Fixes#114844
In the linked issue we have
```
compiled_module = torch.compile(module)
compiled_module.x = ...
compiled_module(...) # Mutates self.x
```
Where since the module mutates `self.x` you would expect `compiled_module.x`
to be updated but actually `compiled_module.x = ...` sets an attribute "x"
on the `OptimizedModule` object while the forward method of the module mutates
`module.x`.
This gives the expected behavior by forwarding `compiled_module.__setattr__`
down to `module.__setattr__`. There is already a corresponding `__getattr__`
so now `compiled_module.x` becomes an alias for `module.x`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122098
Approved by: https://github.com/ezyang, https://github.com/lezcano
Fixes#114844
In the linked issue we have
```
compiled_module = torch.compile(module)
compiled_module.x = ...
compiled_module(...) # Mutates self.x
```
Where since the module mutates `self.x` you would expect `compiled_module.x`
to be updated but actually `compiled_module.x = ...` sets an attribute "x"
on the `OptimizedModule` object while the forward method of the module mutates
`module.x`.
This gives the expected behavior by forwarding `compiled_module.__setattr__`
down to `module.__setattr__`. There is already a corresponding `__getattr__`
so now `compiled_module.x` becomes an alias for `module.x`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122098
Approved by: https://github.com/ezyang, https://github.com/lezcano
Summary:
Seems like `kwargs` is already support in `_infer_argument`, so we don't need the extra assertion `len(kwargs) == 0`.
This optimization ensures compatibility with torch.compile() for LazyModules with kwargs inputs, preventing graph breaks.
Test Plan: Unit tetst and CI
Differential Revision: D53558778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119445
Approved by: https://github.com/yanboliang
Make variables in dict lazy and remove DICT_KEYS guard.
We build the keys of a dict depth-first and we rely on the guards of
each element in the dict to create the correct guards. This allows us to
remove the rather buggy DICT_KEYS guard and make the guard lazy.
The guards are not completely lazy yet, as we instantiate them in
`_HashableTracker._eq_impl` but it should be possible to make them
truly lazy.
Also, adding new types to the supported types within keys should be less
error prone.
This is marginally less efficient when we graph break, but in turn we
should graph break much less. It also makes the dicts code easier to maintain
(removes `is_hashable_python_var`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117625
Approved by: https://github.com/jansel, https://github.com/peterbell10, https://github.com/anijain2305
ghstack dependencies: #117982, #118098, #117983
Summary:
Original commit changeset: 2a9588cfd51b
Original Phabricator Diff: D52062368
Test Plan: In investigating S386328 and S382826, we found checkpoint loading succeed after backout D52062368: S386328_backout_1220_193648
Differential Revision: D52356011
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116243
Approved by: https://github.com/voznesenskym
Fixes#113422Fixes#94575
This is now possible:
```py
model = Model()
compiled_model = torch.compile(model)
model.load_state_dict(compiled_model.state_dict()) # previously key mismatch!
```
This also makes it much easier to checkpoint and load models that were wrapped like so:
```py
FSDP(torch.compile(model))
# or
DDP(torch.compile(model))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113423
Approved by: https://github.com/msaroufim
Enables some tests that were incorrectly not being run and enables PIE794 globally. This rule checks if a classvar is defined twice as flags it as it is likely a bug. In fact, we found several cases where it was a bug. It does have a couple of false positives which I flagged upstream and replaced with noqas: https://github.com/astral-sh/ruff/issues/8497
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112989
Approved by: https://github.com/malfet
The strategy for supporting functools partials is relatively straightforward.
There are 2 cases we need to support:
**1) Functools partials as input**
In this case, we are first seeing the functools partial and it is guaranteed to have a source. As such, the args, keywords, and func of the functools partial are passed through VariableBuilder. As this is the first time we are seeing these objects (as it is an input), we re-enter VariableBuilder with a source referencing the args, keywords, and func as attributes of the input to produce:
- func: A callable VariableTracker (UDF, TorchVariable, etc) depending on the value of `func`
- args: List[VariableTracker] - note, not ListVariableTracker!
- keywords: Dict[str, VariableTracker]
A major benefit of this structure is that it very elegantly matches the args to `call_function`.
We then compose a FunctoolsPartialVariable from the VariableTrackers made above.
**2) Functools partials created within compile**
In this case, we already have all the args as known VTs, and thus just compose a FunctoolsPartialVariable as we do for case (1).
For both (1) and (2) - we propagate all guards from the func, args, and keyword VTs to the FunctoolsPartialVariable
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108846
Approved by: https://github.com/ezyang, https://github.com/jansel
Summary: Currently node metadata "nn_module_stack" is only being used by export. For some export model, we still want to retain nn_module_stack for unspecialized module for various purposes. This diff add a path to also record nn_module_stack when unspecialized module has a source available.
Test Plan: test_export_nn_module_stack_patched_module
Differential Revision: D48841193
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108281
Approved by: https://github.com/yanboliang, https://github.com/tugsbayasgalan
**This PR is a 99% copy paste of Sam Gross** (@colesbury) work at https://github.com/pytorch/pytorch/pull/100642. Copied from there
--------
The NN_MODULE guard now subsumes guards on Module attributes. The check_fn will fail if the module attributes are changed (such as Module.training), parameters, submodules, and buffers are added or removed, and if fields are changed on the type itself.
This gives up specificity in the guard check -- if any field is changed the check_fn fails -- for faster overall checks.
-----
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108528
Approved by: https://github.com/ezyang
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki