Commit Graph

529 Commits

Author SHA1 Message Date
Joel Schlosser
b928e08f3d Initial vmap + NT support with unbind fallback (#106786)
PoC demonstrating vmap + NT based on the [design doc](https://docs.google.com/document/d/1dVVk6TOqz93PLTIneU2T3xaxCs9qZ0MaJyCvOAp_bC0). This PR:
* Allows `BatchedTensorImpl`s to contain NTs
* Introduces a `BatchedNestedTensor` dispatch key for NT-specific batching rules
* Provides a batching rule fallback that unbinds the NTs -> performs computation on constituent -> rebinds results into NT

Restrictions:
* Only supports one level of vmap
* Only supports vmapping over dim=0 for NTs
    * For operations with mixed NT / dense inputs, support is also limited to dim=0 for the dense inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106786
Approved by: https://github.com/zou3519
2023-09-07 13:53:20 +00:00
Brian Hirsh
da54f3c519 reorder proxy / fake modes so they always run last (#104482)
**Update:** Made refactor of the original PR. See the original description below, but here I'll describe the updates:

(1) TLS changes in `TorchDispatchModeTLS.h/cpp`.

I added a `TorchDispatchModeKey` enum, that (for now) just contains PROXY and FAKE. The ModeTLS used to just contain a `std::vector<std::shared_ptr<c10::SafePyObject>>` corresponding to the mode stack. It now **also** contains a separate array of "infra modes", indexed by mode key (PROXY and FAKE, with a new addition, FUNCTIONAL, coming later in the stack).

`TorchDispatchModeTLS::push_onto_stack` and `TorchDispatchModeTLS::pop_stack` are now a bit more complicated. Pushing accepts an optional mode_key, which if set, tells us to add the given mode directly to our "infra_modes" array. Popping will first check the "user mode" stack, before trying to pop anything from the infra mode stack. It also optionally returns the mode key of the mode we popped if there was one - that way if we push that same mode back onto the TLS later, we know where it goes.

`TorchDispatchModeTLS::dispatch_mode_enabled()` now accepts an optional `skip_infra_modes` param, so you can separately query if there are "any modes at all", or if there are "any user modes".

`TorchDispatchModeTLS::get/set/unset_mode()` all take in a mode key, and get/set/unset the mode at that particular mode key (meaning they are only meant to be used for infra modes).

There were also some mild codegen changes to support the new enum

(2) `fake_tensor.py/proxy_tensor.py/_python_dispatch.py`

The way I tell the infra that certain subclasses/modes are "infra" is through the enum: I gave `FakeTensor` and `FakeTensorMode` a `self._mode_key = torch._C.TorchDispatchModeKey.FAKE`. `TorchDispatchMode.__enter/exit__()` (in `_python_dispatch.py` now check if the current mode has a mode key, and if so they plumb it into any `push_onto_stack()` calls (which eventually instructs `TorchDispatchModeTLS` where to put the mode). Same thing for `ProxyTorchDispatchMode`.

I also had to change both of these mode's enter/exit, to handle the fact that there can no longer be multiple proxy/fake modes on the mode stack at once. I updated them both to have a `self.enter_stack: List[Optional[TorchDispatchMode]]` - whenever we push a given mode in `__enter__`, we remove the current ambient fake/proxy mode from the mode stack, and save it in `enter_stack`, so that on exit we can reset the state properly.

(2) dispatching logic in `python_arg_parser.cpp`

This is where the core dispatching logic changes are. I added two helpers, `dispatch_on_subclass()` and `dispatch_on_mode()`. The overall dispatching order is now:
```
(a) dispatch_on_mode()  # try user modes first (where the mode stack automatically considers infra modes last)
(b) dispatch_on_subclass() # try user subclasses next (skipping infra subclasses)
(c) dispatch_on_subclass() # try infra subclasses next (skipping user subclasses)
```

Note that we still want "user subclasses" to run before "infra modes". As Ed helped me realize, this will work today: If proxy/fake modes in step 1, they'll return NotImplemented if they see a user subclass, allowing us to redispatch to the user subclass.

How do (b) and (c) distinguish between user and infra subclasses? Infra subclasses (FakeTensor, and later FunctionalTensor) are required to have a `_mode_key` hidden on the subclass - so we filter via arguments that do/don't have the _mode_key.

(3) I also changed `DoubleTensor` to `TwoTensor` to minimize confusion (@albanD  pointed out that DoubleTensor would be easily confused with `torch.FloatTensor` and friends).

----- original description below -----

The main purpose of this PR is to fix the "ordering problem" between torch_dispatch modes, where we want to ensure that our Fake and Proxy dispatch modes always run **after** any dispatch modes created by the user, regardless of where they are in the stack. See this doc for more details: https://docs.google.com/document/d/1COQ291nOZvtFnzGTQMJqoYZ3sttEYFw_7HbfSyL8gcA/edit

Full set of changes below. I ended up including a few semi-related changes in this PR that I documented - but if folks would rather I separate them out, happy to try to do that.

**(1) Add dedicated TLS slots for FakeTensorMode and ProxyTensorMode**

This is the main component of this PR. There are two new slots, `TorchDispatchModeTLS.fake_mode_` and `TorchDispatchModeTLS.proxy_mode_`, which correspond to a single "global" fake and proxy mode. There is now an invariant that `torchDispatchModeState.stack_` can never contain either of these modes.

I also added a `TorchDispatchModeTLS::maybe_highest_mode()` helper that consults the `stack_` as well as both the proxy and fake slots, and returns the highest priority mode - this is because there are a few places in the codebase where we legitimately want to get the highest priority mode, *including* fake or proxy, if one is set.

This also made the implementations of the existing `disable_proxy_modes_tracing()` and `get_innermost_proxy_mode()` marginally simpler.

**(2) Updated the dispatching logic in handle_torch_function_no_python_arg_parser()**

This is the function that actually figures out which torch_dispatch implementation to call, given the current mode stack and tensor subclass inputs. This function got marginally more complicated as part of the refactor: First we inspect the mode stack and any non-fake subclass inputs. Then we check for the proxy mode slot. Then we check for the Fake mode slot, before finally checking for any fake subclass inputs.

**(3) new python `_get_fake_tensor_mode()` and `_get_proxy_tensor_mode()` API's**

Before, if you wanted to see if proxy or fake modes were active in python, you would have to consult the mode stack. Since these two modes are no longer part of the actual mode stack, I added two new API's to directly check if either proxy or fake modes are active.

**(4) Allow traceable tensor subclasses to access storages from python**
This is convenient later in the stack, where AOTAutograd needs to detect aliasing of inputs and outputs, where those inputs and outputs might be tensor subclasses. Previously, `x.untyped_storage()` would raise an error if `x` was a subclass. In this PR, I tried to relax this constraint as little as possible: `THPVariable_storage()` will only try to return a storage to python if the tensor subclass that you are passing in is "traceable"

**(5) Fixed subclass fakeification**

@wanchaol recently added support to be able to fakeify tensor subclasses. That fakeification logic works in most cases, but there is one case it doesn't handle: autograd metadata. In particular, since autograd sees our tensor subclasses and not their desugared tensors, we need to make sure that our fakeified subclass has the same autograd metadata as the original subclass. I updated `meta_utils.py` to make sure that the autograd metadata is correct.

**(6) make tensor subclasses resizeable**

Previously we didn't allow tensor subclasses to be resizeable. I ran into an issue where fakeifying a tensor subclass occasionally requires swapping out its storage, which can involve resizing the tensor. Mechanically, this required updating `at::for_blob()` to expose a way to request that the tensor that you create has resizeable storage, and then using this new API in `_make_wrapper_tensor()`.

**(7) Added a basic DoubleTensor subclass for testing**

I use this subclass more later in this stack in my AOTAutograd tests - but it serves as a simple subclass example to test the dispatch ordering in this PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104482
Approved by: https://github.com/ezyang
ghstack dependencies: #107415
2023-08-29 02:36:48 +00:00
cyy
d9fb7166d6 [BE] use DeviceIndex instead of int64_t for related device interfaces (#103068)
This PR unifies the device interfaces in aten/*cpp and torch/csrc/*cpp to use  **c10::DeviceIndex**.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103068
Approved by: https://github.com/malfet
2023-08-25 20:16:14 +00:00
Masaki Kozuki
5814380e7b Revert "Revert "Reland "Add forward mode AD to out-place foreach functions (#102409) (#106043)""" (#106320)
Fixed a typo specifying the number of tensors and elements in the test having failed in slow gradcheck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106320
Approved by: https://github.com/soulitzer
2023-08-18 23:01:42 +00:00
Jun Luo
2abcfc40b0 Enable torchgen for MTIA dispatch key (#107046)
Summary: As title.

Test Plan: See diff D48258693

Differential Revision: D48273743

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107046
Approved by: https://github.com/albanD
2023-08-15 07:56:18 +00:00
Tugsbayasgalan Manlaibaatar
20c5add133 [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-15 05:41:43 +00:00
Mengwei Liu
ddd2f682b9 [executorch] Let custom ops registration code only import ATen headers (#107064)
Summary: Basically we generate `CustomOpsNativeFunctions.h` for registering custom ops into PyTorch JIT runtime. This header needs to hookup with the C++ kernel implementation of all the custom ops. For this reason it should include ATen headers instead of Executorch headers. This PR changes it.

Test Plan: Rely on existing CI jobs

Differential Revision: D48282828

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107064
Approved by: https://github.com/kirklandsign
2023-08-13 00:34:34 +00:00
David Watson
c9cdcb299a Remove ExclusivelyOwned from register_dispatch_key (#106791)
This fixes a bug that could occur with python decompositions.

When an operation is intercepted in the c++ code in pytorch the outputs a created as `ExclusivelyOwned<at::Tensor>`s. Later on when it dispatches back to python for the decomposition these tensors have their ownership shared with python. In a normal use case the exclusively owned tensor is released and it's value returned as a non-exclusively owned tensor from the operation. However if the python decomposition throws an error the `ExclusivelyOwned` wrapper destroys the `at::Tensor` leading to a python reference to a tensor which isn't alive (and meaning pytorch falls over in debug mode).

Note this will be a performance hit when handling errors.

Fixes #106790

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106791
Approved by: https://github.com/ezyang
2023-08-11 21:04:33 +00:00
PyTorch MergeBot
745d29b0cc Revert "[export] Refactor constrain_as_value and constrain_as_size (#106591)"
This reverts commit 18989890bf.

Reverted https://github.com/pytorch/pytorch/pull/106591 on behalf of https://github.com/izaitsevfb due to Breaks inductor test on trunk ([comment](https://github.com/pytorch/pytorch/pull/106591#issuecomment-1675069091))
2023-08-11 16:37:47 +00:00
Tugsbayasgalan Manlaibaatar
18989890bf [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-11 05:29:22 +00:00
Alexander Pivovarov
02abbb8109 Fix some typos, mostly "that that" (#106901)
Fix some typos
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106901
Approved by: https://github.com/janeyx99
2023-08-10 19:46:53 +00:00
PyTorch MergeBot
2b427ae3a7 Revert "Reland "Add forward mode AD to out-place foreach functions (#102409) (#106043)"
This reverts commit e773f28ee3.

Reverted https://github.com/pytorch/pytorch/pull/106043 on behalf of https://github.com/DanilBaibak due to Break slow tests ([comment](https://github.com/pytorch/pytorch/pull/106043#issuecomment-1658642734))
2023-07-31 15:50:36 +00:00
Aaron Gokaslan
52d4b1ae31 [BE]: Enable ruff rules PIE807 and PIE810 (#106218)
* Enables PIE807 + PIE810. PIE807 is do not reimplement list builtin function using lambda and PIE810 is to always fuse startswith / endswith calls (I applied the autofixes for this before we had ruff enabled).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106218
Approved by: https://github.com/albanD
2023-07-28 22:35:56 +00:00
Masaki Kozuki
e773f28ee3 Reland "Add forward mode AD to out-place foreach functions (#102409) (#106043)
forward-mode AD of out-of-place foreach functions, finally.

rel:
- #102409
- #105504
- #58833
- #100695

---

# Generated Foreach
```c++
::std::vector<at::Tensor> _foreach_sinh(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachSinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachSinhBackward0>(new ForeachSinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = (self_t.conj() * self_p.cosh().conj()).conj();
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  return result;
}

::std::vector<at::Tensor> _foreach_norm_Scalar(c10::DispatchKeySet ks, at::TensorList self, const at::Scalar & ord) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachNormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachNormBackward0>(new ForeachNormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->ord = ord;
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_norm(ks & c10::after_autograd_keyset, self_, ord);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = norm_jvp(self_p, self_t, ord, result[i]);
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  if (grad_fn) {
    grad_fn->result = result;
  }
  return result;
}

```

# Reference
```c++
at::Tensor sinh(c10::DispatchKeySet ks, const at::Tensor & self) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<SinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<SinhBackward0>(new SinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: sinh");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: sinh");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = (self_t.conj() * self_p.cosh().conj()).conj();
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  return result;
}
at::Tensor norm_Scalar(c10::DispatchKeySet ks, const at::Tensor & self, const at::Scalar & p) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<NormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<NormBackward0>(new NormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->p = p;
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::norm(ks & c10::after_autograd_keyset, self_, p);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: norm_Scalar");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: norm_Scalar");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  throw_error_for_complex_autograd(result, "norm");
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = norm_jvp(self_p, self_t, p, result);
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  if (grad_fn) {
    grad_fn->result_ = SavedVariable(result, true);
  }
  return result;
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106043
Approved by: https://github.com/soulitzer
2023-07-27 03:13:24 +00:00
Alan Ji
70b0f1b248 fix some typos (#106018)
Fixes #ISSUE_NUMBER
Fix typos in `test_static_module.cc`, `backend_cutting_test.cc` and `types_base.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106018
Approved by: https://github.com/awgu
2023-07-26 18:14:44 +00:00
Aaron Gokaslan
6d43c89f37 [BE]: Update Ruff to 0.0.280 (#105724)
Removes unusued loop values in python dictionary iteration. Automated fix from Ruff master

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105724
Approved by: https://github.com/ezyang, https://github.com/janeyx99
2023-07-22 23:03:34 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
Amadeusz Skrzypczak
b64bd4a5dd Add torch.float8_e5m2 and torch.float8_e4m3 data types (#104242)
Proposal of two float8 variants - e5m2 and e4m3 - based on https://arxiv.org/pdf/2209.05433.pdf

Hide all Float8 operator implementations behind `#if !defined(C10_MOBILE)` guard to keep Android build size almost unchanged

TODO:
 - Refactor duplicated code
 - Cleanup unbalanced pragma pop in dtype utils
 - Add native implementation on the CUDA size

Co-authored-by: Nikita Shulga <nshulga@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104242
Approved by: https://github.com/albanD
2023-07-20 16:09:11 +00:00
PyTorch MergeBot
f2b15772ff Revert "Add torch.float8_e5m2 and torch.float8_e4m3 data types (#104242)"
This reverts commit a9804130e5.

Reverted https://github.com/pytorch/pytorch/pull/104242 on behalf of https://github.com/PaliC due to breaks lint (run lintrunner and remerge) ([comment](https://github.com/pytorch/pytorch/pull/104242#issuecomment-1644150284))
2023-07-20 15:37:53 +00:00
Amadeusz Skrzypczak
a9804130e5 Add torch.float8_e5m2 and torch.float8_e4m3 data types (#104242)
Proposal of two float8 variants - e5m2 and e4m3 - based on https://arxiv.org/pdf/2209.05433.pdf

Hide all Float8 operator implementations behind `#if !defined(C10_MOBILE)` guard to keep Android build size almost unchanged

TODO:
 - Refactor duplicated code
 - Cleanup unbalanced pragma pop in dtype utils
 - Add native implementation on the CUDA size

Co-authored-by: Nikita Shulga <nshulga@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104242
Approved by: https://github.com/albanD
2023-07-20 09:45:45 +00:00
Justin Chu
964d29f312 [BE] Enable ruff's UP rules and autoformat torchgen/ (#105423)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105423
Approved by: https://github.com/Skylion007
2023-07-18 06:44:20 +00:00
Nikita Shulga
5837e95d30 [Reland] Update mypy to 1.4.1 (#105227)
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)

That were reverted due to the conflict with internal source repo.

Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  - Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`

Unrelated, to bypass CI failures due to the gcc9 dependency update in Ubuntu-18.04:
- Add hack to squash older libstdc++ from conda environment in favor one from OS to `.ci/docker/install_conda.sh`
- Update bazel cuda builds to focal, as with libstdc++-6.0.32 bazel builds loose the ability to catch exceptions (probably because they link with cupti statically, but I could not found where it is done)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
2023-07-15 20:30:20 +00:00
PyTorch MergeBot
15fd1ea118 Revert "[Reland] Update mypy to 1.4.1 (#105227)"
This reverts commit c9c4f8efc3.

Reverted https://github.com/pytorch/pytorch/pull/105227 on behalf of https://github.com/atalman due to trying to mitigate ci sev #105248 ([comment](https://github.com/pytorch/pytorch/pull/105227#issuecomment-1636510935))
2023-07-14 22:28:35 +00:00
Dave Bort
d06e1df1aa [torchgen] Rename executorch's RuntimeContext to KernelRuntimeContext (#104892)
Rename the context type to match changes in executorch.

Differential Revision: [D46977359](https://our.internmc.facebook.com/intern/diff/D46977359/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104892
Approved by: https://github.com/larryliu0820
2023-07-14 21:15:50 +00:00
Nikita Shulga
c9c4f8efc3 [Reland] Update mypy to 1.4.1 (#105227)
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)

That were reverted due to the conflict with internal source repo.

Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  - Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
2023-07-14 20:45:12 +00:00
PyTorch MergeBot
3c5a494d7a Revert "Update mypy to 1.4.1 (#91983)"
This reverts commit 634659e262.

Reverted https://github.com/pytorch/pytorch/pull/91983 on behalf of https://github.com/malfet due to It's dependent change was reverted, so reverting this one as well, to keep CI clean ([comment](https://github.com/pytorch/pytorch/pull/91983#issuecomment-1636059709))
2023-07-14 15:59:16 +00:00
Nikita Shulga
634659e262 Update mypy to 1.4.1 (#91983)
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  -
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91983
Approved by: https://github.com/kit1980, https://github.com/ZainRizvi, https://github.com/huydhn, https://github.com/thiagocrepaldi, https://github.com/aaronenyeshi
2023-07-13 16:30:36 +00:00
Jane Xu
038cb4075a Add capturable/maximize tests to Adam(W) optim configs (#104669)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104669
Approved by: https://github.com/albanD
2023-07-10 17:38:46 +00:00
PyTorch MergeBot
8958f041be Revert "Add forward mode AD to out-place foreach functions (#102409)"
This reverts commit e2ec0ba404.

Reverted https://github.com/pytorch/pytorch/pull/102409 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but it is failing some tests in trunk e799f565eb ([comment](https://github.com/pytorch/pytorch/pull/102409#issuecomment-1615254393))
2023-06-30 22:46:57 +00:00
Masaki Kozuki
e2ec0ba404 Add forward mode AD to out-place foreach functions (#102409)
The major difference from in-place support is that some out-place functions have their derivatives spelled out in derivatives.yaml, which requires some changes in `load_derivatives.py` and some handlings in various places due to the others whose derivatives are generated by `torchgen`.

rel:
- #58833
- #100695

---

# Generated Foreach
```c++
::std::vector<at::Tensor> _foreach_sinh(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachSinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachSinhBackward0>(new ForeachSinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = (self_t.conj() * self_p.cosh().conj()).conj();
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  return result;
}

::std::vector<at::Tensor> _foreach_norm_Scalar(c10::DispatchKeySet ks, at::TensorList self, const at::Scalar & ord) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachNormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachNormBackward0>(new ForeachNormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->ord = ord;
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_norm(ks & c10::after_autograd_keyset, self_, ord);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = norm_jvp(self_p, self_t, ord, result[i]);
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  if (grad_fn) {
    grad_fn->result = result;
  }
  return result;
}

```

# Reference
```c++
at::Tensor sinh(c10::DispatchKeySet ks, const at::Tensor & self) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<SinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<SinhBackward0>(new SinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: sinh");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: sinh");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = (self_t.conj() * self_p.cosh().conj()).conj();
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  return result;
}
at::Tensor norm_Scalar(c10::DispatchKeySet ks, const at::Tensor & self, const at::Scalar & p) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<NormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<NormBackward0>(new NormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->p = p;
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::norm(ks & c10::after_autograd_keyset, self_, p);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: norm_Scalar");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: norm_Scalar");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  throw_error_for_complex_autograd(result, "norm");
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = norm_jvp(self_p, self_t, p, result);
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  if (grad_fn) {
    grad_fn->result_ = SavedVariable(result, true);
  }
  return result;
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102409
Approved by: https://github.com/soulitzer
2023-06-30 04:51:43 +00:00
Jack Khuu
18dacf7e79 [Specialized Kernel] Update yaml syntax to use kernel instead of dispatch (#104070)
Based on this [code search](https://fburl.com/code/gjcnw8ly) (*.yaml with `dispatch: CPU:`), update all files found to use

```
kernels:
    - arg_meta: None
      kernel_name:
```
instead of
```
dispatch:
    CPU:
```
---
## Code changes:

- `fbcode/executorch/codegen/tools/gen_oplist.py`
  - Strip ET specific fields prior to calling parse_native_yaml_struct
---
## Files edited that are not `*functions.yaml` or `custom_ops.yaml`

- fbcode/executorch/kernels/optimized/optimized.yaml
- fbcode/executorch/kernels/quantized/quantized.yaml
- fbcode/executorch/kernels/test/custom_kernel_example/my_functions.yaml

---
## Found Files that were not edited

**Dispatched to more than just CPU**
- fbcode/caffe2/aten/src/ATen/native/native_functions.yaml
- xplat/caffe2/aten/src/ATen/native/native_functions.yaml
- xros/third-party/caffe2/caffe2/aten/src/ATen/native/native_functions.yaml

**Grouped ops.yaml path**
- fbcode/on_device_ai/Assistant/Jarvis/min_runtime/operators/ops.yaml

---
**Design Doc:** https://docs.google.com/document/d/1gq4Wz2R6verKJ2EFseLyPdAF0wqomnCrVDDJpRkYsRw/edit?kh_source=GDOCS#heading=h.8raqyft9y50

Differential Revision: [D46952067](https://our.internmc.facebook.com/intern/diff/D46952067/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D46952067/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104070
Approved by: https://github.com/larryliu0820
2023-06-27 09:53:20 +00:00
Driss Guessous
4a008d268a REDO of dropout support for mem eff #102038 (#103704)
THIS IS A new PR with the changes from #102038 + #103201 +  plus namespacing changes to fix bug.

# Summary
This PR builds off of:
- https://github.com/pytorch/pytorch/pull/101847
- https://github.com/pytorch/pytorch/pull/100583

It specifically adds dropout support to the memory efficient attention kernel. In the process of doing so roughly 3 changes were made:
- Update sdpa dispatching to allow for inputs requiring grad to be sent to efficient attention
- Update how memory efficient attention handles passing the rng state from forward to backward in order to enable cuda_graph support
- Fix a bug in the kernel that was causing incorrect gradients to be produced for num_keys > 64 with dropout and causal masking set. https://github.com/facebookresearch/xformers/pull/755

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103704
Approved by: https://github.com/cpuhrsch
2023-06-26 23:05:03 +00:00
Jack Khuu
d1c367470b [Specialized Kernel] Remove requirement for type_alias and dim_order_alias to be present (#104006)
These fields are not required when kernels provided do not use aliases (e.g. only a default kernel

Differential Revision: [D46916099](https://our.internmc.facebook.com/intern/diff/D46916099/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104006
Approved by: https://github.com/larryliu0820
2023-06-23 16:49:57 +00:00
Mengwei Liu
ce845dfe49 [Reland][ET] Select used et_kernel_metadata only (#104005)
Summary: Currently we rely on root operator, but we also need to check for et_kernel_metadata for used specialized kernels.

Test Plan: contbuild & OSS CI

Reviewed By: Jack-Khuu

Differential Revision: D46882119

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104005
Approved by: https://github.com/Jack-Khuu
2023-06-23 14:38:45 +00:00
PyTorch MergeBot
08a7d60a46 Revert "[Reland][ET] Select used et_kernel_metadata only (#103705)"
This reverts commit 59a01c49ee.

Reverted https://github.com/pytorch/pytorch/pull/103705 on behalf of https://github.com/osalpekar due to large number of internal failures in executorch contbuild. See [D46882119](https://www.internalfb.com/diff/D46882119) for more details ([comment](https://github.com/pytorch/pytorch/pull/103705#issuecomment-1601789900))
2023-06-21 22:51:38 +00:00
Brian Hirsh
3cfd677b1f fix inference mode / PyDispatcher / Functionalize interaction (#103275)
Fixes https://github.com/pytorch/pytorch/issues/103132

This is kind of annoying: Functionalization (and also vmap, I think?) manually figures out which ops have C++ CompositeImplicit decomps, and directly registers them to the Functionalize key. This is a problem for the PyDispatcher: We normally want the PyDispatcher to take precedence over the regular dispatcher. But in this case, we have a python decomp registered to `CompositeImplicitAutograd`, and a C++ decomp registered *directly* to the `Functionalize` key, so the C++ decomp gets precedence over the python decomp.

The way this showed up was that a model was running `matmul()` under inference mode, so we never hit the autograd dispatch key, and go straight to the functionalize dispatch key. Matmul has both a python decomp and a c++ decomp, but we were running the C++ decomp. That C++ decomp isn't meant to be used with dynamic shapes, so we were failing with the "tried to call `.sizes()` on a tensor with dynamic shapes" error.

For now, I had the PyDispatcher mimic the behavior of functionalization codegen: when you register a python decomp to the `CompositeImplicitAutograd` key, this PR just automatically registers that decomp to the `Functionalize` key at the same time.

I'm trying to remember now why we didn't just add `Functionalize` (and all of the other functorch transform keys) directly to the `CompositeImplicitAutograd` alias keyset, but I couldn't remember (@zou3519 any chance you remember?).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103275
Approved by: https://github.com/ezyang, https://github.com/zou3519
2023-06-21 15:19:55 +00:00
Hansong Zhang
59a01c49ee [Reland][ET] Select used et_kernel_metadata only (#103705)
Currently we rely on root operator, but we also need to check for et_kernel_metadata for used specialized kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103705
Approved by: https://github.com/larryliu0820
2023-06-18 00:33:28 +00:00
xuanqi
b27c3558a4 [RFC]: Create aten native op for constrain_range (#103346)
At high current implementation of constrains functions (constrain_as_**) will raise exception for the following code snippets:
```
def f(x):
    a = x.item()
    constrain_as_size(a, 4, 7)
    return torch.empty((a, 4))

inp = torch.tensor([5])
ep = torch._export.export(f, (inp,))
```

The reason is because current constrain logic is:
1) Purely python so it won't survive AOT export (the full node is gone after AOT export since AOT export only maintains aten level op).
2) Utilize side effect to add range constraints for traced symbol's shape env ([code](9591e52880/torch/fx/experimental/symbolic_shapes.py (L370-L372))).
3) If runtime assertion is turned on (by default). [`_AddRuntimeAssertionsForConstraintsPass`](9591e52880/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py (L98-L100)) will try to append assertion node based on range constrains extracted from shape env of symbol during another interpretation round.
4). However, since 1), in the round of AOT export, range constraints logic won't run for symbols generated during this round. And later there is no range constrains information available for assertion round and caused issue.
5) As a result of above, it will failure at `torch.empty((a, 4))` (there is no constrains for `a` that it must be positive).

The fix here is just to implement range constrain logic as a native aten op (CPU implementation as no-op) to make it be able to survive AOT export.

**NOTE:**
[Logic](2d745b95d7/torch/fx/experimental/symbolic_shapes.py (L350-L365C15)) within [`constrain_range`](2d745b95d7/torch/fx/experimental/symbolic_shapes.py (LL313C74-L313C74)) is split out as `constrain_range_int` to capture case when non `SymInt` is passed in and reused in the new `_constrain_range`. The reason is when non `SymInt` is provided:
* If it directly calls `sym_constrain_range`, the C++ version will be called which will be no-op.
* So in this case it calls `constrain_range_int` instead to be able to capture issue like user provides a input whose tensor's shape could be out of range during exporting, like the following for above code example:
```
...
inp = torch.tensor([10])
ep = torch._export.export(f, (inp,)) # immediately raise error
```

Differential Revision: [D46734204](https://our.internmc.facebook.com/intern/diff/D46734204)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103346
Approved by: https://github.com/tugsbayasgalan
2023-06-16 14:55:40 +00:00
PyTorch MergeBot
8553f9c896 Revert "[ET] Select used et_kernel_metadata only (#103658)"
This reverts commit 480d20cac1.

Reverted https://github.com/pytorch/pytorch/pull/103658 on behalf of https://github.com/malfet due to Broke Windows builds ([comment](https://github.com/pytorch/pytorch/pull/103658#issuecomment-1593696503))
2023-06-15 20:41:45 +00:00
Hansong Zhang
480d20cac1 [ET] Select used et_kernel_metadata only (#103658)
Currently we rely on root operator, but we also need to check for et_kernel_metadata for used specialized kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103658
Approved by: https://github.com/larryliu0820
2023-06-15 19:05:04 +00:00
cyy
f2900420da fix missing-prototypes warnings in torch_cpu (Part 6) (#101845)
This PR fixes more missing-prototypes violations in the torch_cpu source following PRs #100053, #100147, #100245, #100849 and #101788

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101845
Approved by: https://github.com/albanD
2023-06-15 16:48:28 +00:00
Jack Khuu
e9674d146c [Specialized Kernel] Propagate Specialized Kernel Support through ComputeCodegenUnboxedKernels (#103113)
Updating ComputeCodegenUnboxedKernels to accept and write out kernel information to RegisterCodegenUnboxedKernels.cpp

Differential Revision: [D46486195](https://our.internmc.facebook.com/intern/diff/D46486195/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103113
Approved by: https://github.com/larryliu0820, https://github.com/kirklandsign
2023-06-14 10:18:16 +00:00
Yinghai Lu
4c3799447f
Back out "Dropout support for memory efficient attention (#102038)" & "Two small mem_eff bug fixes (#103201)" (#103464)
Summary:
Original commit changeset: 04c4473d8510

Original Phabricator Diff: D46584152 & D46582033

Test Plan: Already explained in summary.

Reviewed By: yinghai

Differential Revision: D46633283

fbshipit-source-id: c23c2945408988f3c4339dfd5cd40ae46261716c

Co-authored-by: Shenxiu Liu <shenxiu@meta.com>
2023-06-12 18:56:48 -07:00
Nikita Vedeneev
056d92e2a0 sparse.mm backward: performance improvements (#94991)
`torch.sparse.mm` - faster and without syncs in "most" cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94991
Approved by: https://github.com/Skylion007, https://github.com/pearu, https://github.com/cpuhrsch
2023-06-12 20:57:29 +00:00
SherlockNoMad
d997969b8b [Reland] Add sym_size/stride/numel/storage_offset to native_function.yaml (#103107)
Differential Revision: D46459100

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103107
Approved by: https://github.com/angelayi, https://github.com/soulitzer
2023-06-12 19:18:49 +00:00
Jack Khuu
d0c0e13b69 [Specialized Kernel] Translate Kernel Assignment Logic from function.yaml to native_functions.yaml (#102576)
Updating `gen_executorch.translate_native_yaml()` to translate kernel assignments when converting `functions.yaml` to `native_functions.yaml`
---
Functions.yaml format:
```
- func: add.out
	type_alias:
		T0: [<Type>, <Type>]
		T1: [<Type>]
	dim_order_alias:
		D0: [0, 1, 2, 3]
		D1: [0, 3, 2, 1]
	kernels:
		- arg_meta: null
		  kernel_name: default_impl
		- arg_meta:
			self: [T0, D0]
			other:[T0, D0]
			out: [T0, D0]
		  kernel_name: test_impl
```

native_functions.yaml format
```
func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
  kernel:
    default: default_impl
    v<Version>/<TYPE Enum>;<DIM Order>|<TYPE Enum>;<DIM Order>|<TYPE Enum>;<DIM Order>: test_impl
```
Example: **'v1/6;0,1,2,3|3;0,1,2,3|6;0,1,2,3' : 'test_impl'**

## Note:
- If a "kernels" field is not present in functions.yaml (as it currently is), the output is unaffected
---
Design Doc: https://docs.google.com/document/d/1gq4Wz2R6verKJ2EFseLyPdAF0wqomnCrVDDJpRkYsRw/edit?kh_source=GDOCS#

Differential Revision: [D45971107](https://our.internmc.facebook.com/intern/diff/D45971107/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102576
Approved by: https://github.com/larryliu0820
2023-06-08 23:42:24 +00:00
Driss Guessous
606fb882c4 Dropout support for memory efficient attention (#102038)
# Summary
This PR builds off of:
- https://github.com/pytorch/pytorch/pull/101847
- https://github.com/pytorch/pytorch/pull/100583

It specifically adds dropout support to the memory efficient attention kernel. In the process of doing so roughly 3 changes were made:
- Update sdpa dispatching to allow for inputs requiring grad to be sent to efficient attention
- Update how memory efficient attention handles passing the rng state from forward to backward in order to enable cuda_graph support
- Fix a bug in the kernel that was causing incorrect gradients to be produced for num_keys > 64 with dropout and causal masking set. https://github.com/facebookresearch/xformers/pull/755

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102038
Approved by: https://github.com/cpuhrsch
2023-06-08 21:50:12 +00:00
Hansong Zhang
47cfcf566a Add selector.is_et_kernel_key_selected (#103184)
Summary:

This API is used by the gen_executorch.py to check whether a kernel with specified kernel key is used or not.

Test Plan:
```
buck test xplat/caffe2/tools:test_torchgen_executorch
buck run fbcode//executorch/codegen/tools:test_gen_oplist_real_model
```

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103184
Approved by: https://github.com/larryliu0820
2023-06-08 01:10:20 +00:00
Mengwei Liu
eebe0ee141 [Executorch][codegen] Add ETKernelIndex for aggregating all kernels for kernel (#102874)
Summary:
keys and change codegen to take ETKernelIndex

We are adding support for dtype and dim order specialized kernel registration. This requires us to reorganize `BackendIndex` (which is a `Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]`) to be `Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]]`. This PR adds new data structures in order to support this change:

* `ETKernelKey` to retrieve a certain kernel from the registry.
* `ETKernelIndex`, the dictionary from operator name to kernel key to kernel mapping.

Note that the codegen logic is not changed yet, we need subsequent diffs to actually generate code for different kernel keys.

Test Plan: Added tests

Reviewed By: Jack-Khuu

Differential Revision: D46407096

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102874
Approved by: https://github.com/Jack-Khuu, https://github.com/kirklandsign
2023-06-03 17:23:42 +00:00
Nikita Shulga
fb0729054b Revert "[Executorch][codegen] Add ETKernelIndex for aggregating all kernels for kernel (#102565)"
This reverts commit 019c38624c /
https://github.com/pytorch/pytorch/pull/102565 as it breaks
ExecutorchBuilds.
2023-06-01 12:35:23 -07:00
Larry Liu
019c38624c [Executorch][codegen] Add ETKernelIndex for aggregating all kernels for kernel (#102565)
keys and change codegen to take ETKernelIndex

We are adding support for dtype and dim order specialized kernel registration. This requires us to reorganize `BackendIndex` (which is a `Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]`) to be `Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]]`. This PR adds new data structures in order to support this change:

* `ETKernelKey` to retrieve a certain kernel from the registry.
* `ETKernelIndex`, the dictionary from operator name to kernel key to kernel mapping.

Note that the codegen logic is not changed yet, we need subsequent diffs to actually generate code for different kernel keys.

Differential Revision: [D46206339](https://our.internmc.facebook.com/intern/diff/D46206339/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102565
Approved by: https://github.com/Jack-Khuu
2023-05-31 09:41:36 +00:00
mikey dagitses
9bbee245fe update rules_python and let bazel install its own pip dependencies (#101405)
update rules_python and let bazel install its own pip dependencies

Summary:
This is the official way of doing Python in Bazel.

Test Plan: Rely on CI.

---
Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/pytorch/pytorch/pull/101405).
* #101406
* __->__ #101405
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101405
Approved by: https://github.com/vors, https://github.com/huydhn
2023-05-23 06:20:33 +00:00
Masaki Kozuki
ba2bc7df8f Enable backward on _foreach_zero_ (#101149)
Currently torchgen cannot find an appropriate `DifferentiabilityInfo` for `_foreach_zero_` because `gen_foreach_derivativeinfo` doesn't correctly make use of `functional_info_by_signature` and `differentiability_infos`, and `is_reference_for_foreach` a bit too strict to `_foreach_zero_`.

Generated code in `VariableType`
```c++
void _foreach_zero_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<ZeroBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<ZeroBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<ZeroBackward0>(new ZeroBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i] ));
              return grad_fn;
          }
      }());
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_zero_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}
```

Rel:
- #58833
- #96405
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101149
Approved by: https://github.com/soulitzer
2023-05-17 03:10:13 +00:00
Nikita Shulga
20cf42de2c Revert "[Reland] Add sym_size/stride/numel/storage_offset to native_function.… (#100749)"
This reverts commit bb454891ed.
2023-05-16 18:17:02 -07:00
Edward Z. Yang
b94f143ace SymIntify convNd and conv_transposeNd, fix inductor symint handling (#101488)
Fixes https://github.com/pytorch/pytorch/issues/101014

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101488
Approved by: https://github.com/ngimel
2023-05-16 17:46:52 +00:00
Andrew Gallagher
3b82298265 [caffe2/torchgen] Fix codegen non-determinism (#101286)
Summary:
Fix several cases of leaking set-iteration-order to generated sources, causing non-determinism in generated code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101286
Approved by: https://github.com/Skylion007, https://github.com/albanD
2023-05-15 18:45:19 +00:00
Aaron Gokaslan
dfe484a3b3 [BE]: Bugfix functorch and some generic typing improvements (#101337)
Fixes some typing bugs found with newer versions of mypy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101337
Approved by: https://github.com/ezyang
2023-05-14 14:20:56 +00:00
blzheng
ab74744522 add inplace_view tag to resize_as_() (#100786)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100786
Approved by: https://github.com/jgong5, https://github.com/bdhirsh, https://github.com/eellison
2023-05-13 13:49:14 +00:00
Sherlock Huang
bb454891ed [Reland] Add sym_size/stride/numel/storage_offset to native_function.… (#100749)
…yaml (#91… (#91919)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91919 Approved by: https://github.com/ezyang

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92402

Reviewed By: ezyang

Differential Revision: D42565586

Pulled By: SherlockNoMad

fbshipit-source-id: 1c2986e45307e076d239836a1b45441a9fa3c9d9
ghstack-source-id: 969f4928486e04c57aaf98e20e3c3ca946c51613

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100749
Approved by: https://github.com/zhxchen17, https://github.com/albanD
2023-05-12 22:57:42 +00:00
Hansong Zhang
fa6df34d30 [ET selective build] add kernel metadata section to selective_build.yaml (#100665)
Summary:
For each op, we have a List[List[dtype;dim-order]]:
  - the inner list contains the `dtype;dim-order` info for each arg if we have a Tensor/TensorList/OptionalTensorList
  - the outer list contains different occurances of dtype/dim-order combinations for that op in the program

Example:
```
et_kernel_metadata:
  aten::add.out:
    # A list of different dtype/dim-order combinations used in model
    - # Each contains the list of args of Tensor dtype and dim order if applicable
      - FLOAT;0,1
      - FLOAT;0,1
      - NON_TENSOR_ARG
      - FLOAT;0,1
      - FLOAT;0,1
    -
      - INT;0,1
      - INT;0,1
      - NON_TENSOR_ARG
      - INT;0,1
      - INT;0,1
  aten::mul.out:
    - - FLOAT;0,1
      - FLOAT;0,1
      - FLOAT;0,1
      - FLOAT;0,1
```

We don't have the arg name so far; we need to parse the schema (functions.yaml) to get that info.  We depend on the order of args from that file.

Test Plan: `buck run fbcode//executorch/codegen/tools:test_gen_oplist_real_model`

Differential Revision: D45551409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100665
Approved by: https://github.com/larryliu0820
2023-05-09 21:30:01 +00:00
PyTorch MergeBot
de02c8bed4 Revert "Rename DispatchKey.PrivateUse1 to custom device in torchgen. (#99406)"
This reverts commit c0ecd98958.

Reverted https://github.com/pytorch/pytorch/pull/99406 on behalf of https://github.com/ezyang due to we're doing it another way ([comment](https://github.com/pytorch/pytorch/pull/99406#issuecomment-1540295309))
2023-05-09 15:04:16 +00:00
Elias Ellison
16a4075327 Throw if 'dropout' argument name but func does not have nondeterministic_seeded (#100771)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100771
Approved by: https://github.com/ezyang
2023-05-08 23:34:28 +00:00
Natalia Gimelshein
bfe5f5bbe1 [WIP] enable cuda graphs support for flash attention with dropout (#100196)
Fixes #99905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100196
Approved by: https://github.com/drisspg
2023-05-08 16:19:18 +00:00
PyTorch MergeBot
c3aa59c8f5 Revert "[WIP] enable cuda graphs support for flash attention with dropout (#100196)"
This reverts commit 32615618e4.

Reverted https://github.com/pytorch/pytorch/pull/100196 on behalf of https://github.com/clee2000 due to broke no ops build 32615618e4 https://github.com/pytorch/pytorch/actions/runs/4866578063/jobs/8678258318 ([comment](https://github.com/pytorch/pytorch/pull/100196#issuecomment-1532352810))
2023-05-03 01:41:56 +00:00
Natalia Gimelshein
32615618e4 [WIP] enable cuda graphs support for flash attention with dropout (#100196)
Fixes #99905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100196
Approved by: https://github.com/drisspg
2023-05-02 23:05:31 +00:00
Masaki Kozuki
6c934a89a7 Skip invalid grads in outplace foreachs' backward (#100256)
Fixes #100248
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100256
Approved by: https://github.com/soulitzer, https://github.com/albanD
2023-04-29 22:45:26 +00:00
Richard Zou
4135295a76 Excise yaml dependency in torchgen.model (#100203)
The problem:
- The new CustomOp API depends on torchgen.model
- torchgen.model imports `yaml`
- `yaml` is not a PyTorch runtime dependency

To unblock myself, because I'm not sure how long it'll take to
convince people yaml should be a PyTorch runtime dependency
(unless one of you wants to approve #100166), this PR removes the
yaml dependency from torchgen.model.

It does so by splitting torchgen.utils (the offender) into
torchgen.utils (no yaml) and torchgen.yaml (which uses yaml).

Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100203
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2023-04-28 13:45:39 +00:00
Tugsbayasgalan Manlaibaatar
d4bf76c2a4 Persist torch.assert in aten graph (#100101)
This PR introduces a new operator called aten._assert_async.msg, which allows passing a tensor value and assertion message as inputs. As part of TorchDynamo, we're replacing the use of torch._assert with this new operator so that make_fx also knows how to handle assertions. This is subset of https://github.com/pytorch/pytorch/pull/98878, refer there for historic reviews.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100101
Approved by: https://github.com/jansel
2023-04-28 07:31:43 +00:00
Masaki Kozuki
674018903d per-Tensor grad_fn for in-place foreach functions (#96405)
Generate a `grad_fn` for each (tuple of) `Tensor`(s) of the same index for `_foreach_foo_` and each `grad_fn` is `FooBackward`.

The current status of foreach functions' backward support for the record:
- out-place: Implemented, but no optimized implementations like their forward path
- in-place: not implemented. I think this check 7eaaefafb3/torchgen/api/autograd.py (L309-L311) is partly responsible but the difference of signature between out-place and in-place (see https://github.com/pytorch/pytorch/pull/96405#discussion_r1154690940) would prevent in-place from using out-place versions (the logic is around 7eaaefafb3/torchgen/api/autograd.py (L495-L500))

```c++
void _foreach_abs_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_abs_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      AT_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      AT_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
}
```

Related:
- #95431
- #95765 for multiple `grad_fn`s logic

---

Examples: outputs of `_foreach_add_.List`, `_foreach_addcmul_.ScalarList`, and `_foreach_exp`

```c++
void _foreach_addcmul__ScalarList(c10::DispatchKeySet ks, at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, at::ArrayRef<at::Scalar> scalars) {
  auto self_ = unpack(self, "self", 0);
  auto tensor1_ = unpack(tensor1, "tensor1", 1);
  auto tensor2_ = unpack(tensor2, "tensor2", 2);
  auto _any_requires_grad = compute_requires_grad( self, tensor1, tensor2 );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<AddcmulBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i], tensor1[i], tensor2[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<AddcmulBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<AddcmulBackward0>(new AddcmulBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i], tensor1[i], tensor2[i] ));
              return grad_fn;
          }
      }());
    }
    if (!grad_fns.empty()) {

        for (const auto& i : c10::irange(grad_fns.size())) {
            auto grad_fn = grad_fns[i];
            if (grad_fn != nullptr) {
                grad_fn->self_scalar_type = self[i].scalar_type();
                grad_fn->tensor1_scalar_type = tensor1[i].scalar_type();
                if (grad_fn->should_compute_output(1)) {
                  grad_fn->tensor2_ = SavedVariable(tensor2[i], false);
                }
                grad_fn->value = scalars[i];
                if (grad_fn->should_compute_output(2)) {
                  grad_fn->tensor1_ = SavedVariable(tensor1[i], false);
                }
                grad_fn->tensor2_scalar_type = tensor2[i].scalar_type();
            }
        }
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor1__storage_saved(tensor1_.size());
  for (const Tensor& tensor : tensor1_)
    tensor1__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor1__impl_saved(tensor1_.size());
  for (size_t i=0; i<tensor1_.size(); i++)
    if (tensor1_[i].defined()) tensor1__impl_saved[i] = tensor1_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor2__storage_saved(tensor2_.size());
  for (const Tensor& tensor : tensor2_)
    tensor2__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor2__impl_saved(tensor2_.size());
  for (size_t i=0; i<tensor2_.size(); i++)
    if (tensor2_[i].defined()) tensor2__impl_saved[i] = tensor2_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_addcmul_(ks & c10::after_autograd_keyset, self_, tensor1_, tensor2_, scalars);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__storage_saved[i].value().is_alias_of(tensor1_[i].storage()));
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__impl_saved[i] == tensor1_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__storage_saved[i].value().is_alias_of(tensor2_[i].storage()));
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__impl_saved[i] == tensor2_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}

```

```c++
void _foreach_add__List(c10::DispatchKeySet ks, at::TensorList self, at::TensorList other, const at::Scalar & alpha) {
  auto self_ = unpack(self, "self", 0);
  auto other_ = unpack(other, "other", 1);
  auto _any_requires_grad = compute_requires_grad( self, other );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<AddBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i], other[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<AddBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<AddBackward0>(new AddBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i], other[i] ));
              return grad_fn;
          }
      }());
    }
    if (!grad_fns.empty()) {

        for (const auto& i : c10::irange(grad_fns.size())) {
            auto grad_fn = grad_fns[i];
            if (grad_fn != nullptr) {
                grad_fn->other_scalar_type = other[i].scalar_type();
                grad_fn->alpha = alpha;
                grad_fn->self_scalar_type = self[i].scalar_type();
            }
        }
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> other__storage_saved(other_.size());
  for (const Tensor& tensor : other_)
    other__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> other__impl_saved(other_.size());
  for (size_t i=0; i<other_.size(); i++)
    if (other_[i].defined()) other__impl_saved[i] = other_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_add_(ks & c10::after_autograd_keyset, self_, other_, alpha);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<other_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (other__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(other_))
      TORCH_INTERNAL_ASSERT(other__storage_saved[i].value().is_alias_of(other_[i].storage()));
  }
  for (size_t i=0; i<other_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (other__impl_saved[i] && !at::impl::tensorlist_has_dispatch(other_))
      TORCH_INTERNAL_ASSERT(other__impl_saved[i] == other_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}

...

void _foreach_exp_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  auto _any_requires_grad = compute_requires_grad( self );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<ExpBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<ExpBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<ExpBackward0>(new ExpBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i] ));
              return grad_fn;
          }
      }());
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_exp_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
  if (!grad_fns.empty()) {

      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              grad_fn->result_ = SavedVariable(self[i], true, self[i].is_view());
          }
      }
  }
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96405
Approved by: https://github.com/soulitzer
2023-04-28 00:55:04 +00:00
feifan
c0ecd98958 Rename DispatchKey.PrivateUse1 to custom device in torchgen. (#99406)
I want to use torchgen to generate code, and my yaml file format is the same as `native_functions.yaml`.
I will use the PrivateUse1, but in my yaml file, I don't want to show PrivateUse1 to the user.
So I want to  achieve the following result(e.g. my device is `YPU`):
```
>>>from torchgen.model import DispatchKey
>>>str(DispatchKey.PrivateUse1)
"YPU"
>>>DispatchKey.parse("YPU")
DispatchKey.PrivateUse1
```
I also thought that not everyone would need this feature, so I add a new func to handle this scenario.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99406
Approved by: https://github.com/ezyang
2023-04-27 03:30:48 +00:00
Edward Z. Yang
3a5427baf4 Add torch.utils._content_store (#99809)
Implements a simple content-addressable store for storages (with tensors implemented as cheap references on top), enabling incremental serialization of tensors to disk, which I intend to use in the accuracy repro extractor.  Check the comment at the top of torch/utils/_content_store.py for more details on the intended use case.

One major piece of this PR is implementing the content hash for tensors.  For our prospective use case, we may need to repeatedly hash up to 80 GB of tensor data every time we snapshot (and we may snapshot multiple times).  Using a conventional cryptographic hash and hashing each snapshot would likely take on order of minutes, which seemed too slow to me.  So instead, I implemented a crappy hash function that can be run on GPU.  It is at least somewhat theoretically grounded: using random parameters generated by Philox, we use the standard shift-multiply and xor sum universal hash family.  The hash function is a bit dorky though; instead of properly doing 160-bit math, it just runs 32-bit hash five times and cats them together.  By the way, this sets the first precedent for kernel in PyTorch library which MUST be torch.compile'd to be run (in fact, this kernel does not run in eager mode because of the use of xor_sum, which doesn't actually exist in ATen.)

I had to add a few more primitives to inductor, namely randint (over the entire int range) and xor_sum.  Fortunately, these primitives are natively supported by Triton/C++, and so they were very easy to plumb through.  xor_sum is exposed as a prim, while randint special cases on when low/high span the entire 32-bit signed integer range.

Thanks to Jeff Johnson for letting me bounce ideas of him on a Saturday morning lol.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99809
Approved by: https://github.com/voznesenskym
2023-04-26 18:02:59 +00:00
Aaron Gokaslan
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
Nikita Karetnikov
42921fc801 [torchgen] accept scalars for unary SymInt arrays (#99921)
Fixes https://github.com/pytorch/pytorch/issues/99907
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99921
Approved by: https://github.com/malfet
2023-04-25 00:49:15 +00:00
Luca Wehrstedt
24bf15fe8d Support record_stream in dispatch mode (#99529)
Summary:
Issuing a `t.record_stream(s)` call while a `TorchDispatchMode` is active was throwing because PyTorch was unable to convert a c10::Stream back to a Python object. It's now fixed.

Fixes https://github.com/pytorch/pytorch/issues/94403

Test Plan: Added a unit test

Differential Revision: D45117566

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99529
Approved by: https://github.com/albanD
2023-04-21 07:17:19 +00:00
Ikko Eltociear Ashimine
99c6d46cf7 fix typo in gen_functionalization_type.py (#99303)
propogate -> propagate

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99303
Approved by: https://github.com/kit1980
2023-04-17 22:59:40 +00:00
Nikita Shulga
0be65069d3 [BE] Use Literal from typing (#98846)
Since PyTorch is Python-3.8+ compatible framework

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98846
Approved by: https://github.com/janeyx99, https://github.com/ZainRizvi, https://github.com/Neilblaze
2023-04-12 05:49:37 +00:00
Edward Z. Yang
16ec7efa49 Don't use f-strings in logging calls (1/X) (#98591)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98591
Approved by: https://github.com/albanD
2023-04-07 15:52:50 +00:00
Richard Zou
f21a176c03 Python Dispatcher should respect FuncTorchBatchedDecomposition key (#98328)
Fixes https://github.com/pytorch/pytorch/issues/97425.

Python Dispatcher's resolve_key function should be equivalent to
computeDispatchTableEntryWithDebug. We added a section to
computeDispatchTableEntryWithDebug but forgot to add it to resolve_key.

This PR fixes that discrepancy.

Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98328
Approved by: https://github.com/Chillee, https://github.com/kshitij12345, https://github.com/Neilblaze
2023-04-05 20:32:53 +00:00
dilililiwhy
526b564fa0 Uniformly use elem when checking ListType (#97873)
Fixes #ISSUE_NUMBER
a initial trial to let code of arg parser become more readable (go through and understand logic behind *torchgen* as a rookie)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97873
Approved by: https://github.com/ezyang
2023-04-05 12:06:03 +00:00
mikey dagitses
2ac9086987 run buildifier on unified build files (#98141)
This is pretty tricky. buildifier by default doesn't do much to these
files. It does a little more if you tell it that they are
`BUILD.bazel` files with -type=build. But it can do even more if you
remove the target definitions from the `def define_rules()` wrapper
and dedent them.

I wrote a little wrapper that does that. I'll submit it at a later
date.

Differential Revision: [D44606558](https://our.internmc.facebook.com/intern/diff/D44606558/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D44606558/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98141
Approved by: https://github.com/ezyang, https://github.com/PaliC
2023-04-04 00:37:19 +00:00
Aaron Gokaslan
9c3fbe7475 [BE] Enable flake8-simplify checks (#97984)
Enable some sensible flake8-simplify rules. Mainly wanted to enable the SIM101, and `yield from` SIM103 checks. @kit1980 since you wanted to be tagged on this CI check.

Enabling this check also helped flag one logical bug so it's definitely beneficial (also fixed in this PR).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97984
Approved by: https://github.com/ezyang
2023-03-31 03:40:21 +00:00
Aaron Gokaslan
47dca20d80 [BE] Enable flake8-comprehension rule C417 (#97880)
Enables flake8-comprehension rule C417. Ruff autogenerated these fixes to the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97880
Approved by: https://github.com/ezyang, https://github.com/kit1980, https://github.com/albanD
2023-03-30 14:34:24 +00:00
Sergii Dymchenko
477f3f555f Simplify by using yield from (#97831)
The issues were found by SIM104 flake8-simplify in a local run.

I'll take a look on adding the check to the CI separately.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97831
Approved by: https://github.com/Skylion007
2023-03-29 19:15:24 +00:00
Aaron Gokaslan
597b558c51 [BE]: Update flake8 and plugins and fix bugs (#97795)
Update flake8 and flake8-plugins in lintrunner to a modern version. Enables more checks and makes flake8 checks significantly faster. Added a few additional rule ignores that will need to be fixed in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97795
Approved by: https://github.com/alexsio27444, https://github.com/janeyx99, https://github.com/ezyang
2023-03-28 23:51:55 +00:00
Brian Hirsh
35c9ea89fa dont bake in defaults when tracing *_like factories (#97564)
quick fix for https://github.com/pytorch/pytorch/issues/97541. letting CI run to see if there's any fallout

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97564
Approved by: https://github.com/ezyang
2023-03-27 22:53:44 +00:00
Mengwei Liu
a524123c91 [torchgen] Bump native function max namespace levels due for internal use case (#97381)
Summary: As titled. Should be trivial

Test Plan: Rely on unit test

Differential Revision: D44314834

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97381
Approved by: https://github.com/cccclai
2023-03-23 00:40:37 +00:00
Joel Schlosser
77e73b9b7a Refactor NT offsets metadata to be a Tensor (#96909)
It's tedious work, but somebody's gotta do it.

Benefits:
* Enable access to offsets metadata from Python via private API (for validation, etc.)
* Consistency with nested sizes / strides metadata
* Needed for SymInt-ifying offsets metadata
* more TBD

Bonus:
* Remove `_tensor` suffixes from metadata / getter names
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96909
Approved by: https://github.com/drisspg
2023-03-21 18:51:35 +00:00
Chung-chieh Shan
2c588b3ad5 Allow new_full's fill_value argument type to be complex (#91345)
It seems that this code should type-check but doesn't:
```python
torch.zeros((2,3),dtype=torch.cdouble).new_full((4,5),complex(6,7))
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91345
Approved by: https://github.com/zou3519, https://github.com/ezyang
2023-03-21 12:34:00 +00:00
Aaron Gokaslan
5471621497 [BE] Remove unnecessary dict comprehensions (#97116)
Removes unnecessary dict comprehensions that optimize creation of dicts from iterables

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97116
Approved by: https://github.com/kit1980
2023-03-20 00:56:57 +00:00
BowenBao
60a68477a6 Bump black version to 23.1.0 (#96578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96578
Approved by: https://github.com/ezyang
2023-03-15 06:27:59 +00:00
Hansong Zhang
93ff71ec37 [ET] Add RuntimeContext to ET Aten mode (#96084)
Summary:
In ATen mode, we add the RuntimeContext arg, so we have something like
```
TORCH_API inline at::Tensor & gelu_outf(torch::executor::RuntimeContext & context, const at::Tensor & self, c10::string_view approximate, at::Tensor & out) {
    return at::gelu_outf(self, approximate, out);
}
```
and user can use `<namespace like aten>::gelu_outf` and we will automatically dispatch the registered function in aten kernel using `at::gelu_outf` (dispatched by ATen/Functions.h header)

In optimized kernel tests, we can now automatically handle between aten kernel and optimized kernel.

The implication is that the test must depend on the correctness of codegen; an error in codegen can break the kernel tests.

Test Plan: CI

Differential Revision: D43777848

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96084
Approved by: https://github.com/larryliu0820
2023-03-08 02:51:47 +00:00
Masaki Kozuki
49f6849f58 Fix codegen logic for foreach derivatives (#95263)
follow-up https://github.com/pytorch/pytorch/pull/93901.

Unexpected numerical mismatches observed in some foreach functions' backward result seemed to be caused by the wrong order of `IndexRangeGenerator::range` call.
This pr has `args_with_derivatives` have the same or similar order of `foreach_native_function.func.arguments.flat_non_out`

---

what the current master generates for `_foreach_mul.List`:
```cpp
variable_list ForeachMulBackward0List::apply(variable_list&& grads) {
  std::lock_guard<std::mutex> lock(mutex_);
  TORCH_CHECK(!other_released_, ERR_BACKWARD_TWICE);
  TORCH_CHECK(!self_released_, ERR_BACKWARD_TWICE);
  IndexRangeGenerator gen;
  auto other_ix = gen.range(other_size_);
  auto self_ix = gen.range(self_size_);
  variable_list grad_inputs(gen.size());
  auto other = unpack_list(other_);
  auto self = unpack_list(self_);
  if (task_should_compute_output({ other_ix })) {
    std::vector<Tensor> grad_result;
    grad_result.reserve(grads.size());
    for (const auto & i : c10::irange(grads.size())) {
      grad_result.emplace_back(mul_tensor_backward(grads[i], self[i], other[i].scalar_type()));
    }
    copy_range(grad_inputs, other_ix, grad_result);
  }
  if (task_should_compute_output({ self_ix })) {
    std::vector<Tensor> grad_result;
    grad_result.reserve(grads.size());
    for (const auto & i : c10::irange(grads.size())) {
      grad_result.emplace_back(mul_tensor_backward(grads[i], other[i], self[i].scalar_type()));
    }
    copy_range(grad_inputs, self_ix, grad_result);
  }
  return grad_inputs;
}
```

with this PR the generated backward is
```cpp
variable_list ForeachMulBackward0List::apply(variable_list&& grads) {
  std::lock_guard<std::mutex> lock(mutex_);
  TORCH_CHECK(!self_released_, ERR_BACKWARD_TWICE);
  TORCH_CHECK(!other_released_, ERR_BACKWARD_TWICE);
  IndexRangeGenerator gen;
  auto self_ix = gen.range(self_size_);                                         <----- diff
  auto other_ix = gen.range(other_size_);                                       <----- diff
  variable_list grad_inputs(gen.size());
  auto self = unpack_list(self_);
  auto other = unpack_list(other_);
  if (task_should_compute_output({ other_ix })) {
    std::vector<Tensor> grad_result;
    grad_result.reserve(grads.size());
    for (const auto & i : c10::irange(grads.size())) {
      grad_result.emplace_back(mul_tensor_backward(grads[i], self[i], other[i].scalar_type()));
    }
    copy_range(grad_inputs, other_ix, grad_result);
  }
  if (task_should_compute_output({ self_ix })) {
    std::vector<Tensor> grad_result;
    grad_result.reserve(grads.size());
    for (const auto & i : c10::irange(grads.size())) {
      grad_result.emplace_back(mul_tensor_backward(grads[i], other[i], self[i].scalar_type()));
    }
    copy_range(grad_inputs, self_ix, grad_result);
  }
  return grad_inputs;
}

```

The change is to fix the order of `self_ix` and `other_ix`.[](url)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95263
Approved by: https://github.com/soulitzer
2023-03-04 20:03:54 +00:00
Xuehai Pan
22d3ac79d2 [torchgen] Prettify generated type annotations (#95877)
Changes:

1. Use class inheritance for `torch/return_types.pyi`:

    Before:

    ```python
    max = NamedTuple("max", [("values", Tensor), ("indices", Tensor)])
    ```

    After:

    ```python
    class max(NamedTuple):
        values: Tensor
        indices: Tensor
    ```

------

2. Add missing spaces in generated type annotations.

    1. Always has a space after `,`.
    2. If an argument is annotated, then there need spaces around `=` when it has a default value.

        ```diff
        - def func(..., out: Optional[Tensor]=None, ...) -> Tensor:
        + def func(..., out: Optional[Tensor] = None, ...) -> Tensor:
        ```

    3. If an argument is not annotated, then there should be no spaces around `=` when it has a default value.

        ```python
        def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ...
        ```

------

3. ~Remove redundant import alias in `torch/nn/functional.pyi`:~ (Reverted)

    UPDATE: `mypy` needs the alias to work.

    Before:

    ```python
    from .. import conv1d as conv1d
    from .. import conv2d as conv2d
    from .. import conv3d as conv3d
    from .. import conv_transpose1d as conv_transpose1d
    from .. import conv_transpose2d as conv_transpose2d
    from .. import conv_transpose3d as conv_transpose3d
    from .. import conv_tbc as conv_tbc
    from .. import avg_pool1d as avg_pool1d
    from .. import relu_ as relu_
    from .. import selu_ as selu_
    from .. import celu_ as celu_
    from .. import rrelu_ as rrelu_
    from .. import pixel_shuffle as pixel_shuffle
    from .. import pixel_unshuffle as pixel_unshuffle
    from .. import channel_shuffle as channel_shuffle
    from .. import native_channel_shuffle as native_channel_shuffle
    from .. import pdist as pdist
    from .. import cosine_similarity as cosine_similarity
    ```

    After:

    ```python
    from .. import (
        conv1d,
        conv2d,
        conv3d,
        conv_transpose1d,
        conv_transpose2d,
        conv_transpose3d,
        conv_tbc,
        avg_pool1d,
        relu_,
        selu_,
        celu_,
        rrelu_,
        pixel_shuffle,
        pixel_unshuffle,
        channel_shuffle,
        native_channel_shuffle,
        pdist,
        cosine_similarity,
    )
    ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95877
Approved by: https://github.com/ezyang
2023-03-03 07:08:40 +00:00
Wonjoo Lee
3095c95828 Fixes for PyTorch/XLA functionalization integration (#94537)
Fixes for PyTorch/XLA functionalization integration

---
Some notable changes include:
- More asserts in `FunctionalTensorWrapper`, so bugs show up more cleanly in cases where we e.g. forget to wrap an output
- Make the *_scatter ops `CompositeExplicitAutogradNonFunctional`, so we get a better error message and XLA doesn't accidentally try to us them
- Fix LTC/XLA codegen in core to handle multi-tensor out= ops with no returns
- Better erroring: Allow XLA to use the CPU fallback from core in a way so that it always errors on view ops, which XLA should no longer see.
- Update MetaConverter to exclude XLA tensors in raising NotImplemented…
- Add `_propagate_xla_data` op
- Add meta tensor support for some ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94537
Approved by: https://github.com/bdhirsh
2023-03-02 23:02:34 +00:00
alexdremov
b9e95158d5 [MPS] Fix LSTM backward and forward pass (#95137)
Fixes #91694
Fixes #92615

Several transpositions were missing for backward graph in case of `batch_first=True`. The #91694 is not reproduced with `batch_first=False`.

After fixing transpose issue, I finally thought that now I can use LSTM freely in my project. And then I got horrific results on train. Seems related to #92615.

After that I decided to fix LSTM's backward step completely. I collected all my findings in this thread — seems like I succeeded

Funny enough, backward tests were completely disabled before and were not passing:
```python
    @unittest.skipIf(True, "Backward of lstm returns wrong result")
    def test_lstm_2(self, device="mps", dtype=torch.float32):
```

UPD: forward pass of multi-layer version also was wrong due to the incorrect `initState, initCell` slices. Tests were passing because states were inited with zeros. *Accidentally* fixed this too

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95137
Approved by: https://github.com/jhavukainen, https://github.com/kulinseth, https://github.com/soulitzer
2023-02-23 17:32:42 +00:00
Peter Bell
bc438af6fe std/var: support floating point correction value (#94073)
Ref https://github.com/pytorch/pytorch/issues/61492#issuecomment-1413003480

The array API specifies correction to be `Union[int, float]` while we currently only support integers.
https://data-apis.org/array-api/latest/API_specification/generated/array_api.std.html

As std/var is calculated currently, the final count of elements is already done
in floating point so we can make the correction floating point without any loss
of precision or generality.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94073
Approved by: https://github.com/ezyang
2023-02-23 05:50:45 +00:00
Masaki Kozuki
f54233e273 [foreach] bump tensor's version and define backward via torchgen (as possible) (#93901)
## summary
- increment tensor versions in inplace foreach functions
- add a logic to take care of `ArrayRef<Scalar>`

rel: https://github.com/pytorch/pytorch/issues/58833, https://github.com/pytorch/pytorch/pull/89591

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93901
Approved by: https://github.com/albanD
2023-02-20 23:18:07 +00:00
Mengwei Liu
679e5dbfa1 [executorch] Always generate CustomOpsNativeFunctions.h if custom_ops.yaml is present (#95084)
To match the build system logic, enforce CustomOpsNativeFunctions.h to be generated if we have custom_ops.yaml, even if we don't select any custom ops.

Added unit test.

Differential Revision: [D43402718](https://our.internmc.facebook.com/intern/diff/D43402718)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95084
Approved by: https://github.com/iseeyuan
2023-02-20 18:54:41 +00:00
Mengwei Liu
41865bd8ed [executorch] Add RuntimeContext to generated C++ API Signature (#94570)
Summary:
Pass runtime context all the way to kernel level.

RegisterCodegenUnboxedKernels.cpp:

```
static Operator operators_to_register[] = {
    Operator(
        "aten::add.out",
        [](torch::executor::RuntimeContext & context, EValue** stack) {

            EValue& self = *stack[0];
    	EValue& other = *stack[1];
    	EValue& alpha = *stack[2];
    	EValue& out = *stack[3];
    	const torch::executor::Tensor & self_base = self.to<torch::executor::Tensor>();
    	const torch::executor::Tensor & other_base = other.to<torch::executor::Tensor>();
    	const torch::executor::Scalar & alpha_base = alpha.to<torch::executor::Scalar>();
    	torch::executor::Tensor & out_base = out.to<torch::executor::Tensor>();

            EXECUTORCH_SCOPE_PROF("native_call_add.out");
            torch::executor::aten::add_outf(context, self_base, other_base, alpha_base, out_base);

        }
    ),
}
```

Functions.h
```

// aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
TORCH_API inline at::Tensor & add_outf(torch::executor::RuntimeContext & context, const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha, at::Tensor & out) {
    return torch::executor::native::add_out(self, other, alpha, out);
}

```

Test Plan: TBD

Differential Revision: D41325633

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94570
Approved by: https://github.com/cccclai
2023-02-16 02:43:18 +00:00
Li-Huai (Allan) Lin
e8dc34eaeb [MPS] Move max_pool2d to mps dispatch key (#90772)
Related issue: #77394

This PR also modifies some assertions in the codegen, an explanatory comment for it has been added.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90772
Approved by: https://github.com/albanD
2023-02-16 01:13:08 +00:00
Larry Liu
79783a51da [torchgen] Loosen the restriction for only allowing 2 nested namespaces for kernels (#94834)
As titled. We still want to have some restriction to avoid misuse but for internal use case we want to change the limit from 2 to 3.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94834
Approved by: https://github.com/SS-JIA
2023-02-14 21:50:12 +00:00
Aaron Gokaslan
67d9790985 [BE] Apply almost all remaining flake8-comprehension checks (#94676)
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
2023-02-12 01:01:25 +00:00
Aaron Gokaslan
3d82d8d0ed [BE] Enable more flake8-comprehensions checks (#94601)
I applied some flake8 fixes and enabled checking for them in the linter. I also enabled some checks for my previous comprehensions PR.

This is a follow up to #94323 where I enable the flake8 checkers for the fixes I made and fix a few more of them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94601
Approved by: https://github.com/ezyang
2023-02-10 23:40:29 +00:00
Xuehai Pan
a229b4526f [BE] Prefer dash over underscore in command-line options (#94505)
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.

Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:

`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)

```python
class BooleanOptionalAction(Action):
    def __init__(...):
            if option_string.startswith('--'):
                option_string = '--no-' + option_string[2:]
                _option_strings.append(option_string)
```

It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-09 20:16:49 +00:00
Xuehai Pan
69e0bda999 [BE] Import Literal, Protocol, and Final from standard library typing as of Python 3.8+ (#94490)
Changes:

1. `typing_extensions -> typing-extentions` in dependency. Use dash rather than underline to fit the [PEP 503: Normalized Names](https://peps.python.org/pep-0503/#normalized-names) convention.

```python
import re

def normalize(name):
    return re.sub(r"[-_.]+", "-", name).lower()
```

2. Import `Literal`, `Protocal`, and `Final` from standard library as of Python 3.8+
3. Replace `Union[Literal[XXX], Literal[YYY]]` to `Literal[XXX, YYY]`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94490
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-09 19:17:49 +00:00
albanD
496c0a207b Make segment_reduce properly private. (#93166)
I am attempting not to change the aten function to reduce the amount of BC issues on the torchscript side.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93166
Approved by: https://github.com/ngimel
2023-02-06 18:32:23 +00:00
PyTorch MergeBot
f7bd5d0ccb Revert "[Reland] Add sym_size/stride/numel/storage_offset to native_function.yaml (#91… (#92402)"
This reverts commit 965f4ea3ba.

Reverted https://github.com/pytorch/pytorch/pull/92402 on behalf of https://github.com/zhxchen17 due to Caused a regression for an export model.
2023-02-03 03:12:43 +00:00
Nikita Vedeneev
84187399fc retire sparse_mask_helper (#91714)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91714
Approved by: https://github.com/albanD, https://github.com/amjames, https://github.com/cpuhrsch
2023-02-02 13:53:02 +00:00
Driss Guessous
653dc73df0 [SDPA] Wire up FlashAttention's backward (#92917)
# Summary
This PR creates _flash_attention_backward and _scaled_dot_product_flash_attention_backward native functions and registers them to the respective derivatives.yaml.

The goal is to replicate the torch.autograd.Function defined in the FlashAttention repo [here](33e0860c9c/flash_attn/flash_attn_interface.py (L126)) natively in PyTorch.  One thing that we don't have access to is ctx.save_for_backward in native PyTorch so in order to save these variables I extended the returned objects from the forward functions.

### MetaFunctions
I also updated the FlashAttention meta functions to mirror the real outputs now. As well I added a meta registration for backwards. I have an XLMR training script and while eager training now works with FlashAttention compiling this module fails with the inductor error down below.

### Questions?
Performance issues vs mem efficient when using torch.nn.mha_forward

TorchCompile -> See purposed solution below.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92917
Approved by: https://github.com/cpuhrsch
2023-02-02 04:02:30 +00:00
Sherlock Huang
965f4ea3ba [Reland] Add sym_size/stride/numel/storage_offset to native_function.yaml (#91… (#92402)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91919
Approved by: https://github.com/ezyang

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92402
Approved by: https://github.com/ezyang
2023-02-01 04:47:49 +00:00
Jacob Szwejbka
2e9107ec1e [Pytorch][Executorch] Handwritten view copy out ops should resize out (#91194)
Summary: Handwritten out ops should have feature parity with the codegend ones. This means they should resize out to the appropriate size. Q. Why are these handwritten instead of codegend anyway? Q2. Wheres a good spot to put the resize and copy helpers since they are reused in the codegend out kernels

Test Plan: ci.

Differential Revision: D42177051

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91194
Approved by: https://github.com/ezyang
2023-01-30 23:07:14 +00:00
Larry Liu
a0ca9dc8ca [torchgen] Small fix for empty yaml file edge case (#92938)
Rely on CI.

Avoid issues such as:

```
Traceback (most recent call last):
  File "<string>", line 38, in <module>
  File "<string>", line 36, in __run
  File "/usr/local/fbcode/platform010/lib/python3.8/runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/local/fbcode/platform010/lib/python3.8/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/re_cwd/buck-out/v2/gen/fbcode/2841b324ed9b88dd/caffe2/torchgen/__gen_executorch__/gen_executorch#link-tree/torchgen/gen_executorch.py", line 690, in <module>
    main()
  File "/re_cwd/buck-out/v2/gen/fbcode/2841b324ed9b88dd/caffe2/torchgen/__gen_executorch__/gen_executorch#link-tree/torchgen/gen_executorch.py", line 626, in main
    parsed_yaml, custom_ops_parsed_yaml = parse_yaml_files(
  File "/re_cwd/buck-out/v2/gen/fbcode/2841b324ed9b88dd/caffe2/torchgen/__gen_executorch__/gen_executorch#link-tree/torchgen/gen_executorch.py", line 505, in parse_yaml_files
    translate_native_yaml(
  File "/re_cwd/buck-out/v2/gen/fbcode/2841b324ed9b88dd/caffe2/torchgen/__gen_executorch__/gen_executorch#link-tree/torchgen/gen_executorch.py", line 448, in translate_native_yaml
    for e in native_es:
TypeError: 'NoneType' object is not iterable
```

Differential Revision: [D42729435](https://our.internmc.facebook.com/intern/diff/D42729435)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92938
Approved by: https://github.com/JacobSzwejbka
2023-01-27 22:45:21 +00:00
Han Qi
1f352f7c1f Update flatbuffer test models to match pkl models (#93022)
Also regenerate upgrader with

```
python torchgen/operator_versions/gen_mobile_upgraders.py
```

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93022
Approved by: https://github.com/tugsbayasgalan
2023-01-26 21:17:57 +00:00
Masaki Kozuki
30876229a7 [mta] Backward of unary foreach functions (#89591)
as per title, this PR defines backward of those.

This doesn't implement forward-mode automatic differentiation as [the current codegen](a747326423/tools/autograd/gen_variable_type.py (L1513)) doesn't seem to handle `ArrayRef<Tensor>`.

Rel:
- https://github.com/pytorch/pytorch/issues/53796
- https://github.com/pytorch/pytorch/issues/58833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89591
Approved by: https://github.com/albanD
2023-01-23 08:28:06 +00:00
PyTorch MergeBot
befe815466 Revert "Add sym_size/stride/numel/storage_offset to native_function.yaml (#91919)"
This reverts commit 0388400f3f.

Reverted https://github.com/pytorch/pytorch/pull/91919 on behalf of https://github.com/atalman due to Break internal build
2023-01-17 21:03:18 +00:00
Sherlock Huang
0388400f3f Add sym_size/stride/numel/storage_offset to native_function.yaml (#91919)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91919
Approved by: https://github.com/ezyang
2023-01-17 03:39:57 +00:00
Larry Liu
7568484d54 [torchgen] Add CI job to cover custom ops registration for Executorch (#91291)
As titled. To register a custom op into Executorch, we need:

* `custom_ops.yaml`, defines the operator schema and the corresponding native function.
* `custom_ops.cpp`, defines the kernel.
* `RegisterDispatchKeyCustomOps.cpp`, a template to register operator into PyTorch.

Added a new test for custom ops. The custom op `custom::add_3.out` takes 3 tensors and add them together. The test makes sure it is registered correctly and then verifies the outcome is correct.

Differential Revision: [D42204263](https://our.internmc.facebook.com/intern/diff/D42204263/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91291
Approved by: https://github.com/ezyang
2023-01-14 02:30:54 +00:00
Luca Lumetti
a4a0195c6c Fix torch.where signature mismatch that was caused by torchgen (#91627)
Fixes #91003

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91627
Approved by: https://github.com/albanD
2023-01-13 16:17:55 +00:00
Brian Hirsh
c47bdd7522 *_scatter ops should preserve input stride/storage_offset (#91029)
It turns out that we *do* need to update *_scatter ops to return the exact same strides as their inputs. I added a test to `test/test_functionalization.py`, which now trips thanks to Ed's functionalization stride debugging check. It only actually ends up tripping silent correctness if you try to .backward() on that function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91029
Approved by: https://github.com/ezyang
2022-12-22 19:41:53 +00:00
Mengwei Liu
2f154f68ea [torchgen] Add CI job to make sure torchgen works for Executorch op registration (#89596)
## Job

Test running on most CI jobs.

## Test binary

* `test_main.cpp`: entry for gtest
* `test_operator_registration.cpp`: test cases for gtest

## Helper sources

* `operator_registry.h/cpp`: simple operator registry for testing purpose.
* `Evalue.h`: a boxed data type that wraps ATen types, for testing purpose.
* `selected_operators.yaml`: operators Executorch care about so far, we should cover all of them.

## Templates

* `NativeFunctions.h`: for generating headers for native functions. (not compiled in the test, since we will be using `libtorch`)
* `RegisterCodegenUnboxedKernels.cpp`: for registering boxed operators.
* `Functions.h`: for declaring operator C++ APIs. Generated `Functions.h` merely wraps `ATen/Functions.h`.

## Build files

* `CMakeLists.txt`: generate code to register ops.
* `build.sh`: driver file, to be called by CI job.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89596
Approved by: https://github.com/ezyang
2022-12-21 03:07:32 +00:00
Edward Z. Yang
1c46a32b67 Minor typing improvements (#91068)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91068
Approved by: https://github.com/Skylion007, https://github.com/soumith
2022-12-20 23:43:11 +00:00
Larry Liu
909b7ca92a [torchgen] Move Executorch codegen logic into torchgen (#90806)
## Codegen entry point

Main logic and Executorch codegen entry: `gen_executorch.py`.

`RegisterCodegenUnboxedKernels.cpp`:
```cpp
register_operators({
	Operator(
		"aten::add.out",
		[](EValue** stack) {
			EValue& self = *stack[0];
			EValue& other = *stack[1];
			EValue& alpha = *stack[2];
			EValue& out = *stack[3];

			const at::Tensor & self_base = self.to<at::Tensor>();
			const at::Tensor & other_base = other.to<at::Tensor>();
			const at::Scalar & alpha_base = alpha.to<at::Scalar>();
			at::Tensor & out_base = out.to<at::Tensor>();

			EXECUTORCH_SCOPE_PROF("native_call_add.out");
			torch::executor::aten::add_outf(self_base, other_base, alpha_base, out_base);
	})
);
```

`Functions.h`:
```cpp

namespace torch {
namespace executor {

namespace aten {

// aten::add_outf(Tensor self, Tensor other, Scalar alpha, *, Tensor(a!) out) -> Tensor(a!)
TORCH_API inline at::Tensor & add_outf(const at::Tensor & self, const at::Tensor & other, at::Scalar alpha, at::Tensor & out) {
    return at::add_outf(self, other, alpha, out);
}

} // namespace aten

} // namespace executor
} // namespace torch
```

* Unit tests: `test_executorch_gen.py`

CI job in next PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90806
Approved by: https://github.com/ezyang
2022-12-19 21:58:43 +00:00
Larry Liu
679da8bd89 [torchgen] Move Executorch custom ops logic into torchgen (#90099)
## Logic to handle custom ops
We generate files for custom ops, so that they can be registered into PyTorch.

Generated files:
* `Register{dispatch_key}CustomOps.cpp` (dispatch_key = CPU), it's basically the same as vanilla PyTorch `RegisterCPU.cpp`. The only difference is that we bind to native functions directly.
* `Register{dispatch_key}Stub.cpp` (dispatch_key = CPU), register placeholder kernels for custom ops. Only used when there's no custom op kernel available.

As an example:
```cpp
namespace {

at::Tensor & wrapper_out_unsqueeze_out(const at::Tensor & self, int64_t dim, at::Tensor & out) {
    // No device check

  // DeviceGuard omitted
  return torch::executor::native::unsqueeze_out(self, dim, out);
}
} // anonymous namespace

TORCH_LIBRARY_IMPL(aten, CPU, m) {

m.impl("unsqueeze.out",
TORCH_FN(wrapper_out_unsqueeze_out));
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90099
Approved by: https://github.com/ezyang
2022-12-19 21:58:43 +00:00
Larry Liu
ca52f63fc0 [torchgen] Move Executorch unboxing logic into torchgen (#90098)
This PR adds `unboxing.py` which converts a `EValue` (similar to `IValue`) to its corresponding C++ type, based on the `ExecutorchCppSignature`.

Added unit tests to it in `test_executorch_unboxing.py`. Notice that this unboxing logic should work for both ATen types and Executorch types, hence the unit tests are parametrized.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90098
Approved by: https://github.com/ezyang
2022-12-19 21:58:43 +00:00
Brian Hirsh
440a3f2398 fix set_() with functionalization (#90722)
This should fix https://github.com/pytorch/pytorch/issues/90573

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90722
Approved by: https://github.com/ezyang
2022-12-19 16:11:06 +00:00
Edward Z. Yang
4fa8d774b8
Add macro C10_AS_INTARRAYREF_SLOW (#90675)
This makes it easier to narrow down who is throwing the error,
instead of having to use gdb.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D42088781](https://our.internmc.facebook.com/intern/diff/D42088781)
2022-12-16 15:10:35 -08:00
Edward Z. Yang
68805b565a Include dispatch key in wrapper symbol name (#90674)
When looking at gdb traces, this makes it easier to tell that
you're looking at the CPU wrapper vs CUDA wrapper, etc.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D42088744](https://our.internmc.facebook.com/intern/diff/D42088744)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90674
Approved by: https://github.com/ngimel, https://github.com/malfet
2022-12-16 19:36:32 +00:00
PyTorch MergeBot
750576a50a Revert "Include dispatch key in wrapper symbol name (#90674)"
This reverts commit e87370133c.

Reverted https://github.com/pytorch/pytorch/pull/90674 on behalf of https://github.com/osalpekar due to executorch breakage internally, more details in [D42051698](https://www.internalfb.com/diff/D42051698)
2022-12-16 01:05:57 +00:00
PyTorch MergeBot
140a3139d6 Revert "Add macro C10_AS_INTARRAYREF_SLOW (#90675)"
This reverts commit 8090cb5386.

Reverted https://github.com/pytorch/pytorch/pull/90675 on behalf of https://github.com/osalpekar due to broke internal acc_tensor implementation in training_platform contbuild. See [D42052101](https://www.internalfb.com/diff/D42052101) for details.
2022-12-16 00:30:50 +00:00
Edward Z. Yang
8090cb5386 Add macro C10_AS_INTARRAYREF_SLOW (#90675)
This makes it easier to narrow down who is throwing the error,
instead of having to use gdb.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90675
Approved by: https://github.com/ngimel, https://github.com/malfet, https://github.com/JackCaoG
2022-12-14 21:29:23 +00:00
Larry Liu
f3393b7ea7 [torchgen] Introduce Executorch types and signatures (#90781)
Retry of #90591, which is a retry of #89595. Reverted due to dependency PR breaking internal fbcode.

## Forked BaseCppType
Created a module for Executorch: `torchgen.executorch`.

## In `torchgen.executorch.api.types.types`:

* Define `BaseCppType` with `torch::executor` namespace.
## In `torchgen.executorch.api.et_cpp`:

* Help generate `NamedCType` for `ExecutorchCppSignature` arguments.
## In `torchgen.executorch.api.types.signatures`:

* Define the signature using these types. (`ExecutorchCppSignature`)
## In `torchgen.executorch.api.types.__init__`:

* Suppress flake8 error for `import *`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90781
Approved by: https://github.com/ezyang
2022-12-14 20:13:04 +00:00
Larry Liu
4adffe6d51 [torchgen] Let native function declaration generation logic take a callable (#90780)
Retry of #90590, which is a retry of #89594. Original PR reverted due to internal breakage.
This PR fixes the breakage by adding a default value to the new argument.

This PR allows `get_native_function_declarations` API to take a function as argument. This function should take `NativeFunction` as input and emit code for native function declaration. By default it is `dest.compute_native_function_declaration`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90780
Approved by: https://github.com/ezyang
2022-12-14 20:13:04 +00:00
Driss Guessous
51c6c5e156 [SDPA] Standardizes the return shape for dense tensor of SDPA regardless of fused kernel called (#90776)
# Summary
Continues to fix up the meta output story of SDPA to be more correct

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90776
Approved by: https://github.com/cpuhrsch
2022-12-14 18:08:02 +00:00
Edward Z. Yang
e87370133c Include dispatch key in wrapper symbol name (#90674)
When looking at gdb traces, this makes it easier to tell that
you're looking at the CPU wrapper vs CUDA wrapper, etc.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90674
Approved by: https://github.com/ngimel
2022-12-14 03:09:22 +00:00
PyTorch MergeBot
ea64c8c6ad Revert "[torchgen] Let native function declaration generation logic take a callable (#90590)"
This reverts commit de6beca838.

Reverted https://github.com/pytorch/pytorch/pull/90590 on behalf of https://github.com/seemethere due to Causes internal failures, see https://www.internalfb.com/intern/sandcastle/job/4503600464398605/insights
2022-12-13 03:41:04 +00:00
PyTorch MergeBot
b3e6a6dc0b Revert "[torchgen] Introduce Executorch types and signatures (#90591)"
This reverts commit ddf00c803b.

Reverted https://github.com/pytorch/pytorch/pull/90591 on behalf of https://github.com/seemethere due to Part of a stack that causes internal failures, see https://www.internalfb.com/intern/sandcastle/job/4503600464398605/insights
2022-12-13 03:36:31 +00:00
Larry Liu
ddf00c803b [torchgen] Introduce Executorch types and signatures (#90591)
Retry of #89595. Accidentally closed.

## Forked `BaseCppType`

Created a module for Executorch: `torchgen.executorch`.

In `torchgen.executorch.api.types.types`:
* Define `BaseCppType` with `torch::executor` namespace.

In `torchgen.executorch.api.et_cpp`:
* Help generate `NamedCType` for `ExecutorchCppSignature` arguments.

In `torchgen.executorch.api.types.signatures`:
* Define the signature using these types. (`ExecutorchCppSignature`)

In `torchgen.executorch.api.types.__init__`:
* Suppress flake8 error for `import *`.

Differential Revision: [D41501836](https://our.internmc.facebook.com/intern/diff/D41501836/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90591
Approved by: https://github.com/iseeyuan
2022-12-10 04:34:02 +00:00
Larry Liu
de6beca838 [torchgen] Let native function declaration generation logic take a callable (#90590)
Retry of #89594. Accidentally closed.

This PR allows `get_native_function_declarations` API to take a function as argument. This function should take `NativeFunction` as input and emit code for native function declaration. By default it is `dest.compute_native_function_declaration`.

Differential Revision: [D41501838](https://our.internmc.facebook.com/intern/diff/D41501838/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90590
Approved by: https://github.com/iseeyuan
2022-12-10 04:34:02 +00:00
Larry Liu
453ff96029 [torchgen] Refactor types (#90589)
A retry of #89487. Accidentally closed.

## Split `torchgen.api.types` into `types_base`, `types` and `signatures`.

In `types_base`:
* Created base class `CType`. `BaseCType` and `ConstRefCType` etc are inheriting `CType`.
* Only keep abstract type model definitions, such as `BaseCppType`.

In `types`:
* Define `BaseCppType` with `at` and `c10` namespaces.
* All the signatures using these types.

In `signatures`:
* Define all the signatures.

In `__init__`:
* `from ... import *`, suppress flake8 error.

Differential Revision: [D41455634](https://our.internmc.facebook.com/intern/diff/D41455634/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D41455634/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90589
Approved by: https://github.com/iseeyuan
2022-12-10 04:34:00 +00:00
Elias Ellison
b651e06049 Add Pointwise Tag from pointwise set in DTensor, use in aot_autograd partitioner (#90029)
Takes the pointwise op list from [DTensor](https://github.com/pytorch/pytorch/blob/master/torch/distributed/_tensor/ops/pointwise_ops.py#L36) as an initially starting point for pointwise ops, and feeds them to the aot autograd partitioner.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90029
Approved by: https://github.com/ezyang
2022-12-08 20:21:17 +00:00
Ram Rachum
351d73b97f Fix exception causes all over the codebase (#90271)
This is the continuation to #90134 and hopefully the final PR in this series.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90271
Approved by: https://github.com/kit1980
2022-12-07 04:29:00 +00:00
Sean Ross-Ross
bb673fb1d9 fix: update error when tensor escapes vmap (#89077)
Fixes https://github.com/pytorch/functorch/issues/1054

@zou3519, I played around with it, but I am unsure of how to repro the cases for gen_vmap_inplace_plumbing and below in gen_vmap_plumbing_no_returns

I've also seen that there are 24 other instances of the `TORCH_INTERNAL_ASSERT(maybe_layer.has_value());` assert, should I change all of these and add tests?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89077
Approved by: https://github.com/zou3519
2022-12-06 05:52:09 +00:00
Danni Li
05ccbd6d94 Functionalization: skip meta block computation if compute_reference_meta is false (#90219)
Skip computing meta block when `compute_reference_meta` is `False`.

Issue: #89914

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90219
Approved by: https://github.com/ezyang
2022-12-06 04:03:01 +00:00
Edward Z. Yang
5266953443 Add crossref debug mode for functionalization, catches stride errors (#89498)
The idea is to add a custom handler to Functionalize key in Python
dispatcher that runs the functionalized version along side a non
functionalized version, and checks that their outputs agree in the
end.  (Technically, for metadata mutation we should also check the
inputs, but for now we're relying on those functions returning self.)
I turned this on for test_functionalize.py (new TestCrossRefFunctionalize)
and found a bunch of failures that look legit.

This probably doesn't interact that nicely if you're also tracing at
the same time, probably need more special logic for that (directly,
just disabling tracing for when we create the nested fake tensor mode,
but IDK if there's a more principled way to organize this.)

There are some misc fixups which I can split if people really want.

- xfail_inherited_tests moved to test common_utils
- Bindings for _dispatch_tls_set_dispatch_key_included,
  _dispatch_tls_is_dispatch_key_included and _functionalization_reapply_views_tls
- Type stubs for _enable_functionalization, _disable_functionalization
- all_known_overloads utility to let you iterate over all OpOverloads
  in all namespaces.  Iterator support on all torch._ops objects to let
  you iterate over their members.
- suspend_functionalization lets you temporarily disable functionalization mode
  in a context
- check_metadata_matches for easily comparing outputs of functions and see
  if they match (TODO: there are a few copies of this logic, consolidate!)
- _fmt for easily printing the metadata of a tensor without its data
- _uncache_dispatch for removing a particular dispatch key from the cache,
  so that we force it to regenerate
- check_significant_strides new kwarg only_cuda to let you also do stride
  test even when inputs are not CUDA
- Functionalize in torch._C.DispatchKey

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89498
Approved by: https://github.com/malfet
2022-11-23 04:18:25 +00:00
Driss Guessous
b291c1213a Create native function for determining which implementation of SDP to call (#89029)
# Summary
Creates a callable native function that can determine which implementation of scaled dot product will get called. This allows to bump re-order the runtime dispatch of SDP to enable autograd.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89029
Approved by: https://github.com/cpuhrsch
2022-11-16 03:07:54 +00:00
Richard Zou
3bc327993f PyDispatcher integration with functorch (#88785)
This PR teaches PyDispatcher and PyOperator about functorch transforms.
It is important that PyDispatcher/PyOperator dispatch with functorch
transforms, because this is our plan for higher-order operators
(operators that accept functions as arguments). Examples of these
include:
- functorch transforms over the existing cond operator (control flow)
- autograd.Function support for functorch (which I am working towards),
- AOTDispatcher (should be a higher order operator)

Concretely, the problem with teaching PyDispatcher/PyOperator about
functorch is that the stack-based dispatching logic (DynamicLayerStack)
is hidden inside the fallbacks for two dispatch keys
(DynamicLayer{Front, Back}). PyDispatcher doesn't know about C++ boxed
fallbacks, our plan on record for that is that we need to reimplement
all of them in Python (but can call helper functions in C++ to make our
lives easier).

Instead of exposing all of what DynamicLayer{Front, Back} do to python,
this PR takes the approach of re-implementing part of the stack-based
dispatching in Python. The motivation is that this is more sane and
follows what the "ideal" implementation of functorch would have been:
- each transform should be a "mode"
- there should be no TLS dispatch key set hackery. functorch needs to do
this hackery today to re-use VariableType implementations.

This PR:
- exposes the DynamicLayerStack to Python
- The DynamicLayerStack is a stack of Interpreters.
These get exposed to Python as well.
- Interpreters can run operations (Interpreter.process) or lower them to
the next interpreter in the stack (Interpreter.lower)
- To use a PyOperator with functorch transforms, a developer needs to
register a rule for each transform (vmap, grad, jvp, ...).
- The PyOperator API is NOT user-facing. Things like autograd.Function
support for functorch will end up going through the autograd.Function
API.

Question for reviewers:
- Does this design make sense?
- I'm trying to split up the "functorch support for autograd.Function"
work into logical pieces. Would it be better if I didn't? (the full
thing is a bit long - 1000-2000 LOC).

Test Plan:
- new tests that construct PyOperator and compose them with functorch
transforms
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88785
Approved by: https://github.com/samdow, https://github.com/soulitzer
2022-11-16 00:46:59 +00:00
Edward Z. Yang
23a3eb37cf SymIntify _copy functionalization kernels (and _copy_out too) (#88572)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88572
Approved by: https://github.com/anjali411, https://github.com/bdhirsh
2022-11-07 21:40:10 +00:00
Wonjoo Lee
a171b0636a Add use_lazy_shape flag to GenLazyIr class (#88444)
Add use_lazy_shape flag to GenLazyIr class to allow XLA to use its custom shape class. The default value is kept to use lazy shape, so this PR does not introduce any new behaviors.

PyTorch/XLA companion PR: https://github.com/pytorch/xla/pull/4111
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88444
Approved by: https://github.com/alanwaketan, https://github.com/wconstab
2022-11-04 08:23:56 +00:00
Wonjoo Lee
0efd4e92b5 Make GenLazyNativeFuncDefinition generator to be customizable in lazy codegen (#87823)
As part of the ongoing LTC migration effort, PyTorch/XLA is updating its codegen to use `xla::Shape` instead of `torch::lazy::Shape`. To achieve this, this PR updates the codegen to make the `GenLazyNativeFuncDefinition` generator customizable.

The existing `GenLazyNativeFuncDefinition` is kept by using the initial default values, so this change should not introduce any new behaviors to the existing codegen in PyTorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87823
Approved by: https://github.com/alanwaketan, https://github.com/wconstab
2022-11-03 06:19:40 +00:00
Jerry Zhang
a0fb234b45 [codegen] using TORCH_LIBRARY_FRAGMENT for some namespaces (#88229)
Summary:
Sometimes we want to extend an existing custom namespace library, instead of creating a new one,
but we don't have a namespace config right now, so we hardcode some custom libraries defined
in pytorch today, i.e. quantized and quantized_decomposed

Test Plan:
ci

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88229
Approved by: https://github.com/ezyang
2022-11-03 02:30:02 +00:00
Edward Z. Yang
1e5d33b6df Reenable assert sanity testing with ADInplaceOrView reenable (#88102)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88102
Approved by: https://github.com/albanD
2022-11-01 14:29:00 +00:00
albanD
8a9aca7b8d Reland 2 Many symintifications (#87604) (#87980)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87980
Approved by: https://github.com/ezyang
2022-10-28 13:40:11 +00:00
PyTorch MergeBot
8b4d95759c Revert "Many symintifications (#87604)"
This reverts commit 777e6a2c51.

Reverted https://github.com/pytorch/pytorch/pull/87604 on behalf of https://github.com/weiwangmeta due to breaking internal builds
2022-10-28 03:00:11 +00:00
albanD
777e6a2c51 Many symintifications (#87604)
Adds
expand_inplace
conv conv_double_backward
convolution
adaptive_avg_pool2d_symint
_embedding_bag_backward_symint
cudnn_grid_sampler
cuda 32 bit indexing
nll_loss / nll_loss_2d
tensor split
pooling same mode
cudnn_is_acceptable
storage nbytes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87604
Approved by: https://github.com/ezyang
2022-10-26 17:33:53 +00:00
Max Podkorytov
4a168e9941 [static-runtime] run codegen (#87534)
Summary:
```
buck run //caffe2/torch/fb/jit:gen_static_runtime_ops
```

Test Plan: CI

Differential Revision: D40612521

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87534
Approved by: https://github.com/mikeiovine
2022-10-25 23:48:16 +00:00
Brian Hirsh
9ad1659b17 functionalization: make view_copy outputs always contiguous (#85747)
This fixes an issue with mobile: The output of view_copy ops should always be contiguous.

Later, we can consider adding optional arguments to the `view_copy()` functions to let you explicitly say what the contiguity of the output can be (e.g. channels_last)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85747
Approved by: https://github.com/ezyang
2022-10-21 17:42:02 +00:00
Brian Hirsh
b3071e2eb6 functionalization: skip meta reference compute for aot autograd (#87108)
The context is that historically, XLA/LTC tensors haven't had accurate stride information, and functionalization would run "reference" meta kernels for view ops on the side to properly compute strides.

This is more complicated in symint tracing world - we have a `FunctionalTensorWrapper()` that wraps the underlying tensor and has its own set of sizes/strides metadata, but we never create proxy objects for the sizes/strides of the wrapper.

In symint tracing world with aot autograd, we're guaranteed that our underlying strides are accurate anyway, since aot autograd uses fake tensors to perform tracing. We encountered a few bugs with symint's from the `FunctionalTensorWrapper` making their way into `__torch_dispatch__`. To side-step that area of bugs completely (and marginally improve perf), this PR disables the meta tensor tracing for non XLA/LTC use cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87108
Approved by: https://github.com/ezyang, https://github.com/wconstab
2022-10-19 15:59:28 +00:00
Edward Z. Yang
45f03d6948 Add at::symint:: namespace for ease of templated functions (#86329)
Our prevailing strategy for symbolic shapes in C++ is to only
write the SymInt version of the code, and pay a slight performance
tax from not knowing if it is symbolic or not.  However, there are
some fastpath functions where this tax is unacceptable, and we want
to specialize for the int case.  Sometimes, it is easy to template
the function; but when the function involves Tensors, it is not,
because the functions you may want to call are not templated,
e.g., t.view vs t.view_symint

This PR adds an at::symint:: namespace which contains templated
functions for all functions in PyTorch which you can use in this
way.  To show this works, I refactored sum_to to stop incorrectly
reinterpret casting and instead use a template.  Instead of
t.sizes(), we call at::symint::sizes<T>(t), and so forth.

The template functions are SFINAE'd using a template argument that
is not otherwise used. As such, deduction is impossible. Typically, deduction
is hard anyway, because many of the constructors are ambiguous (this
is why we split foo and foo_symint in the first place). So you must pass
a template argument to these functions.

These functions are codegened into Functions.h so they are subject
to per-operator headers.  This matters most for methods, which likely
didn't include the per-operator header, so you will have to add an
include in that case.  We never generate method variants for these.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86329
Approved by: https://github.com/bdhirsh, https://github.com/voznesenskym
2022-10-06 04:09:17 +00:00
Mike Iovine
ddec1eea05 [Static Runtime] Block linalg_svdvals codegen & run codegen script (#85983)
Summary:
The test is causing issues:
```
terminate called after throwing an instance of 'std::runtime_error'
  what():  The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
    graph(%A: Tensor, %driver: str?):
        %bias: None = prim::Constant()
        %ret = aten::linalg_svdvals(%A, %driver)
               ~~~~ <--- HERE
        %cloned = aten::clone(%ret, %bias)
        return (%cloned)
RuntimeError: torch.linalg.svd: keyword argument `driver=` is only supported on CUDA inputs with cuSOLVER backend.
```

Just block the op and re-run the codegen script to remove everything and update the generated ops.

Test Plan: Existing tests

Differential Revision: D39973860

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85983
Approved by: https://github.com/xuzhao9, https://github.com/tenpercent
2022-10-06 01:07:40 +00:00
Edward Z. Yang
e8b0bea677 Rename fromIntArrayRef to fromIntArrayRefSlow, audit call sites (#86235)
Some of them are known non-negative, I've revised them accordingly.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86235
Approved by: https://github.com/albanD
2022-10-05 23:11:01 +00:00
Edward Z. Yang
2aa9e0750a Symintified all functions, not including factory functions (#86078)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86078
Approved by: https://github.com/Chillee, https://github.com/albanD
2022-10-03 20:12:32 +00:00
Edward Z. Yang
c857b3e73e More fixes for LTC symint interlock. (#86043)
Now, we also avoid translating SymInt to valueT if you haven't asked
for a SymInt implementation.  This makes embedding_dense_backward
work without changes to LTC.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86043
Approved by: https://github.com/wconstab
2022-10-02 02:53:49 +00:00
Edward Z. Yang
07800c9c81 Miscellaneous fixes from symbolic-shapes branch (#86042)
- Make toIValue accept SymIntNode and SymFloatNode where number (aka Scalar) is
  expected
- Binding for symintlistOptional in python arg parser
- Teach translate to convert from IntArrayRef to ArrayRef<int64_t>
- Don't query _symint function for meta info in LTC unless LTC is
  code generating a symint function

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86042
Approved by: https://github.com/Chillee
2022-10-01 13:57:58 +00:00
Edward Z. Yang
84a06d7193 Enable convolution_backward with bias and symints (#85970)
Originally by Krovatkin from https://github.com/pytorch/pytorch/pull/85816

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85970
Approved by: https://github.com/albanD
2022-09-30 21:21:11 +00:00
Edward Z. Yang
793488cda2 Revert "Revert "Symintifying slice ops (#85196)"" (#85746)
This reverts commit 3a171dfb0c.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85746
Approved by: https://github.com/albanD
2022-09-28 04:37:35 +00:00
Kannav
0a64e73d12 52189: refractor unreachable Runtime Error (#85725)
Fixes #52189

Since the PR #52228 had gone cold. I made the requested changes and fixed the linting error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85725
Approved by: https://github.com/lezcano
2022-09-27 22:58:09 +00:00
Brian Hirsh
4a2d2e5e40 Change API type Tensor[] for structured kernels. (#73350)
Partially fixes: #66328

This PR:
- adds support for `ITensorList` to the dispatcher for:
  - computing the dispatch key
  - boxing and unboxing `ITensorList`
- modified the codegen for structured kernels:
  - codegen APIs use `ITensorList` instead of `ArrayRef<Tensor>`

**Changes summary:**

- Signature changes due to the different APIs:
  - dispatcher API (e.g. `BatchingRegistrations.cpp`)
  - C++ API (e.g. `TensorShape.cpp`)
- Miscelaneous functions used by codegen'd functions (e.g. `FunctionalTensorWrapper.*`)
- Dispatcher changes for handling `ITensorList` correctly (e.g. `DispatchKeyExtractor.h`)
- Signature changes of `at::cat` due to the need of `const` inside `TensorBody.h`
- Forward declarations of `ITensorList` (e.g. `MethodOperators.h`)
- Codegen changes, special casing structured kernels (e.g. `gen.py`)

**Short description of structured kernels special casing:**

I introduced, mainly, 5 types of changes to the codegen for generating code depending on
whether the kernel is structured or not:

1. Added a `structured_type_override` flag to the `argument_type` function definition of
the affected APIs (mainly the dispatcher and C++ APIs).
  - `api/cpp.py`, `api/dispatcher.py`, `api/native.py`
2. Added a `structured_type_override` member to the signature
classes (e.g. `CppSignature`), since `FunctionSchema` doesn't really know whether the
function is structured or not
  - `api/types.py`
3. Added a `part_of_structured_group` to `NativeFunction` class, which is just a
convenient function to forward to `structured_type_override` wherever needed
  - `model.py`
4. Appropriately changed the rest of the codegen, whenever it used either the signature
classes or the `arguments` function directly
5. Added a check for `const ITensorList&` type wherever there was a check for `TensorList`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73350
Approved by: https://github.com/bdhirsh
2022-09-26 21:46:38 +00:00
kshitij12345
56a41b5998 [composite compliance] ctc_loss (#84752)
#Ref #69991

I have mixed feelings about adding new (private) operators. Backends writers will have to override them as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84752
Approved by: https://github.com/zou3519
2022-09-22 00:21:11 +00:00
jiahongyu
d5adf8151a [PolishTypo] inherentely->inherently, intentially->intentionally (#85325)
Polish comment typo, `inherentely->inherently`, `intentially->intentionally`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85325
Approved by: https://github.com/ezyang
2022-09-21 19:20:30 +00:00
Richard Zou
5fa104a76c Move functorch C++ into aten/src/ATen/functorch (#85381)
This PR moves functorch C++ code that does not depend on python into aten/src/ATen/functorch. The C++ code that does depend on python (the python bindings as well as torchdim) will go into torch/csrc/functorch, to come later (see https://github.com/pytorch/pytorch/pull/85263 for initial attempt).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85381
Approved by: https://github.com/ezyang
2022-09-21 15:50:44 +00:00
Edward Z. Yang
3eb27229dd as_strided symbolic support (#85264)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39662820](https://our.internmc.facebook.com/intern/diff/D39662820)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85264
Approved by: https://github.com/wconstab
2022-09-21 13:34:55 +00:00
Edward Z. Yang
e1f634753c Setup fake tensor and symbolic shapes once at beginning of AOTAutograd (#85233)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39662822](https://our.internmc.facebook.com/intern/diff/D39662822)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85233
Approved by: https://github.com/wconstab
2022-09-20 19:11:25 +00:00
Brian Hirsh
1838957e6f fix external codegen kernel error checking (#85029)
Fixes https://github.com/pytorch/pytorch/issues/84987. I followed the repro steps from the issue (changed `empty_symint` to `empty_symint2` and confirmed that and error gets raised.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85029
Approved by: https://github.com/ezyang
2022-09-17 04:08:09 +00:00
Edward Z. Yang
490727a35f New calling convention for Python dispatcher (#85133)
Instead of calling into the Python dispatcher for EVERY dispatcher
call, we now have a two step process.  First, we
getattr(op: OpOverload, dispatch_key) to "load" the handler for the
function.  This can either be a conventional function (in which
case we will call it, in the same way the old Python dispatcher
worked), or it can be a DispatchKey, in which case we will directly
call that DispatchKey in C++, bypassing marshalling between Python
and C++ entirely.  OpOverload.__getattr__ is carefully written so
that it will cache the

A further optimization would be to define __slots__ on OpOverload,
and ensuring that the DispatchKey strings are interned.

The resulting Python dispatcher is less flexible: after the first
lookup, the handler is cached and we won't recompute it.  Furthermore,
by default, dispatches will not go into Python, and so you won't
get stack frames for the Python dispatcher by default.  But we get
a huge performance improvement: on the following microbenchmark
we go from 2.5s to 1.9s.

```
import time
import torch
from functorch import make_fx

def f(x):
    for i in range(1000):
        x = x * x
    return x

begin = time.time()
res = make_fx(f, tracing_mode="symbolic")(torch.randn(10, 20))
print(time.time()-begin)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85133
Approved by: https://github.com/wconstab
2022-09-16 20:38:21 +00:00
Edward Z. Yang
65158b8876 empty strided symint (#84830)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84830
Approved by: https://github.com/ezyang
2022-09-15 04:09:43 +00:00
drisspg
bda8a5729b [Nested Tensor] Create differentiable nt to tensor view functions (#83371)
This PR attempts to implements 2) "the safe way" of creating a view of nested tensor that returns a regular tensor. The rest of the break down is here: https://fb.quip.com/J8QCAx41af11

https://gist.github.com/drisspg/8622e9c97d374fa920ac647e1167cabc
This is a short list of some edge cases. After some more work I was able to address two of the test cases in the above gist. There are few complex aspects here that I left defeated comments inline.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83371
Approved by: https://github.com/bdhirsh
2022-09-13 20:35:58 +00:00
Thomas Orozco
b4799736ee autograd: fix non-deterministic output in codegen comments (#84695)
Summary:
Like it says in the title. Currently, this will return output like this:

In Buck1, that's OK because Buck1's caching doesn't really care too much about

However, in Buck2, this is a disaster, because caching is based exclusively
on inputs and outputs and

The diff here proposes making the path relative to the codegen script itself,
which should carry about as much info, but avoid cache misses.

Concretely, this:

```
// generated from /dev/shm/uid-34135/cfbc5712-seed-nspid4026533424_cgpid2794673-ns-4026533443/tools/autograd/templates/python_functions.h
```

Becomes, this:

```
// generated from ../tools/autograd/templates/python_functions.h
```

So, we keep the useful part, and we get caching. This matters because those
headers are used in actions like:

```
fbcode//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops -- action (cxx_compile gen_embedding_backward_adam_split_unweighted_cuda.cu (pic))
```

Those actions take upwards of 5 minutes to finish, so by allowing a cache hit,
we are a) saving our users a lot of time and b) saving some RE capacity as
well.

This actually matters a lot because right now those targets are produced by
`//caffe2:generate-code`, which itself doesn't get cache hits from RE because
`generate_code.par` is non-deterministic (this is, unfortunately, true of PARs
in general), so that rule introduces non-determinism that the codegen
propagates and we get zero caching.

This diff doesn't fix `//caffe2:generate-code`'s  inputs being
non-deterministic, but it does fix its *outputs* being non-deterministic, which
means the non-determinism stops there, and we get back to cache hits.

Test Plan:
- CI

```
buck2 build fbcode//caffe2:generate-code
buck2 build fbcode//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops
```

Reviewed By: ndmitchell

Differential Revision: D39348565

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84695
Approved by: https://github.com/soulitzer
2022-09-13 18:41:15 +00:00
Edward Z. Yang
9e5563dbb1 Delete SymIntArrayRef wrapper struct (#84837)
Since we separated at::foo and at::foo_symint there is no benefit
to trying to make initializer lists work in both cases.  So we can
get rid of the special different struct.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84837
Approved by: https://github.com/kit1980
2022-09-12 20:04:01 +00:00
PyTorch MergeBot
034f2db1fd Revert "Delete SymIntArrayRef wrapper struct (#84837)"
This reverts commit 9c78f599e4.

Reverted https://github.com/pytorch/pytorch/pull/84837 on behalf of https://github.com/ZainRizvi due to The test test_post_localSGD_optimizer_step_reload in the X linux-bionic-cuda11.6-py3.10-gcc7 workflow has started consistently failing since this PR was submitted
2022-09-12 19:04:07 +00:00
Edward Z. Yang
9c78f599e4 Delete SymIntArrayRef wrapper struct (#84837)
Since we separated at::foo and at::foo_symint there is no benefit
to trying to make initializer lists work in both cases.  So we can
get rid of the special different struct.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84837
Approved by: https://github.com/kit1980
2022-09-12 16:28:20 +00:00
Edward Z. Yang
caf034a9a2 Fix bugs in how LTC decides whether or not to symint op or not (#84832)
This fixes two problems:

- First, shape signature didn't respect the symint property (so it
  would always mark the operator as symint).  This was relatively
  easy to fix.

- Second, the call to fallback goes directly through at::_ops, so
  it must always be SymInt-aware, even if SymInt is disabled externally.
  This was a bit more difficult, because the current LTC codegen
  is poorly factored.  First, I needed to make it so individual
  arguments knew if they were going to be SymInt in LTC or not; second,
  I need to plumb enough information about the enclosing bindings so
  that I could use translate to do the expressions (previously, it was
  just assumed the signatures matched.)

The LTC codegen would do well to have a complete rewrite, but this will
have to do for now, I suppose.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84832
Approved by: https://github.com/wconstab
2022-09-12 04:49:04 +00:00
Mengwei Liu
2765243cd5 [torchgen] Refactor static_dispatch to take in source signature (#84384)
Summary: Context: currently `static_dispatch` assumes that given a native function `f`, we always want to map from its `DispatchSignature` to its `CppSignature`. This assumption may not hold true for some use cases, where the source bindings may not come from its `DispatchSignature`. Here I'm changing the argument `sig: DispatcherSignature` to be `sig: Union[CppSignature, DispatcherSignature]`, also removes unused `f`

Test Plan: Rely on added unit test.

Differential Revision: D39192969

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84384
Approved by: https://github.com/iseeyuan
2022-09-10 06:58:56 +00:00
Eli Uriegas
93aef3a010 Use presence of _symint in kernel name to generate symint sig or not (#84579)
Something people found confusing was that whether or not a native::
signature would get SymInt or not in its type was based on the dispatch
key.  This changes it so that SymInt or not in type is based on whether
or not you have _symint in the name of the kernel or not.  This means
that even when we make operators support SymInt, you no longer have to
go and update all the preexisting definitions; instead, you now
selectively write _symint to opt individual kernels into SymInt support.

I then go and update a bunch of kernels that don't have proper SymInt
support to make use of this convention.  There is some hacking around
for view generation code.

I also add support for external backends to specify 'symint' operators, for which we generate SymInt signatures instead of regular signatures.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: [D39310060](https://our.internmc.facebook.com/intern/diff/D39310060)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84579
Approved by: https://github.com/wconstab
2022-09-09 18:31:56 +00:00
Richard Zou
df3377fb64 [functorch] delete functorch/csrc/Constants.h (#84639)
This file aliased dispatch keys. The original purpose was so that we
could change the dispatch keys in pytorch core without changing
functorch too much, but there's no need for the layer of indirection
anymore.

Also moved SINGLE_ARG to functorch/csrc/Macros.h, but that might need a
new home later.

Differential Revision: [D39315052](https://our.internmc.facebook.com/intern/diff/D39315052)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84639
Approved by: https://github.com/samdow
2022-09-09 14:32:07 +00:00
Max Podkorytov
7f90606309 [static-runtime] update generator for the modified tests; re-run autogen script (#84437)
Test Plan: CI

Reviewed By: mikeiovine

Differential Revision: D39183148

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84437
Approved by: https://github.com/mikeiovine
2022-09-06 20:07:56 +00:00
Nikolay Korovaiko
f725009a48 as_strided supports SymInt; codegen supports optional SymInt (#84393)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84393
Approved by: https://github.com/ezyang
2022-09-06 16:39:24 +00:00
YifanShenSZ
673b35c847 Better reshape with autograd support (#82754) (#84154)
The original author is @YifanShenSZ  and the original PR is: #82754
# Summary:
Previous reshape [https://github.com/pytorch/pytorch/issues/80981](https://github.com/pytorch/pytorch/pull/80981) is ok for forward, but needs improvement for backward: need to handle "sometimes view sometimes copy" behavior.

This pull request fixes it by:
1. add a new alias dispatch key `CompositeImplicitAutogradNestedTensor`, which ideally would work as nested-tensor version of `CompositeImplicitAutograd`
2. register `reshape_nested` to `reshape` by `CompositeImplicitAutogradNestedTensor`

Side changes:
* add contiguous memory format support to `clone_nested`
* add `view_nested`
* add `reshape_as_nested`

Fix issue [https://github.com/pytorch/pytorch/issues/83041](https://github.com/pytorch/pytorch/issues/83041)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82754

Test Plan:
Imported from GitHub, without a `Test Plan:` line.

**Static Docs Preview: executorch**
|[Full Site](https://our.intern.facebook.com/intern/staticdocs/eph/D39023822/V13/executorch/)|

|**Modified Pages**|

Reviewed By: albanD

Differential Revision: D39023822

Pulled By: drisspg

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84154
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2022-09-01 20:01:39 +00:00
Edward Z. Yang
5e2c23377a LTC codegen appears to be hardcoded to only support tensors (#84355)
Assert accordingly

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84355
Approved by: https://github.com/wconstab
2022-09-01 16:29:39 +00:00
Edward Z. Yang
ad44670fa1 Back out "Revert D38984222: Don't introduce new overload for SymInt (#83628)" (#84173)
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"

Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9

Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159

Also update Metal registrations for C++ registration changes.

Also update NNPI registration to account for tightened schema checking

Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
2022-08-29 18:01:07 +00:00
PyTorch MergeBot
c7edcd6968 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 9790d90e4b.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to Breaks internal builds, see D39076487
2022-08-27 01:23:17 +00:00
Edward Z. Yang
9790d90e4b Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-26 01:35:40 +00:00
PyTorch MergeBot
a7edf71360 Revert "Don't introduce new overload for SymInt (#83628)"
This reverts commit 8fae7027b3.

Reverted https://github.com/pytorch/pytorch/pull/83628 on behalf of https://github.com/malfet due to breaking internal builds, see https://www.internalfb.com/diff/D38984222
2022-08-25 00:49:40 +00:00
Henry Tu
4a18d0a972 Fix LTC build warnings (#83955)
Addresses `Wc++98-compat-extra-semi` warning from https://github.com/llvm/torch-mlir/issues/1264 by removing extraneous semicolon after autogen LTC native function definitions.

```
/home/runner/work/torch-mlir/torch-mlir/build/tools/torch-mlir/python/torch_mlir/csrc/base_lazy_backend/generated/LazyNativeFunctions.cpp:4241:6: warning: extra ';' outside of a function is incompatible with C++98 [-Wc++98-compat-extra-semi]
    };
     ^
```

cc: @wconstab @desertfire @ke1337 @antoniojkim
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83955
Approved by: https://github.com/wconstab
2022-08-24 14:33:52 +00:00
Sergii Dymchenko
591222f5d9 Fix use-dict-literal lint (#83718)
Fix use-dict-literal pylint suggestions by changing `dict()` to `{}`. This PR should do the change for every Python file except test/jit/test_list_dict.py, where I think the intent is to test the constructor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83718
Approved by: https://github.com/albanD
2022-08-24 00:26:46 +00:00
Edward Z. Yang
8fae7027b3 Don't introduce new overload for SymInt (#83628)
Previously, we introduced new SymInt overloads for every function we wanted.  This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.

This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.

This is BC-breaking in the following ways:

* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change.  Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually.  This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.

This is not BC-breaking in the following ways:

* The user facing C++ API remains compatible.  Even if a function changes from int to SymInt, the default C++ binding still takes only ints.  (e.g., at::empty(IntArrayRef, ...).  To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.

Structure of the PR:

* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
  * The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
    * When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
    * In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
  * In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
2022-08-23 22:04:07 +00:00
John Clow
eff28d61c9 [JIT SSA] Allow updating shape functions without recompilation (#83629)
In order to avoid extra round trips, and avoid confusion in places such as
this to manually pull in the latest copy of the shape_functions.py file

This also fixes the cases where people pull in the wrong version of the file. This can happen in cases such as when developers run `python setup.py install` instead of `python setup.py develop` to generate their current copy of Pytorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83629
Approved by: https://github.com/davidberard98
2022-08-22 18:03:44 +00:00
Edward Z. Yang
329deb9757 Refactor is_X_like, better invariant checking for SymInt overload (#83668)
Add is_symint_like, by way of is_base_ty_like which generalizes
the pattern for is_tensor_like and is_generator_like.  Now that
we can query if a signature contains a SymInt, we can enforce that
you must name the overload with SymInt if the signature contains
SymInt.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83668
Approved by: https://github.com/bdhirsh, https://github.com/larryliu0820
2022-08-19 23:30:54 +00:00
Edward Z. Yang
0ec7fc13d6 Refactor CppSignatureGroup to collect signatures as list. (#83667)
This makes it easier to add more signatures to the signature group,
as relevant logic which needs to run for each signature no longer
needs to be adjusted.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83667
Approved by: https://github.com/larryliu0820, https://github.com/bdhirsh
2022-08-19 16:00:33 +00:00
Edward Z. Yang
9152144944 Coverage for nondeterministic_seeded, respect it in constant prop (#83650)
- nondeterministic_seeded was not applied to enough functions.  I added
  some heuristics to codegen for identifying functions that are likely
  to be random and added a bunch of these tags to functions.  Not sure
  I got all of them.

- Don't constant propagate through nondeterministic functions in FX
  tracing.

It would be better to do some testing for the tag but this would be quite an effort.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83650
Approved by: https://github.com/bdhirsh, https://github.com/eellison
2022-08-18 22:18:10 +00:00
Mengwei Liu
badbdb0330 [torchgen] Relax the restriction on number of custom namespaces (#83580)
Summary:
We started to see use cases where it involves more than 1 custom namespace to live within the same yaml file. Hence relaxing the restriction that 1 yaml file can only have 1 custom namespace other than `aten`. Updated unit test as well.

Differential Revision: D38775685

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83580
Approved by: https://github.com/JacobSzwejbka
2022-08-18 04:47:13 +00:00
Larry Liu
11d4d91bdc [torchgen] Add logic in annotation parser to accept alias set (#83501)
Extending the current regex in `model.py` to support annotation alias set. See issue #83214.

Ideally we should have a full fledged lexer similar to `schema_type_parser.cpp`, since regex can be more and more difficult to read if we add more support to it.

Adding this to unblock this issue for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83501
Approved by: https://github.com/SherlockNoMad
2022-08-17 07:04:25 +00:00
Nikolay Korovaiko
759c37a4f4 make sure arguments are tuples otherwise they won't be hashable (#83342)
make sure arguments are tuples otherwise they won't be hashable if used in autograd.py or any other places that uses dictionaries for that matter
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83342
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2022-08-15 19:12:15 +00:00
Mengwei Liu
d0d6b1f222 [torchgen] Generate out variant for functional operator (#81437)
Summary:
Previously we don't generate out variant (both schema and kernel) for an operator with functional variant only. This adds support for that and adds test.

## Changes on `native_function_generation.py`

We are generating out variant for all functional variants if possible. This PR introduces a lot of newly generated out variants and `native_functions.yaml` needs to incorporate the changes by adding `autogen` keywords.

The logic for determining what operators we should generate an out variant for is the following:

1. No existing out variant for this `NativeFunction`
2. Contains an existing in place, mutable or functional variant
3. Contains at least 1 tensor like return(s)

For operators matching the first two conditions but failing the third, I listed them in `FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT`.

## Special handling

The following operators satisfy all 3 criteria above but we chose to not autogen them, with some reasons.
* `mkldnn_adaptive_avg_pool2d`, the generated out variant `mkldnn_adaptive_avg_pool2d.out` is colliding with the `mkldnn_adaptive_avg_pool2d_out` kernel in `adaptive_avg_pool2d.out` operator. I manually created `mkldnn_adaptive_avg_pool2d.out` and renamed `mkldnn_adaptive_avg_pool2d_out` to `mkldnn_adaptive_avg_pool2d_out_stub`.
* `min`, `max` and `mean`. There already exist `min.out`, `max.out` and `mean.out` but they are having different semantics with the functional ones. I manually created `min.unary_out`, `max.unary_out` and `mean.dtype_out` to disambiguate.

## Autograd Changes

We introduced a logic to not match derivatives info in `derivatives.yaml` to out variant, since we are generating `NOT_IMPLEMENTED` kernels for those out variants anyway. The issue we are seeing with the original logic is that it doesn't handle `TensorOption` arguments really well. For example we have these two operators:

* `_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor`
* `_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)`

If we uses `_to_copy` derivative info, there will be compilation error since `dtype` is missing from `_to_copy.out` signature.
Test Plan: Rely on unit test

Differential Revision: D37832342

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81437
Approved by: https://github.com/iseeyuan, https://github.com/bdhirsh
2022-08-13 05:44:53 +00:00
Mengwei Liu
c322fc03a1 [torchgen] Fix selective build error on custom namespace (#83141)
Summary: Currently `SelectiveBuilder` is hardcoding namespace `aten` for operators. This is not working anymore since operators started to have custom namespaces. This fixes it.

Test Plan: Rely on newly added unit test

Differential Revision: D38565527

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83141
Approved by: https://github.com/JacobSzwejbka
2022-08-10 21:27:05 +00:00
Mikayla Gawarecki
e3e33cfae0 Enable codegen of per-dispatch key derivative formulas in derivatives.yaml (#82801)
`derivatives.yaml` can now take a `dispatch` entry which registers per-autograd dispatch key derivatives such as
```
name: foo(Tensor self, Tensor y) -> Tensor
dispatch:
  Default:
    x: grad
    y: grad.expand(y.sizes())
  AutogradNestedTensor:
    x: grad
    y:  NestedTensor_foo_backward(grad, y)
output_differentiabilty: [True]
```

However the old schema where there is no `dispatch` entry is still supported.

Would greatly appreciate feedback on *how to improve the testing strategy* of this PR, currently have registered an aten test op in TestOps.cpp with dummy gradients in derivatives.yaml and have some tests in test_autograd.py:TestAutogradMultipleDispatch but I am not sure whether these are sufficiently rigorous.

Additionally, this PR also makes the assumption that sets like [VIEW_FUNCTIONS](ff5399e528/tools/autograd/gen_inplace_or_view_type.py (L60)) are per-native-function and not per-native-function-and-dispatch-key. I'm not sure whether this is necessarily the case, *would there ever be a situation where (e.g. a nested_tensor op is a view op but the aten function is not or vice versa?)*

* __->__ #82801
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82801
Approved by: https://github.com/bhosmer, https://github.com/albanD
2022-08-10 19:26:29 +00:00
John Clow
ab76862b7a Editing gen_jit_shape_functions to make lintrunner happy (#79571)
Somehow even with clang-format off, it was unhappy with this line

>>> Lint for torch/csrc/jit/runtime/serialized_shape_function_registry.cpp:

  Warning (CLANGFORMAT) format
    See https://clang.llvm.org/docs/ClangFormat.html.
    Run `lintrunner -a` to apply this patch.

    You can run `lintrunner -a` to apply this patch.

    2855  2855 |   return shape_mappings;
    2856  2856 | }
    2857  2857 |
    2857       |-
    2859  2858 | // clang-format on
    2860  2859 |
    2861  2860 | } // namespace jit

Note that there is no changes to `serialized_shape_function_registry.cpp` in this diff because I had to manually run `lintrunner` to make it format the code correctly in the previous diff so that we can land it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79571
Approved by: https://github.com/eellison
2022-08-10 18:20:18 +00:00
Bin Bao
7b39406526 [LTC] Pass a BackendDevice parameter into GetIrValueForScalarFromCodegen (#82970)
Summary: Currently GetIrValueForScalarFromCodegen uses CPU as the
default backend device for scalars, but we should make it a
backend-dependent decision.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82970
Approved by: https://github.com/Krovatkin, https://github.com/JackCaoG
2022-08-10 03:59:25 +00:00
soulitzer
b55f9047e1 Add forward AD support for elu_, celu_, selu_ (#83080)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83080
Approved by: https://github.com/albanD
2022-08-09 20:15:44 +00:00
Shunting Zhang
943553965e support custom class in torchgen schema parser (#82925)
Differential Revision: [D38480514](https://our.internmc.facebook.com/intern/diff/D38480514/)

torchgen schema parser does not support parsing function schemas using custom class so far. Here is an example:
```
quantized::conv2d_relu.new(Tensor qx, __torch__.torch.classes.quantized.Conv2dPackedParamsBase packed_weight, float output_scale, int output_zero_point) -> (Tensor)
```

This PR parse custom class name and encapsulate that into an object of CustomClassType. The only thing we need right now is just store the string class name and return that in `__str__` method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82925
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-08-08 22:24:43 +00:00
Peter Bell
4f255dbfb3 Remove manual bindings for arange (#81380)
The functional variant of one of the `arange` overloads has a schema mismatch with the out variant. The functional one has `Scalar step`, but the corresponding out variant has `Scalar step=1`. This isn't allowed, so it had to be special-cased in the python codegen and manually bound. This adds the default `step` value to the functional overload and removes the special-casing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81380
Approved by: https://github.com/ngimel
2022-08-07 00:10:27 +00:00
Peter Bell
2c2278a960 Make python TensorOption signatures consistent with JIT schemas (#82241)
Fixes #81774

`TensorOptions` arguments in the JIT schema are optional, but in the Python API these were being translated to non-optional but with a default value. This change makes the arguments accept `None` for consistency with the JIT schema. However, it also means that `dtype=c10::nullopt` was previously completely untested so this also fixes several related bugs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82241
Approved by: https://github.com/ngimel
2022-08-07 00:10:27 +00:00
Mengwei Liu
406ce692ca [torchgen] Generate wrapper functions under custom namespaces (#81744)
Summary:
A follow up of #81581. Before these 2 PRs, if an operator with custom kernel namespace is added to `native_functions.yaml` (or any other yaml consumed by `torchgen`), although we are able to recognize the custom kernel in files such as `NativeFunctions.h` and `RegisterCPU.cpp`, we still generate backend specific wrappers under the hardcoded `at` namespace. This changes the behavior, by generating wrapper functions under custom namespaces.

For example, if the entries in yaml file looks like:

```
 - func: op_1(Tensor(a) self) -> Tensor(a)
  dispatch:
    CPU: at::op_1_kernel # ATen kernel

- func: op_2(Tensor(a) self) -> Tensor(a)
  dispatch:
    CPU: custom::op_2_kernel # custom kernel
```

We generate the following code for `CPUFunctions_inl.h` and `RegisterCPU.cpp`:

`CPUFunctions_inl.h`:
```
namespace at {
namespace cpu {
TORCH_API at::Tensor & op_1(const at::Tensor & self);
} // namespace cpu
} // namespace at

namespace custom {
namespace cpu {
TORCH_API at::Tensor & op_2(const at::Tensor & self);
} // namespace cpu
} // namespace custom

```

Notice the difference between `at::cpu` and `custom::cpu`.

Then the definition for these can be found in `RegisterCPU.cpp`.

`RegisterCPU.cpp`:
```
#include "CPUFunctions.h"

namespace at {

namespace {
at::Tensor & wrapper_op_1(const at::Tensor & self) {
    // No device check
  // DeviceGuard omitted
  return at::native::op_1_kernel(self);
}
} // anonymous namespace

TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_1", TORCH_FN(wrapper_op_1));
}

namespace cpu {
at::Tensor & op_1(at::Tensor & self) {
  return wrapper_op_1(self);
}
} // namespace cpu
} // namespace at

namespace custom {

namespace {
at::Tensor & wrapper_op_2(const at::Tensor & self) {
    // No device check
  // DeviceGuard omitted
  return at::native::op_2_kernel(self);
}
} // anonymous namespace

TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_2", TORCH_FN(wrapper_op_2));
}

namespace cpu {
at::Tensor & op_2(at::Tensor & self) {
  return wrapper_op_2(self);
}
} // namespace cpu
} // namespace custom

```

The benefit for this change is that it unifies all the namespaces derived from custom ops. In the example above, there are:

1. `custom::native` for kernels
2. `custom::<dispatch_key>` e.g., `custom::cpu` for wrappers

This customized operator will have nothing to do with `at::native`, `at::cpu` etc.

Test Plan: This is very hard to test. I will refactor this logic, abstract out some layers so it's testable. Will do it in coming PRs

Differential Revision: D37972772

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81744
Approved by: https://github.com/bdhirsh
2022-08-04 07:48:44 +00:00
Brian Hirsh
684ce1b0bc add inplace_view tag to resize_() (#82667)
`resize_()` is annoying because it needs special casing for functionalization. It's technically an inplace-view op, but it can't really have a pure view variant, since calling resize_() might bust the old storage. I gave it an `inplace_view` tag so that stuff like `FakeTensor` that relies on tags will pick it up properly, which required  jumping through some codegen hoops.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82667
Approved by: https://github.com/eellison
2022-08-03 18:13:00 +00:00
Peter Bell
afafd16671 Lintrunner: Run mypy-strict on torchgen (#82576)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82576
Approved by: https://github.com/ezyang
2022-08-01 19:14:27 +00:00
Peter Bell
ba84e9662e Use OrderedSet in ufunc codegen (#82567)
Follow up from https://github.com/pytorch/pytorch/pull/82536#discussion_r934000916
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82567
Approved by: https://github.com/ezyang
2022-08-01 18:11:06 +00:00
Edward Z. Yang
50e8abbcad Change SymIntNode into an intrusive pointer (#82548)
This will make the pointer type a single word, which is important
for packing it into an int64_t

This time, this diff doesn't segfault when you build with DEBUG mode; more details at https://github.com/pybind/pybind11/issues/4099

Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82548
Approved by: https://github.com/albanD
2022-08-01 15:07:21 +00:00
Peter Bell
53f56894ae Fix nondeterminism in torchgen (#82536)
Closes #82320

The iteration order of a `set` can change from run to run, resulting
in real content changes to generated files and therefore unnecessary
rebuilding.

The fix is to use a sort to give a repeatable iteration order.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82536
Approved by: https://github.com/ezyang
2022-07-31 12:58:10 +00:00
Mengwei Liu
301fe8c27d [torchgen] Fix multiple backends with custom namespace (#82133)
Summary:
Some quantized operators needs `QuantizedCPU` backend, due to an issue in namespace checking, currently if we have two backends as well as a custom namespaces in native function, codegen will hit assertion error. This PR fixes this issue

The root cause is that codegen right now asserts that a native function should only have one namespace. The current behavior is that If a native function is not found in a `BackendIndex`, we will use default namespace for that backend, for fallback kernels. However that default namespace may not be listed in the yaml file and it should not be counted when checking if we have two different namespaces for that backend. In our error case, we have 2 `BackendIndex`, one for `QuantizedCPU` and one for `CPU`. The native function doesn't have a kernel in `QuantizedCPU` but we still use a default namespace (`at::native`) for it. Since we have a custom namespace for dispatch key `CPU`, we ran into the assertion error.

This PR changes the assertion criteria. We only error out if a namespace has two or more kernels and they have two or more different namespaces.

Test Plan: rely on newly added unit test

Differential Revision: D38101345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82133
Approved by: https://github.com/iseeyuan
2022-07-29 22:53:58 +00:00
PyTorch MergeBot
3b9cbb1738 Revert "Change SymIntNode into an intrusive pointer (#82432)"
This reverts commit 7be44f8158.

Reverted https://github.com/pytorch/pytorch/pull/82432 on behalf of https://github.com/ezyang due to segfaults on test but not caught in CI
2022-07-29 20:08:59 +00:00
Edward Z. Yang
7be44f8158 Change SymIntNode into an intrusive pointer (#82432)
This will make the pointer type a single word, which is important
for packing it into an int64_t

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82432
Approved by: https://github.com/albanD, https://github.com/Krovatkin
2022-07-29 17:32:54 +00:00
Peter Bell
ba4727d4e5 Codegen: Parse deprecated signatures as a full FunctionSchema (#82179)
Deprecated signatures are currently "parsed" manually to find the
relative order of the argument names and all other information is
inferred from the aten schema for the non-deprecated overload.
However, this leads to problems if the argument names don't match or
if there are multiple candidates that match the ATen function call.

Instead, this makes the deprecated function a full FunctionSchema and
so the entire python signature comes solely from the deprecated
schema, with the `aten:` clause only used for the dispatch lambda call.

I have confirmed locally that there is no change to
`python_torch_functionsEverything.cpp`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82179
Approved by: https://github.com/albanD
2022-07-29 17:19:54 +00:00
Edward Z. Yang
2f95b61cea Revert "Revert "Make factory functions CompositeExplicitAutograd (#82251)"" (#82470)
This reverts commit 1df307f334.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82470
Approved by: https://github.com/zou3519
2022-07-29 17:06:07 +00:00
PyTorch MergeBot
1df307f334 Revert "Make factory functions CompositeExplicitAutograd (#82251)"
This reverts commit 9943ca3ce6.

Reverted https://github.com/pytorch/pytorch/pull/82251 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally
2022-07-29 03:05:59 +00:00
Edward Z. Yang
fd5ac1e6b5 Rename SymbolicIntNode to SymIntNodeImpl (#82350)
Done via

```
git grep -l 'SymbolicIntNode' | xargs sed -i 's/SymbolicIntNode/SymIntNodeImpl/g'
```

Reasoning for the change:

* Sym is shorter than Symbolic, and consistent with SymInt
* You usually will deal in shared_ptr<...>, so we're going to
  reserve the shorter name (SymIntNode) for the shared pointer.

But I don't want to update the Python name, so afterwards I ran

```
 git grep -l _C.SymIntNodeImpl | xargs sed -i 's/_C.SymIntNodeImpl/_C.SymIntNode/'
```

and manually fixed up the binding code

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82350
Approved by: https://github.com/Krovatkin
2022-07-28 18:27:45 +00:00
Edward Z. Yang
9943ca3ce6 Make factory functions CompositeExplicitAutograd (#82251)
This also makes them not decompose when we switch Python key.
Note that CompositeExplicitAutogradNonFunctional maybe be overly
conservative for some implementations (which actually call into
other functional ops), but for now I just uniformly apply this
everywhere to avoid errors.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82251
Approved by: https://github.com/bdhirsh, https://github.com/zou3519
2022-07-28 18:18:51 +00:00
Richard Zou
2d5318434e Generate vmap plumbing on all native_functions, not just ones in allowlist (#82352)
Motivation
- The initial motivation for the allowlist is that we were checking in
VmapGeneratedPlumbing.h to pytorch/functorch but people were changing
schemas of operators in pytorch/pytorch. The allowlist helped reduce the
number of collisions (because people change schemas of more operators
than we had in the allowlist). This is no longer a problem because
functorch is in the pytorch/pytorch repo
- Avoid merge conflicts. Multiple people editing the allowlist leads to
merge conflicts; getting rid of that alleviates it.

Test Plan:
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82352
Approved by: https://github.com/ezyang
2022-07-27 20:39:37 +00:00
Richard Zou
5c92777307 Stop checking in VmapGeneratedPlumbing.h (#82351)
This PR changes VmapGeneratedPlumbing.h to be generated by torchgen. The
output file is ATen/VmapGeneratedPlumbing.h.

Why generate this file inside PyTorch codegen instead of a separate step
in functorch?
- I can't figure out how to get functorch's fbcode target to generate
- functorch's build system will, in the mid-term, be absorbed into
pytorch's build system, so I don't want to do the extra work of adding
a step to the functorch build process.

Test Plan:
- build pytorch, build functorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82351
Approved by: https://github.com/ezyang
2022-07-27 20:39:37 +00:00
Edward Z. Yang
d38ffa6a4c Make all of new_/_like factory functions composite explicit autograd (#82238)
Once CompositeImplicitAutograd gets registered to Python key, this will
ensure that tensor subclasses can interpose on these functions directly
rather than getting decomposed.  We prefer not decomposing as these
functions are functional, but their implementations use inplace
operations (and are thus more difficult to deal with, unless you use
functionalization.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82238
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
2022-07-27 18:33:46 +00:00
Nikolay Korovaiko
d2c47d559c Revert "Revert "Enabling SymInt in autograd; take 3 (#81145)"" ; make sure is_intlist checks for symintnodes (#82189)
### Description
<!-- What did you change and why was it needed? -->

### Issue
<!-- Link to Issue ticket or RFP -->

### Testing
<!-- How did you test your change? -->

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82189
Approved by: https://github.com/ezyang
2022-07-26 20:47:11 +00:00
Nikolay Korovaiko
30e74be784 a new section for ir generation (#81847)
This is to get a conversation started.

* @JackCaoG we could add attributes to items in `ir_codegen` section to customize IR generation logic (e.g. not generating `::Lower`). Though it could be a bit tricky to thread it through.
* Adding an extra argument to `map_codegen` to filter native functions out seems like a step in the right direction. Otherwise, it's a bit confusing how do we go from a full list to a codegen list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81847
Approved by: https://github.com/JackCaoG, https://github.com/wconstab, https://github.com/bdhirsh
2022-07-26 20:39:07 +00:00
Will Constable
4f34cd6d1e Replace all CHECK_ and DCHECK_ with TORCH_* macros (#82032)
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases.

All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed.
c10/util/logging_is_not_google_glog.h
c10/util/logging_is_google_glog.h

Fixes https://github.com/pytorch/pytorch/issues/81415

cc @miladm @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032
Approved by: https://github.com/soumith, https://github.com/miladm
2022-07-26 01:20:44 +00:00
Wei-Sheng Chin
64094d81fe Remove unused line (#82019)
As title. #80251 introduced a new branch but forgot deleting the old one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82019
Approved by: https://github.com/ezyang
2022-07-24 16:30:37 +00:00
PyTorch MergeBot
c078476eb0 Revert "Enabling SymInt in autograd; take 3 (#81145)"
This reverts commit 032facd6e6.

Reverted https://github.com/pytorch/pytorch/pull/81145 on behalf of https://github.com/jeanschmidt due to breaking internal builds
2022-07-22 11:15:20 +00:00
Nikolay Korovaiko
032facd6e6 Enabling SymInt in autograd; take 3 (#81145)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81145
Approved by: https://github.com/ezyang
2022-07-22 00:14:50 +00:00
Edward Z. Yang
6f0c253956 Add sparse, quantized and nested tensor meta support to codegen (#81793)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81793
Approved by: https://github.com/cpuhrsch, https://github.com/bdhirsh
2022-07-21 21:23:56 +00:00
Edward Z. Yang
ec91f42d79 Sync up DispatchKey in model with C++ (#81770)
I also dropped some keys that are not useful for codegen.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81770
Approved by: https://github.com/bdhirsh
2022-07-21 21:23:54 +00:00
Peter Bell
5f2e31797a Replace _dtype_default_type_hack (#81479)
Currently any function with a default dtype other than None has to be
manually entered into this function. Instead, this reads the default
directly from `native_functions.yaml`. In order to do this, I also
change `PythonSignatureGroup` to take `tensor_options_args` from the
functional variant since the out variant doesn't actually have tensor
options arguments to take the default values from.

Also note that we need to use `default_init` instead of `default`
because the out argument version doesn't have a `tensor_options`
argument to extract the default value from and so the PythonSignature
objects wouldn't match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81479
Approved by: https://github.com/albanD
2022-07-21 16:42:49 +00:00
Brian Hirsh
ed0091f8db fix view_copy kernel striding check logic (#81553)
The composite kernel for `view_copy` that we generate is special-cased a bit for efficiency to avoid having to do extra clones in some cases.

That logic was slightly wrong though, and is fixed here (it needs to mirror the logic in `reshape()`).

It manifested as a debug assert firing for Lazy Tensor, which I confirmed no longer fires when running this script:
```
# ran with "python test_ltc_only_torch.py --device=lazy --sync=1 --nvtx=1"
import torch

import torch._lazy
from torch._lazy.ts_backend import init as init_ts_backend
init_ts_backend()
torch.manual_seed(42)
from transformers import BertForSequenceClassification

def parse_args():
  import argparse
  parser = argparse.ArgumentParser(description='')
  parser.add_argument('--device', type=str, default='cuda')
  parser.add_argument('--sync', type=bool, default=False)
  parser.add_argument('--nvtx', type=bool, default=False)
  return parser.parse_args()

args = parse_args()

device = args.device
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', return_dict=True)

from transformers import AdamW
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
text_batch = ["I love Pixar.", "I don't care for Pixar."]
encoding = tokenizer(text_batch, return_tensors='pt', padding=True, truncation=True)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)

model = model.to(device)
model.train()

no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
    {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
    {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5)
labels = torch.tensor([1,0]).unsqueeze(0).to(device)
for _ in range(6):
  torch.cuda.nvtx.range_push(f'Iter{_}')

  torch.cuda.nvtx.range_push('F')
  outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
  if args.sync:
    torch._lazy.mark_step()
    torch._lazy.wait_device_ops()
  torch.cuda.nvtx.range_pop()

  loss = outputs.loss

  torch.cuda.nvtx.range_push('B')
  optimizer.zero_grad()
  loss.backward()
  if args.sync:
    torch._lazy.mark_step()
    torch._lazy.wait_device_ops()
  torch.cuda.nvtx.range_pop()

  torch.cuda.nvtx.range_push('O')
  optimizer.step()
  if args.sync:
    torch._lazy.mark_step()
    torch._lazy.wait_device_ops()
  torch.cuda.nvtx.range_pop()

  torch.cuda.nvtx.range_pop()
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81553
Approved by: https://github.com/ezyang
2022-07-19 13:47:05 +00:00
Mengwei Liu
9f873ed7c8 [torchgen] support codegen'd C++ API for a mixture of namespaces (#81581)
Summary:
In #77710 I introduces some hack to allow static dispatch to take namespaces. After we introduced namespace into ops and kernels, we don't have to pass namespace into `static_dispatch()`; instead we will generate ops with the kernel namespace for `Functions.h`. After this diff:

If we have a yaml file looking like this:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
  dispatch:
    CPU: at::op_1_kernel # ATen kernel

- func: op_2(Tensor(a) self) -> Tensor(a)
  dispatch:
    CPU: custom::op_2_kernel # custom kernel
```
`Functions.h` will contain the following C++ APIs:
```
TORCH_API inline at::Tensor & op_1(at::Tensor & self) {
  return at::cpu::op_1_kernel(self);
}

TORCH_API inline at::Tensor & op_2(at::Tensor & self) {
  return custom::cpu::op_2_kernel(self);
}
```

Test Plan: Rely on CI

Differential Revision: D37900753

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81581
Approved by: https://github.com/iseeyuan
2022-07-19 07:46:36 +00:00
Sergii Dymchenko
19a296486b Remove unused local variables from generator.py (#81505)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81505
Approved by: https://github.com/seemethere
2022-07-18 16:26:59 +00:00
Huy Do
a4647cc1fa Apply ufmt linter to all py files under torchgen (#81570)
Previous batches:
* https://github.com/pytorch/pytorch/pull/81285
* https://github.com/pytorch/pytorch/pull/81335

We have multiple batches here to minimize merge conflicts and reviewing process. Once everything has been formatted by ufmt (black+usort), the current black linter will be removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81570
Approved by: https://github.com/ezyang
2022-07-16 03:52:25 +00:00
Edward Z. Yang
fca03eeec1 Make proxy tensor support item() calls on torch.tensor constants (#81192)
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview.

Let's break down the parts of this PR:

* Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode.
* Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.)
* New `lift_fresh` view operator.  Note that like lift, we have to manually write the functionalize kernel for these functions.
* The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.)

This is mildly BC-breaking if anyone was previously interposing on
at::lift, but this operator was relatively new and I checked
functorch which has no explicit reference to lift.  So I think it
should not be too disruptive.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192
Approved by: https://github.com/samdow, https://github.com/bdhirsh
2022-07-15 03:53:40 +00:00
Sergii Dymchenko
3dea7fe6f3 Remove unused local variables from gen.py (#81508)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81508
Approved by: https://github.com/huydhn
2022-07-15 01:26:32 +00:00
Tim Gates
3a87b47de9 docs: Fix a few typos (#81435)
There are small typos in:
- caffe2/python/recurrent.py
- test/distributed/test_c10d_nccl.py
- test/test_fx.py
- torch/csrc/jit/runtime/autodiff.cpp
- torchgen/gen.py

Fixes:
- Should read `propagation` rather than `propogation`.
- Should read `multiplied` rather than `multuplied`.
- Should read `eliminate` rather than `elminate`.
- Should read `dispatcher` rather than `disaptcher`.

Semi-automated pull request generated by
https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81435
Approved by: https://github.com/ngimel
2022-07-14 04:20:26 +00:00
Huy Do
8f07b7a069 Fix circular import error in torchgen (#81355)
This also formats `tools/pyi/gen_pyi.py` with `usort` to test the fix because that is how the bug was discovered. The
usort-formatted `gen_pyi.py` should work now without any issues

Fixes #81294

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81355
Approved by: https://github.com/ezyang
2022-07-13 03:16:38 +00:00
Mengwei Liu
80f6d2e9e6 [torchgen] Extract out schema registration logic into a function (#80780)
Summary:
A followup to  #78015 and #79733. In those PRs I introduced custom namespace support into:
* `Register<DispatchKey>.cpp`
* `RegisterSchema.cpp`
* `NativeFunctions.h`

This PR extracts out logic that generates schema registration code (used in `RegisterSchema.cpp`) into a function so that it can be easily tested and reused. Added unit test to cover the logic as well.

Test Plan: Rely on newly added unit tests.

Differential Revision: D37581186

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80780
Approved by: https://github.com/iseeyuan
2022-07-12 21:52:42 +00:00
Brian Hirsh
f84b30f790 fix functionalization regression introduced by ProxyTorchDispatchMode, migrate testing to make_fx (#80416)
`ProxyTorchDispatchMode` was added recently as part of `make_fx`, which was secretly causing the meta tensor calls used inside of functionalization to get baked into the graph. It also wasn't caught because the functionalization tests in core don't use `make_fx`, and the tests in functorch aren't as comprehensive.

Now that `make_fx` is in core, I also ported the functionalization test infra over to use it, which would have caught the regression. This also makes the tests cleaner, since mode-based tracing lets us pick up factory functions in the trace output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80416
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-07-12 01:46:16 +00:00
Mengwei Liu
5c8a9803c8 [torchgen] Support multiple namespace in NativeFunctions.h (#79733)
Summary:
This is a follow up to #78015. This PR
* introduces namespace logic for generating `NativeFunctions.h`.
* adds helper function to extract namespace from string
* relaxes the constraint on the levels we support for custom kernel namespace to 2

Test Plan:
Yaml entry:
```
- func: unsqueeze.out(Tensor(a) self, int dim, *, Tensor(a!) out) -> Tensor(a!)
  variants: function
  device_check: NoCheck
  dispatch:
    CPU: custom_1::custom_2::unsqueeze
```

Generated `NativeFunctions.h`:

```
namespace custom_1 {
namespace custom_2 {
namespace native {
    TORCH_API at::Tensor & unsqueeze(const at::Tensor & self, int64_t dim, at::Tensor & out);
} // namespace native
} // namespace custom_2
} // namespace custom_1

```

Differential Revision: D37198111

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79733
Approved by: https://github.com/bdhirsh
2022-07-08 21:56:52 +00:00
Brian Hirsh
960758b0b7 fix overload ambiguity with functional ops; fix _foreach op grouping (#80556)
This should fix the last issue that @anijain2305 hit when running ResNet with TorchDynamo <> functionalization.

Today if you try to call an `OpOverloadPacket` from python with some arguments, we will use the types of those arguments to perform overload resolution. With some functional variants of ops, this can be ambiguous.

Today this affects just one op: `_fused_moving_avg_obs_fq_helper`, although it would potentially affect e.g. `native_batch_norm` in the future.

Example:
```
# There are technically two overloads:
# torch.ops.aten._fused_moving_avg_obs_fq_helper.default (returns 2 argument, mutates 4 of its inputs inplace)
# torch.ops.aten._fused_moving_avg_obs_fq_helper.functional (returns 6 argument, mutates none of its inputs)

# We pick the wrong one - no way to know that we should pick the functional one, just from the call site.
outs = torch.ops.aten._fused_moving_avg_obs_fq_helper(a, a, a, a, a, a, a, 1.0, 0, 1, 0)
# raises an error - tries to call the overload with only 2 returns
return _fused_moving_avg_obs_fq_helper_functional[5]
```

Specifically, functionalization will bake `_fused_moving_avg_obs_fq_helper.functional` into the graph, but when AOTAutograd tries to compile with TorchScript, it needs to remove the overload name (TS doesn't know how to parse overload names directly, so we need to remove the overload name and let it infer the right overload at runtime later- so it picks the wrong one).

The situation is pretty similar to inplace; `ops.aten.add` and `ops.aten.add_` represent two different `OverloadPacket` objects; they can't be overloads of the same op, because their schemas would be ambiguous - the alias annotations are different, but that isn't enough to disambiguate).

In this PR, I try to fix the situation in a pretty similar way to how we handle `inplace` in the data model: `inplace` ops get their own base operator name, but they are represented as a flag inside of `BaseOperatorName` in the data model.

Two other important changes that I made as part of this PR:

(1) Originally, there were ~100 different `*_functional` operators: e.g. we had operators named `resize.functional` and `zero.functional`. The `_functional` bit isn't actually necessary in most cases: it's only necessary for operators that **also** have a `SchemaKind.mutable` variant, where `_fused_moving_avg_obs_fq_helper` is the only op that fits that description today. So I removed the unnecessary notion of "functional" from those other ops. I also added a bunch of assertions to force this restriction.

I think that makes more sense in the long run, because it eliminates an unnecessary difference in the model. E.g. we don't have `add_.Tensor` and `add.Tensor_functional`. We just have `add_.Tensor` and `add.Tensor`.

(2) I noticed that we actually still weren't pairing up a bunch of `_foreach` operators correctly, because their input arguments were different (`self` vs. `tensors`). Since they're private API's, I went ahead and changed the argument names directly so they get matched up. Before this PR, we were generating a separate `_foreach_add` and `_foreach_add.functional` variant in a bunch of cases, that really did the same thing (but happened to have a different name for the first argument).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80556
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-07-06 12:45:11 +00:00
Edward Z. Yang
805120ab57 See if we can elide TORCH_API from inline functions. (#80609)
See https://github.com/pytorch/pytorch/issues/80604

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80609
Approved by: https://github.com/malfet
2022-06-30 23:31:38 +00:00