None,:]), None, eviction_policy='evict_first')
        tmp4 = tl.sum(tmp4_peers, 1)[:, None]
    if rsplit_id == (0 % RSPLIT):
        tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp4, None)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137756
Approved by: https://github.com/eellison
2024-10-29 00:45:53 +00:00
Adnan Akhundov
ab09c4d913 Add host-side TMA support to AOTInductor (#138878)
This adds host-side Triton TMA support to AOTInductor. Notes:

- Two helper functions, `init1DTMADescriptor` and `init2DTMADescriptor` are added to the C++ wrapper codegen on GPU, conditioned on the model having user-defined Triton kernels with host-side TMA (CUDA-specific).
- C++ wrapper codegen on GPU emits TMA descriptor initialization via the aforementioned helper functions.
- Special handling added for the TMA descriptors (in the Python wrapper codegen) during the compile-time autotuning, as the underlying tensor can't be passed directly to the user-defined Triton kernel. TMA descriptors are generated in-between the source tensor's buffer and the kernel call, like in the full Python wrapper codegen.
- This PR concludes the host-side Triton TMA support in PT2.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138878
Approved by: https://github.com/desertfire, https://github.com/chenyang78
ghstack dependencies: #138759, #138877
2024-10-28 23:39:53 +00:00
PyTorch MergeBot
60d1c7138d Revert "[inductor] Cooperative reductions (#137756)"
This reverts commit fed37dbfbc.

Reverted https://github.com/pytorch/pytorch/pull/137756 on behalf of https://github.com/jeanschmidt due to ROCM tests are timing out :( ([comment](https://github.com/pytorch/pytorch/pull/137756#issuecomment-2441579322))
2024-10-28 13:24:33 +00:00
Jason Ansel
fed37dbfbc [inductor] Cooperative reductions (#137756)
Example generated code for `(x+y).sum()`:
```py
@triton.jit
def triton_unk_fused_add_sum_0(in_ptr0, in_ptr1, out_ptr0, ws_ptr, semaphores_ptr, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr, RSPLIT : tl.constexpr):
    xnumel = 1
    rnumel = 1048576
    rsplit_id = tl.program_id(0)
    num_rblocks = (rnumel + RBLOCK - 1) // RBLOCK
    rsplit_chunk = (num_rblocks + RSPLIT - 1) // RSPLIT * RBLOCK
    rsplit_start = rsplit_chunk * rsplit_id
    rsplit_end = rsplit_chunk * (rsplit_id + 1)
    xoffset = tl.program_id(1) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
    xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
    rbase = tl.arange(0, RBLOCK)[None, :]
    _tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
    for roffset in range(rsplit_start, rsplit_end, RBLOCK):
        rindex = roffset + rbase
        rmask = rindex < rnumel
        r0 = rindex
        tmp0 = tl.load(in_ptr0 + (r0), rmask, eviction_policy='evict_first', other=0.0)
        tmp1 = tl.load(in_ptr1 + (r0), rmask, eviction_policy='evict_first', other=0.0)
        tmp2 = tmp0 + tmp1
        tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
        tmp5 = _tmp4 + tmp3
        _tmp4 = tl.where(rmask, tmp5, _tmp4)
    tmp4 = tl.sum(_tmp4, 1)[:, None]
    if RSPLIT > 1:
        tmp4_ws = (ws_ptr + 0).to(tl.pointer_type(tl.float32))
        tl.store(tmp4_ws + (xindex * RSPLIT + rsplit_id), tmp4, None)
    if RSPLIT > 1:
        triton_helpers.gpu_barrier(semaphores_ptr + (2 * tl.program_id(1) + 0), RSPLIT, True)
    if RSPLIT > 1:
        tmp4_peers = tl.load(tmp4_ws + (xindex * RSPLIT + tl.arange(0, RSPLIT)[None,:]), None, eviction_policy='evict_first')
        tmp4 = tl.sum(tmp4_peers, 1)[:, None]
    if rsplit_id == (0 % RSPLIT):
        tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp4, None)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137756
Approved by: https://github.com/eellison
ghstack dependencies: #138970
2024-10-27 16:31:38 +00:00
David Berard
94e341c6a3 [user triton] fix codegen for tl.constexpr globals (#138757)
Fixes #138509

tl.constexpr globals would be codegen-ed as `constexpr()` instead of `tl.constexpr()` if they were un-annotated. This fixes the issue (and adds a test). The correct handling was already added but the corrected string was not being used in the un-annotated branch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138757
Approved by: https://github.com/oulgen
2024-10-25 03:00:42 +00:00
Animesh Jain
dd4dd85210 [hierarchical-compilation][inductor] Support invoke_subgraph HOP (#138031)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138031
Approved by: https://github.com/eellison
ghstack dependencies: #137538, #138036, #137965
2024-10-23 21:32:14 +00:00
Animesh Jain
77868697b7 [inductor][subgraph] Add size asserts (#138424)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138424
Approved by: https://github.com/eellison
ghstack dependencies: #137555
2024-10-21 22:43:49 +00:00
Sam Ginzburg
c1ead6fba3 Bugfix for passing None args to user defined Triton kernel (#138472)
add test

fewer failing tests

more tests passing

tests passing

lint

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138472
Approved by: https://github.com/aakhundov
2024-10-21 20:00:04 +00:00
Jason Ansel
4632594546 [inductor] Move V.graph.scheduler.current_device to V.graph.current_device (#138252)
There are some places where it would be nice to use this, but the scheduler hasn't yet been created.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138252
Approved by: https://github.com/eellison
ghstack dependencies: #138170
2024-10-18 23:05:54 +00:00
Jason Ansel
85a6a782e5 [inductor] Generalize WorkspaceArg for graph-level semaphores (#138170)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138170
Approved by: https://github.com/Chillee
2024-10-18 23:05:54 +00:00
Adnan Akhundov
d116d007ee Add host-side Triton TMA support to Inductor (#137950)
This adds Dynamo tracing support for the host-side Triton TMA API (see `create_2d_tma_descriptor` calls on the host in the [Triton tutorial](https://triton-lang.org/main/getting-started/tutorials/09-persistent-matmul.html#sphx-glr-getting-started-tutorials-09-persistent-matmul-py)). A few notes:

- Here we assume the availability of the host-side TMA API added to upstream Triton in https://github.com/triton-lang/triton/pull/4498. As of time of writing, this is not a part of the PT2 OSS Triton pin (although back-ported internally). OSS Triton pin update should be done in December 2024.
- Due to Dynamo support implemented in the previous PR, the `tma_descriptor_metadata` dict is delivered to the `triton_kerenl_wrap_` lowering and passed to the `ir.UserDefinedTritonKernel` as additional argument.
- Looking into the `tma_descriptor_metadata`, `ir.UserDefinedTritonKernel` substitutes the corresponding `TensorBox` arguments of the kernel (swapped upstream in Dynamo) by the new `ir.TMADescriptor` nodes implementing TMA descriptors in Inductor IR.
- `ir.TMADescriptor.__init__` provides the wiring between the upstream underlying `ir.TensorBox` and the downstream `ir.UserDefinedTritonKernel` kernel. In particular, we use `ir.NonOwnedLayout` wrapping `ir.ReinterpretView` to avoid the upstream tensor's buffer being deleted prematurely (before the TMA descriptor is used in the Triton kernel).
- Via `ir.TMADescriptor.codegen`, the Triton's `create_{1d,2d}_tma_descriptor` function call is codegened in the wrapper (in the host code).
- New `TMADescriptorArg` dataclass is added to handle the Triton kernel metadata pertinent to host-side TMA.
- AOT Inductor support will be implemented in a follow-up PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137950
Approved by: https://github.com/eellison
ghstack dependencies: #137677
2024-10-18 06:27:24 +00:00
Bin Bao
2e67d7cc35 [AOTI] Remove the non-ABI-compatible mode (part 1) (#138009)
Summary: The ABI-compatible mode has been turned on as default in https://github.com/pytorch/pytorch/pull/136534. Removing the non-ABI-compatible logic to greatly simplify the wrapper codegen logic.

Differential Revision: [D64439676](https://our.internmc.facebook.com/intern/diff/D64439676)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138009
Approved by: https://github.com/chenyang78
ghstack dependencies: #137982, #138016
2024-10-17 02:48:26 +00:00
Jason Ansel
5fee1ee3f4 [inductor] Refactor generate_workspace_allocation (#137673)
And some other small changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137673
Approved by: https://github.com/Chillee
ghstack dependencies: #137754
2024-10-13 01:25:14 +00:00
Animesh Jain
04adb74d08 [inductor][cond] Remove redundant prefix (#137718)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137718
Approved by: https://github.com/eellison
ghstack dependencies: #137200
2024-10-11 18:13:18 +00:00
Animesh Jain
cd02c85ba4 [inductor][subgraph][python-wrapper] Lift subgraph code into functions (#137200)
Earlier the subgraphs were getting inlined into the output code. This PR lifts the subgraphs into a function, and then we just call the function in the output code.

This is the output code for test `test_cond_reintepret_view_inputs_outputs`

Before this PR - https://www.internalfb.com/intern/paste/P1632948905/
With this PR - https://www.internalfb.com/intern/paste/P1632946348/

A relevant snippet from the above paste is

~~~

def false_graph_0(args):
    false_graph_0_arg0_1, false_graph_0_arg1_1, s0 = args
    args.clear()
    s0 = s0
    with torch.cuda._DeviceGuard(0):
        torch.cuda.set_device(0)
        false_graph_0_buf0 = empty_strided_cuda(((-1) + s0, 20), (20, 1), torch.float32)
        false_graph_0_buf1 = empty_strided_cuda(((-1) + s0, 20), (20, 1), torch.float32)
        # Unsorted Source Nodes: [cond, z1, z2], Original ATen: [aten.sub, aten.add]
        triton_poi_fused_add_sub_1_xnumel = (-20) + (20*s0)
        stream0 = get_raw_stream(0)
        triton_poi_fused_add_sub_1.run(false_graph_0_arg0_1, false_graph_0_arg1_1, false_graph_0_buf0, false_graph_0_buf1, triton_poi_fused_add_sub_1_xnumel, grid=grid(triton_poi_fused_add_sub_1_xnumel), stream=stream0)
        del false_graph_0_arg0_1
        del false_graph_0_arg1_1
    return (reinterpret_tensor(false_graph_0_buf0, ((-3) + s0, 20), (20, 1), 40), reinterpret_tensor(false_graph_0_buf1, ((-1) + s0, 16), (20, 1), 4), )

async_compile.wait(globals())
del async_compile

def call(args):
    arg0_1, arg1_1, arg2_1, arg3_1 = args
    args.clear()
    s0 = arg0_1
    assert_size_stride(arg1_1, (s0, 20), (20, 1))
    assert_size_stride(arg2_1, (s0, 20), (20, 1))
    assert_size_stride(arg3_1, (), ())
    with torch.cuda._DeviceGuard(0):
        torch.cuda.set_device(0)
        buf0 = [None] * 2
        buf0 = [None] * 2
        if arg3_1.item():
            # subgraph: true_graph_0
            true_graph_0_arg0_1 = reinterpret_tensor(arg1_1, ((-1) + s0, 20), (20, 1), 0)
            true_graph_0_arg1_1 = reinterpret_tensor(arg2_1, ((-1) + s0, 20), (20, 1), 0)
            (true_graph_0_buf0, true_graph_0_buf1) = true_graph_0([true_graph_0_arg0_1, true_graph_0_arg1_1, s0])
            buf0[0] = true_graph_0_buf0
            buf0[1] = true_graph_0_buf1
        else:
            # subgraph: false_graph_0
            false_graph_0_arg0_1 = reinterpret_tensor(arg1_1, ((-1) + s0, 20), (20, 1), 0)
            false_graph_0_arg1_1 = reinterpret_tensor(arg2_1, ((-1) + s0, 20), (20, 1), 0)
            (false_graph_0_buf0, false_graph_0_buf1) = false_graph_0([false_graph_0_arg0_1, false_graph_0_arg1_1, s0])
            buf0[0] = false_graph_0_buf0
            buf0[1] = false_graph_0_buf1
        del arg1_1
        del arg2_1
        del arg3_1
        buf1 = buf0[0]
        buf2 = buf0[1]
        del buf0
    return (buf1, buf2, )

~~~

The key change is to recursively call `codegen` for the subgraph and rely on `SubgraphPythonWrapper` to generate just the subgraph `fn`. The resulting subgraph_code is then inserted into the parent wrapper.

Note that this PR only works for python wrapper. For cpp wrapper, we need a lot of refactor to ensure that we don't duplicate the global variables in the outpute_code. So, for now, I fallback to the old way of inlining for cpp wrapper. I am hoping someone with more familiarity with cpp wrapper can support subgraph lifting (cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov).

This work will unblock hierarchical compilation (or cold start compile time work).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137200
Approved by: https://github.com/desertfire, https://github.com/eellison
2024-10-11 17:57:10 +00:00
Colin Peppler
9690cacd61 [aotinductor] Add helper fn to atomically apply size_hint to an expr w/ unbacked symints (#137537)
### Context
Fixes CUDA IMA in autotune_at_compile_time, where we would generate an example tensor with an incorrect stride.

In the case below, the stride should be (u0 * 128, 128, 1). However, we apply the fallback on the entire expr (i.e. u0 * 128).
```
# buf817 = tensor(size=(s0, u0, 128), stride=(u0 * 128, 128, 1))

buf812 = generate_example_value(
    (64, 8192, 128), (8192, 128, 1), "cuda:0", torch.bfloat16, 0
)
```

The fix is to apply the fallback on each symbol.

### Test
```
PYTORCH_NO_CUDA_MEMORY_CACHING=1 compute-sanitizer python test_aot_inductor.py -k test_stride_with_unbacked_expr_abi_compatible_cuda

========= Invalid __global__ write of size 2 bytes
```

Differential Revision: [D64074561](https://our.internmc.facebook.com/intern/diff/D64074561)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137537
Approved by: https://github.com/jingsh
2024-10-10 17:11:24 +00:00
Animesh Jain
04e48ac562 [inductor] Refactor prefix to make it easy to create subclass of PythonWrapper (#137198)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137198
Approved by: https://github.com/jansel
ghstack dependencies: #137191, #137193
2024-10-07 17:20:58 +00:00
Bin Bao
15c3479db7 [AOTI] Fix _scaled_mm ABI-compatible codegen (#137132)
Summary: Similar to https://github.com/pytorch/pytorch/pull/137008, but for supporting _scaled_mm in the ABI-compatible mode.

Differential Revision: [D63757729](https://our.internmc.facebook.com/intern/diff/D63757729)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137132
Approved by: https://github.com/chenyang78
ghstack dependencies: #137008
2024-10-04 14:05:18 +00:00
David Berard
54094c0c26 [inductor][user triton] Check size hints to determine indexing dtype (#137234)
Previously, all integer inputs to user-defined triton kernels were assumed to be int32. This would result in errors if your input was actually an int64.

This PR checks the value to determine which dtype to use for indexing: if it is known to be < int_max, then use int32 (and add guards if relevant); if we can't check (e.g. unbacked symint), then use int64.

Differential Revision: [D63797975](https://our.internmc.facebook.com/intern/diff/D63797975)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137234
Approved by: https://github.com/eellison
2024-10-03 22:07:26 +00:00
Edward Z. Yang
cc8f1cddd4 Turn on type-checking in torch.fx.experimental.symbolic_shapes (#136972)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136972
Approved by: https://github.com/Skylion007
ghstack dependencies: #136934, #136935
2024-10-01 13:22:10 +00:00
niklasz
3f457ee1f6 Fix AOT Graph capture not propagating non_blocking copy parameter to … (#136513)
…inductor codegen.

Fixes #136260

**Note**: this is my first code contribution to torch so please let me know if there's anything I need to fix/some other convention I should follow.

Regarding the bug, re-running the issue's reproduction code:
```
import torch

def fn(x):
    return x.to(device="cuda", non_blocking=True)

inp = torch.randn(3, 4)

torch.compile(fn)(inp)
```

We now have the non_blocking being passed on to codegen properly:

```
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code] TRACED GRAPH
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]  ===== pre insert_deferred_runtime_asserts __compiled_fn_1 =====
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]     def forward(self, L_x_: "f32[3, 4]"):
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         l_x_ = L_x_
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         to: "f32[3, 4]" = l_x_.to(device = 'cuda', non_blocking = True);  l_x_ = None
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         return (to,)
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code] TRACED GRAPH
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]  ===== __compiled_fn_1 =====
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]  /home/niklasz/Desktop/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]     def forward(self, L_x_: "f32[3, 4][4, 1]cpu"):
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         l_x_ = L_x_
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         to: "f32[3, 4][4, 1]cuda:0" = l_x_.to(device = 'cuda', non_blocking = True);  l_x_ = None
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         return (to,)
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.404000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:114] [0/0] [__aot_graphs] aot_config id: 0, fw_metadata=ViewAndMutationMeta(input_info=[InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=False, keep_input_mutations=True)], output_info=[OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch._subclasses.functional_tensor.FunctionalTensor'>, base_idx=None, dynamic_dims=set(), requires_grad=False, functional_tensor=None)], num_intermediate_bases=0, keep_input_mutations=True, traced_tangents=[], subclass_inp_meta=[0], subclass_fw_graph_out_meta=[0], subclass_tangent_meta=[], is_train=False, traced_tangent_metas=None, num_symints_saved_for_bw=None, grad_enabled_mutation=None, deterministic=None, static_input_indices=[], tokens={}, indices_of_inputs_that_requires_grad_with_mutations_in_bw=[], bw_donated_idxs=None, num_backward_tokens=0),subclass_metadata=None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs] TRACED GRAPH
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]  ===== Forward graph 0 =====
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]  /home/niklasz/Desktop/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module):
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]     def forward(self, arg0_1: "f32[3, 4][4, 1]cpu"):
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         device_put: "f32[3, 4][4, 1]cuda:0" = torch.ops.prims.device_put.default(arg0_1, device(type='cuda', index=0), True);  arg0_1 = None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         convert_element_type: "f32[3, 4][4, 1]cuda:0" = torch.ops.prims.convert_element_type.default(device_put, torch.float32);  device_put = None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         return (convert_element_type,)
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1134] [0/0] [__output_code] Output code written to: /tmp/torchinductor_niklasz/ha/chaai264g6ribfw3q2qhl6ayjtaqaavku5wivxtzw4nabgd6htsv.py
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] Output code:
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] # AOT ID: ['0_inference']
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from ctypes import c_void_p, c_long, c_int
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import torch
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import math
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import random
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import os
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import tempfile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from math import inf, nan
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.utils import maybe_profile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch import device, empty_strided
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] aten = torch.ops.aten
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] inductor_ops = torch.ops.inductor
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] _quantized = torch.ops._quantized
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] async_compile = AsyncCompile()
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] async_compile.wait(globals())
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] del async_compile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] def call(args):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     arg0_1, = args
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     args.clear()
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     assert_size_stride(arg0_1, (3, 4), (4, 1))
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     with torch.cuda._DeviceGuard(0):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         torch.cuda.set_device(0)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         buf0 = empty_strided_cuda((3, 4), (4, 1), torch.float32)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         buf0.copy_(arg0_1, True)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         del arg0_1
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     return (buf0, )
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._dynamo.testing import rand_strided
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._inductor.utils import print_performance
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     arg0_1 = rand_strided((3, 4), (4, 1), device='cpu', dtype=torch.float32)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     fn = lambda: call([arg0_1])
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     return print_performance(fn, times=times, repeat=repeat)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] if __name__ == "__main__":
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._inductor.wrapper_benchmark import compiled_module_main
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     compiled_module_main('None', benchmark_compiled_module)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
```
See above line `buf0.copy_(arg0_1, True)`. Specific log setting used: `export TORCH_LOGS="graph_code,aot_graphs,output_code"`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136513
Approved by: https://github.com/eellison
2024-10-01 00:32:47 +00:00
eellison
18e707645c Substitute unbacked symints in expressions (#137020)
Differential Revision: [D63647095](https://our.internmc.facebook.com/intern/diff/D63647095)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137020
Approved by: https://github.com/ezyang
2024-09-30 23:07:22 +00:00
PyTorch MergeBot
8982906502 Revert "Turn on type-checking in torch.fx.experimental.symbolic_shapes (#136972)"
This reverts commit 3ff2d93d9f.

Reverted https://github.com/pytorch/pytorch/pull/136972 on behalf of https://github.com/ezyang due to need to back out for merge conflict ([comment](https://github.com/pytorch/pytorch/pull/136972#issuecomment-2384182244))
2024-09-30 21:35:08 +00:00
Jez Ng
71aac59e93 Add Triton CPU as an Inductor backend (#133408)
The goal is to use Inductor-generated kernels to stress test the new Triton CPU backend.

Differential Revision: [D63298968](https://our.internmc.facebook.com/intern/diff/D63298968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133408
Approved by: https://github.com/jansel, https://github.com/blaine-rister, https://github.com/malfet
2024-09-30 20:24:52 +00:00
Edward Z. Yang
3ff2d93d9f Turn on type-checking in torch.fx.experimental.symbolic_shapes (#136972)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136972
Approved by: https://github.com/Skylion007
ghstack dependencies: #136917, #136934, #136935
2024-09-30 18:04:36 +00:00
PyTorch MergeBot
36428f91e9 Revert "Add Triton CPU as an Inductor backend (#133408)"
This reverts commit 31c0467594.

Reverted https://github.com/pytorch/pytorch/pull/133408 on behalf of https://github.com/int3 due to internal tests failing ([comment](https://github.com/pytorch/pytorch/pull/133408#issuecomment-2379692517))
2024-09-27 16:54:27 +00:00
Jez Ng
31c0467594 Add Triton CPU as an Inductor backend (#133408)
The goal is to use Inductor-generated kernels to stress test the new Triton CPU backend.

Differential Revision: [D63298968](https://our.internmc.facebook.com/intern/diff/D63298968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133408
Approved by: https://github.com/jansel, https://github.com/blaine-rister, https://github.com/malfet
2024-09-26 15:35:26 +00:00
Bin Bao
20a855bf01 [AOTI] Move stack_allocation logic from PythonWrapperCodegen (#136463)
Summary: Move stack_allocation logic from PythonWrapperCodegen to CppWrapperCpuArrayRef

Differential Revision: [D63319970](https://our.internmc.facebook.com/intern/diff/D63319970)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136463
Approved by: https://github.com/chenyang78
ghstack dependencies: #136062, #136461, #136462
2024-09-25 14:06:33 +00:00
Jokeren
cabfbef6cf [pytorch][PR] [inductor] More fixes on the keys of constants and signature dictionaries (#136514)
Summary: Previous PR forgets to change two other places that also create `constants` and `signature`.

Test Plan:
Imported from GitHub, without a `Test Plan:` line.
 {F1884584338}

Differential Revision: D63027728

Pulled By: Myrthan

Co-authored-by: Jokeren <robinho364@gmail.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136514
Approved by: https://github.com/jansel

Co-authored-by: Jokeren <robinho364@gmail.com>
2024-09-25 09:34:14 +00:00
Bin Bao
95c0f7493f [Inductor] Rename WrapperCodeGen to PythonWrapperCodegen (#136062)
Summary: Rename WrapperCodeGen to PythonWrapperCodegen to make its meaning more explicit.

Differential Revision: [D63300358](https://our.internmc.facebook.com/intern/diff/D63300358)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136062
Approved by: https://github.com/angelayi, https://github.com/chenyang78
2024-09-24 21:02:51 +00:00
Shangdi Yu
3bc073d728 [aoti] Fix workspace generation for triton (#135552)
Fixes #131337

- add `arg_type` for workspace_arg, the type is consistent with the type in `generate_workspace_allocation()`.
- do not generate example tensors for `workspace`, and use `generate_workspace_allocation()` instead.
- add workspace allocation generation code to `kernel_autotune_calls`. e.g.
```python
    workspace = empty_strided_cuda((1280, ), (1, ), torch.uint8)
    workspace.zero_()
    .....
    triton_spl_fused_add_cumprod_0.run(buf2, arg0_1, arg1_1, workspace, 1, 10000, grid=split_scan_grid(1, 10000), stream=stream0)
    del buf2, arg0_1, arg1_1, workspace
```
-  add `empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda` to the header of triton autotune code.

The generated cpp has lines like below, so we also implement a `zero_()` for ` AtenTensorHandle `.

```cpp
    static constexpr int64_t int_array_0[] = {1280L, };
    static constexpr int64_t int_array_1[] = {1L, };
    AtenTensorHandle workspace_handle;
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(1, int_array_0, int_array_1, cached_torch_dtype_uint8, cached_torch_device_type_cuda,  0, &workspace_handle));

        RAIIAtenTensorHandle workspace(workspace_handle);
        workspace.zero_();
```

- Fix handle grid_fn  for grid computation. Pass in "RBLOCK" to `split_scan_grid`
-  Fix dynamic shapes:
Without the fix we generate code that looks like this `workspace = empty_strided_cuda((32*((255 + s0) // 256), ), (1, ), torch.uint8)` when doing triton autotune and `s0` is not defined.

The solution approach is to use `V.graph.sizevars.size_hint(nbytes)` to realize the workspace size for triton autotune. Note that we only realize it for triton autotune code, but not for the cpp cuda code.

- We also generate slightly different cpp code depending on if `abi_compatible` is turned on.
```cpp
RAIIAtenTensorHandle workspace(workspace_handle);
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_zero_(workspace.get()));
```
vs

```cpp
    at::Tensor workspace = at::detail::empty_strided_cuda({8L*(c10::div_floor_integer(static_cast<int64_t>((255L + s0)), static_cast<int64_t>(256L))), }, {1L, }, at::kByte, c10::DeviceType::CUDA);
    workspace.zero_();
```

Test Plan:

```
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1  python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
python test/inductor/test_cuda_cpp_wrapper.py DynamicShapesCudaWrapperCudaTests.test_consecutive_split_cumprod_cuda_dynamic_shapes_cuda_wrapper
TORCHINDUCTOR_ABI_COMPATIBLE=1 python test/inductor/test_cuda_cpp_wrapper.py TestCudaWrapper.test_consecutive_split_cumprod_cuda_cuda_wrapper
TORCHINDUCTOR_CPP_WRAPPER=1  python test/inductor/test_torchinductor.py -k GPUTests.test_consecutive_split_cumprod_cuda
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135552
Approved by: https://github.com/desertfire
2024-09-22 04:51:37 +00:00
PyTorch MergeBot
d0cebedb31 Revert "Add Triton CPU as an Inductor backend (#133408)"
This reverts commit e498b02b47.

Reverted https://github.com/pytorch/pytorch/pull/133408 on behalf of https://github.com/jeanschmidt due to Broke internal signals, see D62737208 for more details ([comment](https://github.com/pytorch/pytorch/pull/133408#issuecomment-2353623816))
2024-09-16 18:33:33 +00:00