This is an easy PR. It has some remaining local changes that I had that I felt clarified naming.
- `_param_fqns` -> `_param_name_infos` since it returns a tuple of `fqn, param_name, module_name`, not only `fqn`. (similarly for `_shared_param_fqns` -> `_shared_param_name_infos`)
- nit: `parameter_module_names` -> `param_module_names` for consistency since we almost never fully spell out `parameter`. (similarly for `shared_parameter_module_names` -> `shared_param_module_names`)
- nit: `full_fqn` -> `fqn_from_global_root`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97666
Approved by: https://github.com/rohan-varma
Summary: When parameters are flattening, multiple parameters share the same step. When unflattening the parameters, current implementation still make these parameters share the same step. When this is not wrong, some training infra get confused by sharing tensor storages. This PR fixes the issue.
Test Plan: CI
Reviewed By: awgu
Differential Revision: D43893592
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96313
Approved by: https://github.com/zhaojuanmao
Summary: The original code uses a class variable to store flat_parameter result. This could cause memory leakage.
Test Plan: CI and a E2E run
Reviewed By: awgu
Differential Revision: D43893577
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96263
Approved by: https://github.com/zhaojuanmao
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
I applied some flake8 fixes and enabled checking for them in the linter. I also enabled some checks for my previous comprehensions PR.
This is a follow up to #94323 where I enable the flake8 checkers for the fixes I made and fix a few more of them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94601
Approved by: https://github.com/ezyang
Optimize unnecessary collection cast calls, unnecessary calls to list, tuple, and dict, and simplify calls to the sorted builtin. This should strictly improve speed and improve readability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94323
Approved by: https://github.com/albanD
When FSDP is used with other parallelism (e.g., TorchRec), some parameters that are not managed by FSDP may not reside on all the ranks (TorchRec is model parallelism). When `use_orig_params=True` , FSDP will synchronize the FQNs among ranks. As a result, a rank may get the FQNs that the rank does not actually own. If the FQN belongs to a TorchRec managed parameter, FSDP has to ignore the parameter state. Otherwise FSDP does not know how to store the state.
This PR add the logic to ignore the parameters that are not managed by FSDP and are not on the rank.
Differential Revision: [D42982778](https://our.internmc.facebook.com/intern/diff/D42982778/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94129
Approved by: https://github.com/rohan-varma
**Overview**
This PR stack will add support for unsharding FSDP's sharded parameters for `fully_shard`. This PR takes the first step by doing some internal refactoring.
- The existing API for wrapper FSDP is the static method `summon_full_params()`, which calls into the helper `_summon_full_params()`.
- This PR refactors:
- `summon_full_params()` core logic to `_unshard_params()`
- `_summon_full_params()` to `_unshard_params_recurse()`, which has a `recurse: bool` argument
- Previous `_unshard_params()` to `_unshard_fsdp_state_params()`, which applies to a single FSDP state
**Details**
- This PR introduces `_get_fsdp_states_with_modules()` and `_get_root_fsdp_states_with_modules()`, which additionally return the modules along with the FSDP states. The modules are needed for handling `FlatParameter` registration.
- We may be able to remove this if we clean up the `use_orig_params=True` vs. `False` code paths because for `True`, the `FlatParameter` is not registered, meaning that it does not need to be de-registered.
- Since `fully_shard` requires `use_orig_params=True`, we may not need `_get_fsdp_states_with_modules()` and `_get_root_fsdp_root_modules()`; however, I prefer to make the separation of FSDP state and module explicit for now for clarity.
**Follow-Ups**
- `writeback=True` and `rank0_only=True` raises an error. The previous explanation was:
> is not supported, as model parameter shapes will be different across ranks, and writing to them can lead to inconsistencies across ranks when the context is exited.
I am not exactly sure what the different model parameter shapes refers to. However, I believe that we can support `writeback=True` and `rank0_only=True` by broadcasting the `FlatParameter` from rank 0 in the `finally`, writing back, and freeing. This should not increase the peak memory since rank 0 already holds the unsharded `FlatParameter` in GPU memory before writing back and nonzero ranks do not have any other unsharded `FlatParameter`s in GPU memory.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92297
Approved by: https://github.com/rohan-varma
If a state is not associated with any parameter, `FSDP.optim_state_dict` should still save it. The current implementation to determine whether a state is associated with a parameter is not completely correct and can cause `use_orig_params=True` have extra states.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92744
Approved by: https://github.com/awgu
**What does this PR do?**
This PR refactor `_optim_utils.py` to use `_FSDPState` instead of `FullyShardedDataParallel` class. This change enables the support of optim state_dict for `fully_shard`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91234
Approved by: https://github.com/rohan-varma
**What does this PR do?**
This PR refactors FSDP optimizer state_dict APIs to accept `NamedOptimizer` as the input optimizer. The key difference is that the state_dict returned by `NamedOptimizer` is already keyed as FQN. This PR majorly changes the internal mapping to allows the optimizer state_dict to be keyed as FQN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91160
Approved by: https://github.com/fduwjj, https://github.com/rohan-varma
**What does this PR do?**
This PR splits the FSDP optim_state_dict APIs into common implementation parts that are shared for different frontend APIs (we have many now and will consolidate them gradually). This PR also add `_optim_state_dict_post_hook` and `_load_optim_state_dict_pre_hook` for the integration with `NamedOptimzer`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90798
Approved by: https://github.com/rohan-varma, https://github.com/awgu
This PR supports nesting `replicate` in `fully_shard`.
- The PR achieves this by treating `replicate`-annotated modules are ignored modules. This means that all submodules in the `replicate`-annotated module's subtree are ignored, including nested `fully_shard`-annotated modules, which is the desired behavior.
---
This PR reworks some tree traversal.
One end goal is for `state._handles` to follow the same order for both the wrapper and composable paths. This implies that `_get_fsdp_handles()` returns the same value for both paths.
- The helper function `_get_fully_sharded_module_to_states()` now follows a left-to-right DFS from each fully sharded module instead of a BFS. The left-to-right DFS follows `.modules()` order.
- The composable auto "wrap" initialization function `_init_param_handles_from_module()` follows the reverse left-to-right DFS order. As noted in the code comments, this initialization order is a valid reverse topological sort, but it differs from the wrapper path. This is the _only_ difference with respect to initialization order through the entire process.
```
mod: Module(
submod1: Submodule()
submod2: Submodule(
subsubmod: Subsubmodule(),
),
)
```
For left-to-right DFS, the order is `mod`, `submod1`, `submod2`, `subsubmod`. (For context, right-to-left DFS would be `mod`, `submod2`, `subsubmod`, `submod1`. In other words, the left-to-right vs. right-to-left corresponds to `.children()` vs. `reversed(.children())` respectively.) Then, reverse left-to-right DFS is `subsubmod`, `submod2`, `submod1`, `mod`, which is a valid initialization order. However, the wrapper auto wrap initialization order would be `submod1`, `subsubmod`, `submod2`, `mod` since it directly follows a left-to-right DFS and initializes as a part of the recursive DFS logic.
- At the end of `_init_param_handles_from_module()`, we reverse the newly populated `state._handles`, so this is the reverse reverse left-to-right DFS order, which is equivalent to the left-to-right DFS order. Thus, `state._handles` has the same order for both paths.
Another goal is for `_get_fsdp_states()` to not traverse into any submodule that is annotated with an API that is not compatible with `fully_shard` (e.g. `replicate`). To achieve this while preserving that `_get_fsdp_states()` follows `.modules()` order, we again use a left-to-right DFS.
The reason the DFSs may look strange is because I implemented them non-recursively, which requires a stack.
- `test_get_fully_sharded_module_to_states()` in `test_utils.py` checks the traversal order of `_get_fully_sharded_module_to_states()`.
- `test_policy()` in `test_fully_shard.py` checks the traversal order returned by `_get_fsdp_handles()`.
---
Due to a circular dependency issue, we must move the graph/tree traversal helpers to their own file `_traversal_utils.py`, and any usages must import the entire file like `import torch.distributed.fsdp._traversal_utils as traversal_utils` instead of `from torch.distributed.fsdp._traversal_utils import ...`.
The cycle comes from the fact that the traversals require `_composable()`, which requires `_get_registry()` from `composable/contract.py`, which when imported, imports `composable/fully_shard.py`, which requires the traversals.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91044
Approved by: https://github.com/mrshenli
**What:**
This PR add the optim state_dict support of `use_orig_params` with rank0_only is False. rank0_only support will be added in a following PR. The design of this PR focus on the simplicity and may not have good performance, especially for optim state_dict loading. Since optim state_dict loading is only called once in the beginning of the training, performance is not the major concern.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89900
Approved by: https://github.com/awgu, https://github.com/rohan-varma
**Motivation:**
Add a helper to map from the FQN to the corresponding flat_param. The helper will directly get flat_param from fsdp_state and flat_handler as flat_param is not registered to the module if `use_orig_params` is True.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89899
Approved by: https://github.com/awgu
983c0e7f31/torch/optim/adam.py (L163)
The above line requires that a candidate optimizer state dict being loaded via `load_state_dict()` has non-empty state for its 0th parameter (via `state_values[0]`). This PR changes FSDP to only include non-empty mappings in the state returned by `_flatten_optim_state_dict()`, which is the subroutine for both `shard_full_optim_state_dict()` and `flatten_sharded_optim_state_dict()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88353
Approved by: https://github.com/fegin
**Overview**
This PR adds the option to use the original parameters via `use_orig_params=True` in the FSDP constructor.
- This exposes the original parameters rather than the `FlatParameter`s from `named_parameters()`, which means that the optimizer runs on the original parameters. Hence, users may assign original parameters from the same `FlatParameter` to different parameter groups.
- This enables decoupling the original parameter variables from their storage without changing the variables themselves, which is critical for our upcoming execution-order-based non-recursive wrapping policy.
For more detailed design explanation, refer to the Quip shared internally.
**Follow-Ups**
See 85831 (removing link to avoid spamming the issue whenever I update this PR).
`test_fsdp_use_orig_params.py` adds ~4 min 46 seconds to the TTS on the AWS cluster.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84911
Approved by: https://github.com/rohan-varma
Optimizer state_dict currently move tensors to CPU() immediately after allgather(). However, for sharded optimizer state_dict, this moving is duplicated. We should wait until all the sharding are done. This PR may slightly reduce the performance of full optimizer state_dict as it has to allocate more memory than w/o this PR. But the benchmark shows the memory allocation is pretty light.
Differential Revision: [D39855912](https://our.internmc.facebook.com/intern/diff/D39855912/)
**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39855912/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85761
Approved by: https://github.com/rohan-varma
This adds `FSDPExtensions` to enable TP + FSDP composability. To be agnostic to both `ShardedTensor` and `DistributedTensor`, the design relies on customizable hooks.
Some notes:
- I preferred the `_ext` prefix (short for "extension") over `_param_extension` simply because it is shorter. It should not matter much because it is purely internal facing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85039
Approved by: https://github.com/kumpera, https://github.com/fegin
This is a short-term quick fix to accommodate using the existing optimizer state APIs without passing `optim_input`. It preserves the existing `optim_input` code path but if `optim_input` is `None` while `optim` is not, then the APIs will use the new code path that relies on `self.param_groups` to get the information previously provided by `optim_input`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84201
Approved by: https://github.com/rohan-varma
### Additional Constructor Changes
- `self.sharding_strategy`
- If the world size is 1, I clamp the sharding strategy to `NO_SHARD`, regardless of the passed-in sharding strategy, since the behavior is fully equivalent. This absolves the need for `p._is_sharded or self.world_size == 1` checks in the core code. Once we fully shift the paradigm to using handles, this should result in a clear net positive. However, for now, we still have some places where we interface directly with the `FlatParameter`, in which case we have some temporary hacky code.
- `HandleConfig`
- As a part of the new design abstraction, much logic is lowered to the `FlatParamHandle`. This requires the handle be aware of mixed precision, CPU offloading, sharding strategy, and the process group (for world size > 1). To be less error-prone, I re-defined the `dataclass`s and `enum`s for the handle. These can be removed and coalesced with the existing ones.
- The drawback is that the `FlattenParamsWrapper` constructor now takes in the `HandleConfig` to forward it to the `FlatParamHandle` constructor. I tolerate this since we plan to retire the FPW. For now, the handle's process group attributes are set later when we call `handle.shard()`.
- We will dive into this logic lowering later. For now, the idea is we need to pass some extra info to the handle, which must go through the FPW.
- `FullyShardedDataParallel._shard_parameters()` -> `FlatParamHandle.shard()`
- [Important] Generalizing attributes to remove the 1 `FullyShardedDataParallel` : 1 `FlatParameter` assumption
- **Before:** `_fsdp_graph_order`, `_pre_backward_hook_full_params_prefetched`, `_forward_full_params_prefetched`, `reshard_after_forward` are with respect to 1 `FullyShardedDataParallel`
- **After:** (1) We use `FlatParamHandle` in place of `FullyShardedDataParallel`. (2) The atomic unit for forward and pre-backward is a _group_ of handles involved in the same module's forward/pre-backward. This is represented as `Tuple[FlatParamHandle, ...]`. For now, this is **always a singleton tuple**, but this shift enables a module having multiple FSDP parameters (which we have use cases for).
- `_reset_lazy_init()` attributes
- The prefetched flags are merged into `self._handles_prefetched`, which is directly defined in the constructor. `reshard_after_forward` is retired since it can be fully determined by other attributes (`_is_root` and `sharding_strategy`).
## FSDP Runtime: Unshard
The first step is to read the existing `_rebuild_full_params()`. A few notable observations:
- It returns `Tuple[Tensor, bool]`. The first element is the _padded unsharded flattened parameter_, and the second element is whether we can free it upon exiting `summon_full_params()`. This return value is **only used in `summon_full_params()`**.
- If parameter mixed precision is enabled and the `FlatParameter` is already unsharded, then the low precision shard (`_mp_shard`) is still re-allocated on GPU. (It is freed at the end of the method.)
- If CPU offloading is enabled and the `FlatParameter` is already unsharded, then there is a no-op `p.data = p.data.to(self.compute_device, non_blocking=True)`.
- Inside `summon_full_params()`, `mixed_precision_cast_ran` is always `False`. Therefore, the return value for the `not p._is_sharded and mixed_precision_cast_ran` branch is unused.
-`summon_full_params()` can only be called (before forward or after backward) or (between forward and backward). Given this, I cannot think of a case where we call `summon_full_params()`, the `FlatParameter` is already unsharded, but `reshard_after_forward` is `True`. The `FlatParameter` should be sharded (before forward or after backward), and the `FlatParameter` may only be unsharded (between forward and backward) if `reshard_after_forward` is `False`.
- If parameter mixed precision is enabled and the sharding strategy is a sharded one, then inside `summon_full_params()`, the `FlatParameter` is unsharded in full precision. This involves allocating a new padded unsharded flattened parameter on GPU in full precision since `_full_param_padded` is in the low precision.
Some comments:
- Ideally, we reduce the complexity of the core code path: i.e. unshard for forward and pre-backward. If the return value is only used for `summon_full_params()`, we should consider if we can compartmentalize that logic.
- The branching is complex, and some return values are never used, where this fact is not immediately obvious. We should see if we can reduce the branch complexity.
Disclaimer: The difference in attribute semantics between `NO_SHARD` and the sharded strategies makes it challenging to unify the cases. This PR does not attempt to address that since it requires more design thought. However, it does attempt to reduce the complexity for the sharded strategies.
### Unshard: Core Code Path
Let us trace through the new logical unshard.
1. `FullyShardedDataParallel._unshard(self, handles: List[FlatParamHandle], prepare_gradient: bool)`
- This iterates over the handles and calls `handle.pre_unshard()`, `handle.unshard()`, and `handle.post_unshard(prepare_gradient)` in the all-gather stream.
2. `FlatParamHandle.needs_unshard(self)`
- We take an aside to look at this key subroutine.
- For `NO_SHARD`, this returns `False`.
- For sharded strategies, this checks if the padded unsharded flattened parameter is allocated. The padded unsharded flattened parameter is the base tensor for the unpadded unsharded flattened parameter, which is a view into the padded one. Thus, the padded one's allocation fully determines if the `FlatParameter` is unsharded.
- For sharded strategies, to accommodate the parameter mixed precision + `summon_full_params()` case, we introduce `_full_prec_full_param_padded`, which is the padded unsharded flattened parameter in full precision. The helper `_get_padded_unsharded_flat_param()` takes care of this casing and returns the padded unsharded flattened parameter. Instead of allocating a new tensor each time, we manually manage `_full_prec_full_param_padded`'s storage just like for `_full_param_padded`.
3. `FlatParamHandle.pre_unshard(self)`
- For sharded strategies, the postcondition is that the handle's `FlatParameter` points to the tensor to all-gather. This should be on the communication device and in the desired precision. The allocation and usage of the low precision shard for parameter mixed precision and the CPU -> GPU copy for CPU offloading both classify naturally in the pre-unshard.
- For sharded strategies, if the `FlatParameter` does not need to be unsharded, `pre_unshard()` is a no-op. This avoids unnecessarily allocating and freeing the low precision shard.
- For `NO_SHARD`, we simply preserve the existing semantics.
4. `FlatParamHandle.unshard(self)`
- If the handle was resharded without freeing the padded unsharded flattened parameter (e.g. `summon_full_params()` between forward and backward when `reshard_after_forward=False`), then the `FlatParameter` points to the sharded flattened parameter. We need to switch to using the unsharded parameter. This is a design choice. Alternatively, we may not switch to using the sharded flattened parameter in `reshard()` if we do not free the padded unsharded flattened parameter. However, the postcondition that the `FlatParameter` points to the sharded flattened parameter after `reshard()` is helpful logically, so I prefer this approach.
- Otherwise, this allocates the padded unsharded flattened parameter, all-gathers, and switches to using the unpadded unsharded flattened parameter.
- In the future, we may add an option to `unshard()` that additionally all-gathers the gradient.
5. `FlatParamHandle.post_unshard(self, prepare_gradient: bool)`
- For sharded strategies, if using parameter mixed precision, this frees the low precision shard. More generally, this should free any sharded allocations made in `pre_unshard()` since the all-gather has been launched. If using CPU offloading, the GPU copy of the local shard goes out of scope after `unshard()` and is able to be garbage collected. **We should understand if there is any performance difference between manually freeing versus deferring to garbage collection since our usage is inconsistent.** For now, I preserve the existing semantics here.
- `prepare_gradient` is meant to be set to `True` for the pre-backward unshard and `False` for the forward unshard. This runs the equivalent logic of `_prep_grads_for_backward()`.
- This post-unshard logic (notably the gradient preparation) now runs in the all-gather stream, which is fine because we always have the current stream wait for the all-gather stream immediately after `FullyShardedDataParallel._unshard()`. IIUC, we do not need to call `_mp_shard.record_stream(current_stream)` (where `current_stream` is the default stream) because `_mp_shard` is allocated and freed in the same (all-gather) stream.
- A postcondition is that the `FlatParameter` is on the compute device. It should also have the unpadded unsharded size (though I do not have a check for this at the moment).
### Unshard: `summon_full_params()`
Now that we see how the logical unshard has been reorganized for the core code path, let us dive into `summon_full_params()`.
The two constraints are:
1. If using parameter mixed precision, we should unshard in full precision.
2. We must determine if we should free the padded unsharded flattened parameter upon exiting.
The first constraint is addressed as described before in the core unshard code path, so it remains to explore the second constraint.
I propose a simple rule: **We free iff we actually unshard the `FlatParameter` in `summon_full_params()`** (i.e. it was not already unsharded). We perform a case analysis:
**Parameter mixed precision enabled:**
* `NO_SHARD`: `flat_param.data` points to `flat_param._local_shard`, which is the full precision unsharded flattened parameter. This is **not safe to free**.
* `FULL_SHARD` / `SHARD_GRAD_OP`: We force full precision and all-gather to `_full_prec_full_param_padded`. We do not support `nested summon_full_params()`, so `_full_prec_full_param_padded` must be unallocated. We unshard, and it is **safe to free**.
**Parameter mixed precision disabled:**
* `NO_SHARD`: This is the same as with mixed precision enabled. This is **not safe to free**.
* `FULL_SHARD` / `SHARD_GRAD_OP`: We all-gather to `_full_param_padded`. It may already be unsharded.
* Already unsharded: The unshard is a no-op. This is **not safe to free**.
* For `FULL_SHARD`, this can happen for the root FSDP instance after `forward()` but before backward.
* For `SHARD_GRAD_OP`, this can happen for all FSDP instances after `forward()` but before backward.
* Needs unshard: We unshard. This is **safe to free**.
Therefore, we see that it is not safe to free when using `NO_SHARD` and when using a sharded strategy but the `FlatParameter` is already unsharded. This is precisely the proposed rule.
There were two notable edge cases that the existing code did not address.
1. The existing code tests if the `FlatParameter` is already unsharded by checking the allocation status of `_full_param_padded`. When using parameter mixed precision, this is the incorrect tensor to check. If `_full_param_padded` is allocated (e.g. when `reshard_after_forward=False` and calling `summon_full_params()` between forward and backward), the already-unsharded check is a false positive, and `summon_full_params()` does not correctly force full precision. https://github.com/pytorch/pytorch/issues/83068
- This PR's `needs_unshard()` check correctly routes to the appropriate padded unsharded flattened parameter depending on the calling context (i.e. if it needs to force full precision or not).
2. The existing code does not free the GPU copy of the padded unsharded flattened parameter when calling `summon_full_params(offload_to_cpu=True)`. It unshards the `FlatParameter`, moves the padded unsharded flattened parameter to CPU, and sets the `FlatParameter` data to be the appropriate unpadded view into the padded unsharded flattened parameter on CPU. However, `_full_param_padded` still points to the all-gathered padded unsharded flattened parameter on GPU, which is kept in memory. https://github.com/pytorch/pytorch/issues/83076
- This PR frees the GPU copy and reallocates it upon exiting `summon_full_params()`. This is essential for avoiding peak GPU memory usage from increasing as we recurse through the module tree. There may be some cases where we can avoid reallocation altogether, but that can be addressed in a follow-up PR.
- This PR offloads the *unpadded* unsharded flattened parameter to CPU directly instead of the *padded* one. As far as I can tell, there is no need to include the padding since unflattening the original parameters does not require the padding.
- The relevant code is in the context manager `FlatParamHandle.to_cpu()`.
### Unshard: Mixed-Precision Stream
This PR removes the mixed precision stream usage. As is, I do not think there is any extra overlap being achieved by the stream usage.
The low precision shard is allocated and copied to in the mixed precision stream ([code](1f99bdfcc4/torch/distributed/fsdp/fully_sharded_data_parallel.py (L1401-L1412))), and the current stream (in this case the all-gather stream) waits for the mixed precision stream ([code](1f99bdfcc4/torch/distributed/fsdp/fully_sharded_data_parallel.py (L1414))). However, we immediately schedule an all-gather that communicates that exact low precision shard ([code](1f99bdfcc4/torch/distributed/fsdp/fully_sharded_data_parallel.py (L3338))) with no other meaningful computation between. If we remove the mixed precision stream, the low precision shard is allocated and copied to in the all-gather stream (including the non-blocking CPU -> GPU copy if using CPU offloading).
Under this PR's design, we may consider a "pre-unshard" stream for all logical pre-unshard data transfers if we want to overlap in the future. IIUC, the overlap opportunity exists if there are multiple `FlatParameter`s per module, and we only have the all-gather stream wait for the data transfer corresponding to the local shard it communicates, not the others.
If we agree on removing the mixed-precision stream for now, I will remember to delete it from `_init_streams()`.
## FSDP Runtime: Reshard
Like with unshard, the first step is the look at the existing `_free_full_params()` and `_use_param_local_shard()`. A few notable observations:
- For only `NO_SHARD`, `_free_full_params()` includes a call to `_free_mp_shard()`.
- For `summon_full_params()`, there is a separate `_free_full_params_and_use_local_shard()` that duplicates the main logic of `_free_full_params()` and calls `_use_param_local_shard()`.
- In `forward()`, if `reshard_after_forward=True`, we call `_free_full_params()` and then `_free_mp_shard()`. Hence, for `NO_SHARD`, the `_free_mp_shard()` is a no-op.
- In the post-backward hook, we typically call `_free_full_params()` and `_free_mp_shard()`. The `_free_mp_shard()` is a no-op for `NO_SHARD` and if `reshard_after_forward=True`.
Some comments:
- The code certainly works, but some of the no-ops are subtle. When possible, we should make it clear when calls are no-ops or not. It is good that the existing code documents that `_free_mp_shard()` is a no-op in the post-backward hook when `reshard_after_forward=True`. However, there are still some non-obvious no-ops (around `NO_SHARD`).
- We should see if we can avoid the duplicate `_free_full_params_and_use_local_shard()`.
Let us trace through the logical reshard:
1. `FullyShardedDataParallel._reshard(self, handles: List[FlatParamHandle], free_unsharded_flat_params: List[bool])`
- The two args should have the same length since they are to be zipped.
- The goal of having `free_unsharded_flat_params` is that the caller should be explicit about whether the (padded) unsharded flattened parameter should be freed. The low precision shard is always meant to be freed (as early as possible), so there is no corresponding `List[bool]`.
2. `FlatParamHandle.reshard(self, free_unsharded_flat_param: bool)`
- This frees the (padded) unsharded flattened parameter if `free_unsharded_flat_param` and switches to using the sharded flattened parameter.
- Echoing back to forcing full precision in `summon_full_params()`, `_free_unsharded_flat_param()` frees the correct tensor by using `_get_padded_unsharded_flat_parameter()`.
3. `FlatParamHandle.post_reshard(self)`
- I am not fully content with the existence of this method, but this seems to be an unavoidable consequence of `NO_SHARD`. Perhaps, this may be useful in the future for other reasons though.
- Right now, this method is only meaningful for `NO_SHARD` + parameter mixed precision + outside `summon_full_params()`. `_mp_shard` is not freed in the post-unshard since it is also the low precision _unsharded_ flattened parameter, so we must delay the free until the the post-reshard.
Below the `FlatParamHandle.reshard()` and `post_reshard()` layer, there should not be any no-ops.
One final comment I will mention is that I like the `pre_unshard()`, `unshard()`, `post_unshard()`, and `reshard()`, `post_reshard()` organization because it makes it clear what the boundaries are and their temporal relationship. Through that, we can set pre- and post-conditions. Furthermore, we can eventually convert logic to hooks that may be registered on the `FlatParamHandle` (for `pre_unshard()`, `post_unshard()`, and `post_reshard()`). This may improve the customizability of FSDP.
## FSDP Runtime: `forward()`
- This PR reorganizes `forward()` in preparation for non-recursive wrapping, which uses pre-forward and post-forward hooks that expect the signature `hook(module, input)`. For FSDP, the `module` and `input` arguments are not used.
- This PR creates a new method `_fsdp_root_pre_forward()` to handle the logic only the root FSDP should run.
## FSDP Prefetching
Finally, we dive into the prefetching changes. Some highlights:
1. This PR unifies the execution order validation and prefetching implementations.
- Both involve the execution order and can be unified to share some boilerplate.
2. Execution order validation only runs when the distributed debug level is `INFO`.
- We have yet to have one success case where we actually catch an unintended source of dynamism. The warning is also too verbose. Hence, we are gating it by the `INFO` level.
3. This PR moves prefetching to be with respect to groups of handles (as mentioned in the constructor comment).
- This is essential for supporting prefetching with non-recursive wrapping.
4. This PR does not include "bubbles", i.e. modules with no handles, in the recorded execution order(s). This deviates from the existing implementation.
- This makes prefetching possibly more aggressive (when there are such bubbles), but it should not have significant performance implications either way.
5. This PR changes backward prefetching to reset the post-forward order each iteration (as intended).
6. This PR changes forward prefetching to use the first iteration's pre-forward order instead of the first iteration's post-forward order. (We can discuss whether we want this in this PR or not. Otherwise, I can keep it as using the post-forward order to preserve the existing semantics.) This PR also removes the `all_gather_stream.wait_stream(current_stream)` before forward prefetching because it does not help with high GPU reserved memory. We can add that back if desired.
### Appendix
#### Reverse Post-Forward Order Is Not Always the Pre-Backward Order
The existing PT-D FSDP pre-backward prefetching uses the reverse post-forward order.
<details>
<summary>Model Code</summary>
```
class Model(nn.Module):
def __init__(self):
super().__init__()
self.block1 = nn.Sequential(
nn.Conv2d(3, 4, kernel_size=3),
nn.BatchNorm2d(4),
nn.ReLU(inplace=True),
)
self.block2 = nn.Sequential(
nn.Conv2d(4, 4, kernel_size=3),
nn.BatchNorm2d(4),
nn.ReLU(inplace=False),
)
self.block3 = nn.Linear(12, 8)
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
nn.Linear(4, 10),
)
def forward(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
return self.head(x)
model = Model().cuda()
fsdp_kwargs = {}
model.block1[1] = FSDP(model.block1[1], **fsdp_kwargs) # BN2d
model.block2[1] = FSDP(model.block2[1], **fsdp_kwargs) # BN2d
model.block1 = FSDP(model.block1, **fsdp_kwargs)
model.block2 = FSDP(model.block2, **fsdp_kwargs)
model.block3 = FSDP(model.block3, **fsdp_kwargs)
model = FSDP(model, **fsdp_kwargs)
```
</details>
<details>
<summary>Execution Orders </summary>
```
Pre-backward hook for ('head.2.weight', 'head.2.bias') 140339520587136 (model)
Pre-backward hook for ('weight', 'bias') 140339461194656 (block3)
Pre-backward hook for ('0.weight', '0.bias') 140339520589776 (block2)
Pre-backward hook for ('weight', 'bias') 140339520587664 (block2 BN)
Pre-backward hook for ('weight', 'bias') 140339520586656 (block1 BN)
Pre-backward hook for ('0.weight', '0.bias') 140339520588768 (block1)
Pre-forward order:
('head.2.weight', 'head.2.bias') 140339520587136 (model)
('0.weight', '0.bias') 140339520588768 (block1)
('weight', 'bias') 140339520586656 (block1 BN)
('0.weight', '0.bias') 140339520589776 (block2)
('weight', 'bias') 140339520587664 (block2 BN)
('weight', 'bias') 140339461194656 (block3)
Reverse post-forward order:
('head.2.weight', 'head.2.bias') 140339520587136 (model)
('weight', 'bias') 140339461194656 (block3)
('0.weight', '0.bias') 140339520589776 (block2)
('weight', 'bias') 140339520587664 (block2 BN)
('0.weight', '0.bias') 140339520588768 (block1)
('weight', 'bias') 140339520586656 (block1 BN)
```
</details>
Differential Revision: [D39293429](https://our.internmc.facebook.com/intern/diff/D39293429)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83665
Approved by: https://github.com/zhaojuanmao