Commit Graph

119 Commits

Author SHA1 Message Date
Gregory Chanan
68e5172382 Support optional float parameters (float?, optional<double>). (#31517)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517

This is going to be used by upsample (which currently uses magic values to represent optionals).

For now, we just introduce a fake function for testing (torch._test_optional_float(x)).

Test Plan: Imported from OSS

Differential Revision: D19198721

Pulled By: gchanan

fbshipit-source-id: 0a1382fde0927c5d277d02d62bfb31fb574b8c74
2019-12-23 08:33:39 -08:00
Brian Wignall
e7fe64f6a6 Fix typos (#30606)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30606

Differential Revision: D18763028

Pulled By: mrshenli

fbshipit-source-id: 896515a2156d062653408852e6c04b429fc5955c
2019-12-02 20:17:42 -08:00
Jiakai Liu
43fb0015db custom build script (#30144)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30144

Create script to produce libtorch that only contains ops needed by specific
models. Developers can use this workflow to further optimize mobile build size.

Need keep a dummy stub for unused (stripped) ops because some JIT side
logic requires certain function schemas to be existed in the JIT op
registry.

Test Steps:
1. Build "dump_operator_names" binary and use it to dump root ops needed
by a specific model:
```
build/bin/dump_operator_names --model=mobilenetv2.pk --output=mobilenetv2.yaml
```

2. The MobileNetV2 model should use the following ops:
```
- aten::t
- aten::dropout
- aten::mean.dim
- aten::add.Tensor
- prim::ListConstruct
- aten::addmm
- aten::_convolution
- aten::batch_norm
- aten::hardtanh_
- aten::mm
```
NOTE that for some reason it outputs "aten::addmm" but actually uses "aten::mm".
You need fix it manually for now.

3. Run custom build script locally (use Android as an example):
```
SELECTED_OP_LIST=mobilenetv2.yaml scripts/build_pytorch_android.sh armeabi-v7a
```

4. Checkout demo app that uses locally built library instead of
downloading from jcenter repo:
```
git clone --single-branch --branch custom_build git@github.com:ljk53/android-demo-app.git
```

5. Copy locally built libraries to demo app folder:
```
find ${HOME}/src/pytorch/android -name '*.aar' -exec cp {} ${HOME}/src/android-demo-app/HelloWorldApp/app/libs/ \;
```

6. Build demo app with locally built libtorch:
```
cd ${HOME}/src/android-demo-app/HelloWorldApp
./gradlew clean && ./gradlew assembleDebug
```

7. Install and run the demo app.

In-APK arm-v7 libpytorch_jni.so build size reduced from 5.5M to 2.9M.

Test Plan: Imported from OSS

Differential Revision: D18612127

Pulled By: ljk53

fbshipit-source-id: fa8d5e1d3259143c7346abd1c862773be8c7e29a
2019-11-20 13:16:02 -08:00
Xingying Cheng
177c95e9bc Migrate return type void to () for native functions. (#28290)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28290

ghstack-source-id: 92368250

Test Plan:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28290
ghstack-source-id: 92368250

Differential Revision: D17565528

fbshipit-source-id: f4870bb9ee4f4e7c48df4d68508b512d25ed277c
2019-10-22 15:23:20 -07:00
Jiakai Liu
5f1563296b remove AutoNonVariableTypeMode from jit-op-registry (#28402)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28402

Revert PR #27274 as it's absorbed by PR #28398.

Test Plan: - make sure all mobile models can load and run

Differential Revision: D18055993

Pulled By: ljk53

fbshipit-source-id: 0d0ffdf2cfae18577189d3b69de15fa892210916
2019-10-22 14:08:58 -07:00
Divyansh Singhvi
3397d41b8a Wrapping namespace Reduction in namespace at (#26606) (#27422)
Summary:
1) Wrapped namespace `Reduction` in namespace `at`
2) Prefixed `at::` wherever `Reduction::` is used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27422

Differential Revision: D17913759

Pulled By: yf225

fbshipit-source-id: 8f00ca01cad2e7f673d316b128abf59c026e216c
2019-10-15 11:05:40 -07:00
Edward Yang
013ca32730 Devirtualize numel() (#27294)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27294

Fixes #27291

I'm a little annoyed that I have to reintroduce manual binding code.  But it's
probably not a good idea to teach the codegen how to do fastpath functions
(is it?)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17763486

Pulled By: ezyang

fbshipit-source-id: 5793b53e2db80b044e57faae325a95c649d9d459
2019-10-09 11:43:50 -07:00
Jiakai Liu
7bd7a3d806 add AutoNonVariableTypeMode for USE_STATIC_DISPATCH on JIT->ATen path (#27274)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27274

This is yet another fix to address #26764.

PR #26908 toggles NonVariableTypeMode in ATen dispatcher, which is where
USE_STATIC_DISPATCH takes place thus it's most logically sound place to do
such tweaks.

However, we observed nontrivial perf regression due to this fix. Turns out
the numel() tensor method gets called in several for-loops thus incurs ~7M
thread_local updates in a single forward call:
```
7173330 numel
    558 size
    416 q_scale
    302 _empty_affine_quantized
    288 contiguous
    257 q_zero_point
    216 qscheme
    173 empty
    110 set_
    105 as_strided
    104 permute
...
```

As numel() is not called from a single place so a natural workaround is to
update function_wrapper.py so that it only adds the guard on gen_namespace_function()
case and ignore the gen_tensor_method() case. But some tensor methods are actually
being called from JIT side directly (e.g. "aten::eq_" -> "(self).eq_") so the
only "band aid" left on the table is to insert guard on JIT->aten path as originally
did on #26868 - this is a simplified version of it as it doesn't hurt to extend the
NonVariableMode scope a little bit to also cover stack drop/pack calls.

On Android we only expose JIT API so we don't need worry about TensorMethods being
called directly. On iOS we don't provide a wrapper yet but we can mention this caveat
in the doc. Hopefully by the time it's widely used we can finish Variable/Tensor
unification and remove all these hacks.

Test Plan:
- Verified it runs quantized/fp32 MobileNetV2 models;
- Verified it fixes the perf regression (revert #26908 separately);

Differential Revision: D17732489

Pulled By: ljk53

fbshipit-source-id: c14ca66aebc6b6f17ad6efac7ca47f9487c98de5
2019-10-03 12:24:29 -07:00
Jiakai Liu
60372dc713 remove backward functions from jit-op-registry for mobile build (#26851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26851

Add codegen option to remove backward ops from jit-op-registry as they are not
likely to be used for inference only mobile build.

Measured ARM-v7 AAR build size change: 5,804,182 -> 5,331,219.

Test Plan: - build and integrate with demo app;

Differential Revision: D17587422

Pulled By: ljk53

fbshipit-source-id: 08c0fc7a710698a0d4baaf16bbb73cb812b1126a
2019-09-25 23:17:25 -07:00
Lucian Grijincu
9c9f14029d Revert D16929363: Revert D16048264: Add static dispatch mode to reduce mobile code size
Differential Revision:
D16929363

Original commit changeset: 69d302929e18

fbshipit-source-id: add36a6047e4574788eb127c40f6166edeca705f
2019-08-20 17:08:31 -07:00
Lucian Grijincu
bd6cf5099b Revert D16048264: Add static dispatch mode to reduce mobile code size
Differential Revision:
D16048264

Original commit changeset: ad1e50951273

fbshipit-source-id: 69d302929e183e2da26b64dcc24c69c3b7de186b
2019-08-20 16:26:18 -07:00
Roy Li
6824c9018d Add static dispatch mode to reduce mobile code size
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22335

Test Plan: Imported from OSS

Differential Revision: D16048264

Pulled By: li-roy

fbshipit-source-id: ad1e50951273962a51bac7c25c3d2e5a588a730e
2019-08-20 12:21:32 -07:00
Sebastian Messmer
02f794b102 Add overload names to native_functions.yaml (#23532)
Summary:
We need this to be able to register them with the c10 dispatcher.

The overload names are based on one-letter-per-argument-type.

Script used to change native_functions.yaml and derivatives.yaml: P75630718

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23532
ghstack-source-id: 87539687

Differential Revision: D16553437

fbshipit-source-id: a1d0f10c42d284eba07e2a40641f71baa4f82ecf
2019-08-01 02:08:37 -07:00
Richard Zou
9817d7e16b Implement named inference rule for torch.sum
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23081

Test Plan:
- New tests [namedtensor ci]

Imported from OSS

Differential Revision: D16419174

Pulled By: zou3519

fbshipit-source-id: 8679f77f121664d0398d7f062a53c0fa37482481
2019-07-26 08:50:40 -07:00
Sebastian Messmer
bbc53bffef AliasAnalysisKind::CONSERVATIVE/FROM_SCHEMA (#22175)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22175

- Rename AliasAnalysisKind::DEFAULT to AliasAnalysisKind::CONSERVATIVE
- Introduce AliasAnalysisKind::FROM_SCHEMA that means the alias annotations of the schema should be honored
- Introduce AliasAnalysisKind::INTERNAL_SPECIAL_CASE to be able to run assertions that internal special cased ops are treated correctly

- aten:: and prim:: ops are not treated as special cases anymore, but just use AliasAnalysisKind::FROM_SCHEMA
- There's a set of assertions to ensure that aten:: and prim:: ops are all correctly set up to use AliasAnalysisKind::FROM_SCHEMA. Once this PR lands and passes all tests, we will remove those assertions and open up for the possibility of different AliasAnalysisKind settings for aten:: and prim:: ops

Differential Revision: D15929595

fbshipit-source-id: 7c6a9d4d29e13b8c9a856062cd6fb3f8a46a2e0d
2019-07-25 11:53:51 -07:00
Vitaly Fedyunin
516c7e4456 Adding memory_format to empty and empty_like operators (#20558)
Summary:
Original RFC https://github.com/pytorch/pytorch/issues/19092

To ensure that we are not introducing BC breaking change, empty_like returns contiguous tensor by default.

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nCwh = torch.empty_like(nhwC)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Now we need a way to preserve memory format in `empty_like`

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nhwC, memory_format=torch.preserve_format)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

like_nCwh = torch.empty_like(nCwh, memory_format=torch.preserve_format)
like_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Usage of `torch.preserve_format` allows us to avoid `if` constructs.

We can also generate different memory format outputs

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nCwh, memory_format=torch.channels_last)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

new_nCwh = torch.empty_like(nhwC, memory_format=torch.contiguous_format)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20558

Differential Revision: D15502474

Pulled By: VitalyFedyunin

fbshipit-source-id: 2e120d57eefad6fb8e04b8322c79871392f64331
2019-06-26 11:48:27 -07:00
Richard Zou
4bc89bd5a6 Implement tensor.select(Dimname,int) (#21795)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21795
ghimport-source-id: d13af6078a47de1d6045cfbb7d278c378fe734fe

Test Plan: Imported from OSS

Differential Revision: D15833457

Pulled By: zou3519

fbshipit-source-id: fa52aff25ce0e12f31da3eef83ea948b4f7a5d9f
2019-06-21 16:16:45 -07:00
Sebastian Messmer
275087383b ListPtr->List DictPtr->Dict step 2 (#21937)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21937

This changes call sites to use the new naming scheme

Reviewed By: zdevito

Differential Revision: D15892404

fbshipit-source-id: 8d32aa90a0ead1066688166478f299fde9c2c133
2019-06-19 18:02:05 -07:00
Jerry Zhang
fa5263af2c Add set_quantizer_ for QTensor (#21852)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21852

To enable change of q_scale and q_zero_point in `copy_`

Differential Revision: D15793427

fbshipit-source-id: a7040b5b956d161fd6af6176287f4a4aa877c9be
2019-06-18 19:50:12 -07:00
Jerry Zhang
94f903654c Add qscheme() method (#20608)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20608

Exposing QScheme in python as Python objects like `torch.qscheme.per_tensor_affine` etc.

Reviewed By: zafartahirov

Differential Revision: D15364354

fbshipit-source-id: 4d6a96d67e9ead051cf4a8f934553a8c7232fdb7
2019-06-14 16:29:29 -07:00
Richard Zou
5c0e058950 Implement at::empty(IntArrayRef, DimnameList?, TensorOptions) in aten (#21647)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21647
ghimport-source-id: 1db4ec31f047f7854a39c28e2b38918dc6b44f42

Differential Revision: D15804425

Pulled By: zou3519

fbshipit-source-id: 575cc3de09287efe75e7052df129626748208d0d
2019-06-13 20:38:19 -07:00
Sebastian Messmer
b527e48588 Use c10::List (#21177)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21177

- Integrate c10::ListPtr into IValue and the c10 dispatcher.
- Streamline conversion to/from IValue. Before, we had IValue::to<> and kernel_functor.h had its own ivalue_to_arg_type and return_type_to_ivalue. They are now unified. Also, this means that nested types like Dicts of Lists of Optional of Dict of ... do work as expected now

Differential Revision: D15476433

fbshipit-source-id: bde9df80df20091aa8e6ae17ba7e90abd149b954
2019-06-12 13:58:24 -07:00
Roy Li
313ef4f5d5 Make data_ptr a method on Tensor (#20878)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20878
ghimport-source-id: f19993d97ecb8cfcd60b371d9ed49e3ad2e051c7

Differential Revision: D15482061

Pulled By: li-roy

fbshipit-source-id: c0563ce849fc3277e86a1a58bd384e38365786b2
2019-05-30 11:47:59 -07:00
Roy Li
3038cf8eee Remove THSTensor and SparseTensorRef (#20877)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20877
ghimport-source-id: a07f53ca158f9a3dce7a25ef5a169871e98ea3ea

Differential Revision: D15480353

Pulled By: li-roy

fbshipit-source-id: 1152dbc4df827ded3be1a57f007a6b7de12f567f
2019-05-29 01:37:03 -07:00
Vitaly Fedyunin
5b78a5eadb Memory format support for contiguous and is_contiguous (#20455)
Summary:
#19975 was separated by 2 PRs.

This one:

Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.

At this moment both functions just operate with strides and doesn't store any tensor state.

(Original RFC #19092)

-----

Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).

Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.

1.  `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.

    - Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.

        `x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.

2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.

    - `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.

Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455

Differential Revision: D15341577

Pulled By: VitalyFedyunin

fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
2019-05-16 07:18:24 -07:00
Vitaly Fedyunin
1c5073fb4b Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.

Now compatible with both torch scripts:
 `  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
`  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`

Same checked for all similar functions `rand_like`, `empty_like` and others

It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952

Differential Revision: D14801792

Pulled By: VitalyFedyunin

fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
2019-04-16 11:06:15 -07:00
Ilia Cherniavskii
f1c8e01524 Add input information in RecordFunction calls (#18717)
Summary:
Add input information into generated RecordFunction calls in
VariableType wrappers, JIT operators and a few more locations
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18717

Differential Revision: D14729156

Pulled By: ilia-cher

fbshipit-source-id: 811ac4cbfd85af5c389ef030a7e82ef454afadec
2019-04-15 20:28:08 -07:00
Vitaly Fedyunin
b7c830b916 Revert "Adding pin_memory kwarg to zeros, ones, empty,... (#18854)
Summary:
This reverts commit c484cf43a0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18854

Differential Revision: D14778393

Pulled By: VitalyFedyunin

fbshipit-source-id: 4b5a1f5b1c091bbc4a8e75614734cc011d26b452
2019-04-05 06:25:33 -07:00
Wanchao Liang
a21e256e8d Fix contiguous AD and Autogradzero inconsistency (#18633)
Summary:
Fixes #17962
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18633

Differential Revision: D14700449

Pulled By: wanchaol

fbshipit-source-id: 3d15d67c01b69b28394a0f2f001db90ed9fd31dc
2019-04-03 12:47:28 -07:00
Vitaly Fedyunin
c484cf43a0 Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors. (#18455)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455

Reviewed By: ezyang

Differential Revision: D14672084

Pulled By: VitalyFedyunin

fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
2019-04-02 08:48:19 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Gregory Chanan
ea652973f2 Fix truncation of default float values in JIT signatures. (#18044)
Summary:
In python2, float values get truncated.  We are storing default float values as floats (not 100% sure why?), which results in the defaults being truncated in the JIT and not matching the (specified) native function signatures.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18044

Reviewed By: ezyang

Differential Revision: D14469868

Pulled By: gchanan

fbshipit-source-id: a456de599e8dab106966bcac7a6033f02ce3cdd2
2019-03-15 07:43:15 -07:00
Christian Puhrsch
02c48cced9 Remove (almost all) TensorOptions from native_functions.yaml (#17385)
Summary:
Stacked on top of https://github.com/pytorch/pytorch/pull/17386

Brings us to 1014/1106 of writing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17385

Differential Revision: D14248008

Pulled By: cpuhrsch

fbshipit-source-id: 033e00de91e3edf7ae01ca03ebe436c0446b3b5c
2019-03-12 08:00:00 -07:00
Christian Puhrsch
b290a16b2d Use return names in JIT operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17638

Differential Revision: D14295606

Pulled By: cpuhrsch

fbshipit-source-id: 62040ac65434411357808735f0fe6cd33cc1c30f
2019-03-07 23:34:42 -08:00
Christian Puhrsch
e47aeede32 Use name for output variables instead of out in JIT (#17386)
Summary:
This adds 88 matches.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17386

Differential Revision: D14179139

Pulled By: cpuhrsch

fbshipit-source-id: 2c3263b8e4d084db84791e53290e8c8b1b7aecd5
2019-02-27 14:03:33 -08:00
Xiang Gao
eae139e18f Support named tuple return from operators on JIT (#16253)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/16233

The following changes are made:
- Modify `TupleType` to store optional field names
- Modify schema matching to return fill in those field names when creating  `TupleType` as return type.
- Modify codegen of JIT to copy field names to schema string
- Modify `SchemaParser` to set field names of returned schema.
- Modify `SimpleValue::attr` to emit tuple indexing for named tuple.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16253

Reviewed By: ezyang

Differential Revision: D13954298

Pulled By: zdevito

fbshipit-source-id: 247d483d78a0c9c12d1ba36e1f1ec6c3f1a3007b
2019-02-10 18:15:56 -08:00
Wanchao Liang
ac00e85e36 Remove undefined tensor in jit script (#16379)
Summary:
This PR is a follow up of #15460, it did the following things:

* remove the undefined tensor semantic in jit script/tracing mode
* change ATen/JIT schema for at::index and other index related ops with `Tensor?[]` to align with what at::index is really doing and to adopt `optional[tensor]` in JIT
* change python_print to correctly print the exported script
* register both TensorList and ListOfOptionalTensor in JIT ATen ops to support both
* Backward compatibility for `torch.jit.annotate(Tensor, None)`

List of follow ups:

* remove the undefined tensor semantic in jit autograd, autodiff and grad_of
* remove prim::Undefined fully

For easy reviews, please turn on `hide white space changes` in diff settings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16379

Differential Revision: D13855677

Pulled By: wanchaol

fbshipit-source-id: 0e21c14d7de250c62731227c81bfbfb7b7da20ab
2019-02-07 11:02:14 -08:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
James Reed
dfb081a7e4 Fix a lot of C++ build warnings (#16411)
Summary:
I went through my build log and did what I thought were reasonable fixes to all the C++ compilation warnings that came up
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16411

Differential Revision: D13901006

Pulled By: jamesr66a

fbshipit-source-id: 02df4e3e5a5c8dd9e69ac9f065cd3f2a80645033
2019-01-31 14:35:56 -08:00
Mikhail Zolotukhin
1905bbb01d Include ATen/core/functional.h directly instead of torch/csrc/utils/functional.h. (#16377)
Summary:
One more shim removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16377

Differential Revision: D13821816

Pulled By: ZolotukhinM

fbshipit-source-id: 007f014d404de51841437db7eef28367a2f6e46b
2019-01-30 14:02:34 -08:00
Mikhail Zolotukhin
47bf30661f Directly include headers from ATen.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16287

Differential Revision: D13792949

Pulled By: ZolotukhinM

fbshipit-source-id: d627d8dc469df048063c70d0b5b8d33fede809a3
2019-01-24 11:22:27 -08:00
Christian Puhrsch
a667767220 Add matches_jit_signature attribute to native_functions.yaml (#16040)
Summary:
If "matches_jit_signature" is set to True for a particular function, we will assume that the func syntax follows the JIT signature syntax. This is a temporary attribute and doesn't need to be set by developers outside the core team. It serves as a means of tracking an ongoing schema unification with the goal of aligning func syntax with other components of PyTorch in order to reduce overall complexity and match coverage of different function descriptions.

Followup PRs might be about removing _out from native_functions.yaml and using Tensor annotations instead, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16040

Reviewed By: ezyang

Differential Revision: D13703176

Pulled By: cpuhrsch

fbshipit-source-id: ce248e1823a6f18efa95502f9f3eebf023b4a46c
2019-01-17 12:39:08 -08:00
Elias Ellison
bebf1f7463 Torch tensor (#15224)
Summary:
Support torch.tensor in script. Already been accepted, trying to reland
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15224

Differential Revision: D13466616

Pulled By: eellison

fbshipit-source-id: f7850da07b0eb11af98f255fc15bd3cf861f2a40
2019-01-03 17:35:17 -08:00
David Riazati
934fc28656 Remove NoneGenerator
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15335

Differential Revision: D13540357

Pulled By: driazati

fbshipit-source-id: a289e5944b65872103f68faac74e18f10e7c6fff
2018-12-21 16:33:37 -08:00
Wanchao Liang
b89b46abfb Remove python_default_init from ATen and use Optional (#15234)
Summary:
Optional clean up. This PR remove python_default_init from the yaml files, and the code-gen, and utilize optional type to do the work.

This also fix the bug in the #13149 to correctly adopt as_strided backward.

Fixes #9941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15234

Differential Revision: D13502044

Pulled By: wanchaol

fbshipit-source-id: 774b61fc4414482cf11d56e22bd0275aefb352a4
2018-12-19 21:38:50 -08:00
Tugrul Ates
560530aeec Optional ScalarType support for native functions & JIT (#15154)
Summary:
For #6593 and #9515

This completes the support for optional<ScalarType> in native, JIT and autograd.

Note: Mostly following the existing implementation for optional<Scalar> that was added in https://github.com/pytorch/pytorch/pull/12582.

This PR introduces a way to make functions accept an optional dtype and it will unblock #9515 by allowing the `dtype` param for type promotion interface:
```
func: name(inputs, *, ScalarType? dtype=None, Casting casting=same_kind)
```

An alternative approach could have been using `ScalarType::Undefined` for the same purpose but without optional, though it would have been a bit hacky.
```
func: name(inputs, *, ScalarType dtype=Undefined, Casting casting=same_kind)
```

Here's an example use of this in action: 971f69eac6

There are already a bunch of native functions that were getting optional `dtype` through function overloading. https://github.com/pytorch/pytorch/pull/15133 is the attempt to migrate all of those. I will send those changes separately after this since some functions (e.g. sum) need quite a bit of change in the codebase. See the commits over there.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15154

Differential Revision: D13457760

Pulled By: tugrulates

fbshipit-source-id: 706134f0bd578683edd416b96329b49a1ba8ab48
2018-12-19 10:45:35 -08:00
Peter Goldsborough
73ee7fda4c Remove deprecated variable_tensor_functions (#15003)
Summary:
Removing the deprecated functions in `torch/csrc/variable_tensor_functions.h` (like `torch::CPU`) and corresponding implementations from `torch/csrc/torch.cpp` from master after the release.

ezyang gchanan soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15003

Differential Revision: D13418086

Pulled By: goldsborough

fbshipit-source-id: a0accdf6f7b0efa1ec07ac7b74b86ff2da37543f
2018-12-11 17:16:11 -08:00
Zachary DeVito
78d594f46c Implement Device as a type in the script (#14666)
Summary:
[ note:  stacked on expect files changes, will unstack once they land ]
This adds DeviceObjType (cannot use DeviceType it is already an enum)
to the type hierarchy and an isDevice/toDevice pair to IValue.
Previous hacks which used an int[] to represent Device are removed
and at::Device is used instead.

Note: the behavior or .to is only a subset of python, we need to
fix the aten op so that it accepts Option[Device] and Optional[ScalarType].
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14666

Reviewed By: suo

Differential Revision: D13290405

Pulled By: zdevito

fbshipit-source-id: 68b4381b292f5418a6a46aaa077f1c902750b134
2018-12-03 16:54:40 -08:00
Wanchao Liang
79ceecec8e Optional undefined tensor support (#13650)
Summary:
This PR is a part of task to unblock standard library export.
* we treat None differently from Tensor and other types, when passing None as Tensor, it's an undefined tensor rather than the None IValue.
* Refine the type system so that we have correct tensor types hierarchy (Dynamic/Tensor/CompleteTensor), Dynamic should be at the top of the inheritance hierarchy.
* It also tries to export bilinear as an example of undefined tensor(None) input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13650

Differential Revision: D12967026

Pulled By: wanchaol

fbshipit-source-id: 6aedccc7ce2a12fadd13d9e620c03e1260103a5a
2018-11-09 11:29:57 -08:00
Edward Yang
464dc31532 Add README to tools, delete defunct scripts. (#13621)
Summary:
Some extra documentation for other bits too.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13621

Differential Revision: D12943416

Pulled By: ezyang

fbshipit-source-id: c922995e420d38c2698ce59c5bf4ffa9eb68da83
2018-11-06 11:20:53 -08:00