This makes it easier to roll out `TORCHELASTIC_USE_AGENT_STORE` by opportunistically swallowing bind errors when the agent store is enabled and the port matches `MASTER_PORT`.
This should be very safe as if the store is somehow not up and the envs are set, the TCPStore client connections will fail to connect so we end up with a slightly different error message but success/failure behavior is identical.
This also pybinds `c10d::SocketError` into Python so we can assert on the error type in tests.
https://docs.google.com/document/d/1CzOn_N53AiFxWGgbyMWSnd2elCJd4lZ-ajPg2lzcxoM/edit?tab=t.0#heading=h.2j2f5dimrdau
Test plan:
```
pytest test/distributed/test_store.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147465
Approved by: https://github.com/fduwjj
So that NVLink SHARP comes with zero-copy on H100+ platforms, for DDP applications.
Less SM usage, less memory contention between NCCL kernel and compute kernels.
Added env `DDP_DISABLE_COMM_MEM` as a back-out option:
```
An environment variable to disable comm-optimized memory pool.
Default is 0, which means comm-optimized memory pool is enabled.
Users can set it to 1 in case of seeing regression or OOM (because this
comm MemPool may not share space with regular compute MemPool).
```
Differential Revision: [D69297766](https://our.internmc.facebook.com/intern/diff/D69297766)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146589
Approved by: https://github.com/syed-ahmed, https://github.com/c-p-i-o, https://github.com/fduwjj
Summary: D68801098 introduced this function signature mismatch issue for printNcclCommProxyTrace. Revert it so that trunk build can pass.
Test Plan:
With the change, build of APS model using rcclexp can now pass:
`sh scripts/ltian/run_jobs/fb_fm_v2/run_fb_fm_v2_job.sh -h T20_GTT_MI300X -n 16 -b 1024 -t [2024-12-06] -d ai_infra_ngs -e ai_infra_training_rnd_tc -x 0`
Reviewed By: c-p-i-o
Differential Revision: D69149588
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146453
Approved by: https://github.com/c-p-i-o
@fegin found an issue where torchft is not compatible with functional collectives.
Found in https://github.com/pytorch/torchtitan/pull/806
The root cause is because PyProcessGroup/PyWork are not compatible with functional collectives due to a nasty ownership bug.
PyWork relies on a pybind trampoline to propagate requests to Python unfortunately the way Pybind works is that the Python object owns the C++ object rather than some form of shared ownership. Thus what happens is that the PyWork Python object will collected when returned to C++ from the PyProcessGroup but the C++ PyWork object still exists. When the PyWork object is used, this causes a deadlock as the corresponding Python object no longer exists
To solve this, we introduce a new `PyWorkHolder` class which holds a reference to the `py::object` as well as the trampoline class. This resolves any dependency issues since we can now hold ownership in C++ to both the Python and C++ objects.
To make this cleaner we introduce a `WORK_OVERRIDE` macro which is a patched version of `PYBIND11_OVERRIDE` that returns a `PyWorkHolder` rather than just `PyWork` and use for all collectives in PyProcessGroup.
Test plan:
```
cd pytorch
pytest test/distributed/test_c10d_functional_native.py
```
```
cd torchft
pytest torchft/process_group_test.py -k functional -v -x -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146376
Approved by: https://github.com/yifuwang
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
Summary:
This PR is basically a replacement of
https://github.com/pytorch/pytorch/pull/140087, which caused some perf
drop due to frequent TCPStore check in watchdog thread. The fix is to move the
tcpstore check in monitoring thread
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.
This API is applied to PG level, compared to the
work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle
the PG failure as a whole, e.g, restarting the PG.
Error handling at the work level is still useful for users to attach
work specific context and debug the RC of the specific failing
work/collective
Note it is critical for all ranks in the PG to be notified about an
error as soon as it occurs, so we introduce an errorType of
REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a
local error) to all other ranks in the PG, the broadcast is done through
TCPStore currently
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144498
Approved by: https://github.com/kwen2501
Summary:
Fix memory leak on shutdown when socket is closed.
We still need to free the buffer to make valgrind happy.
Test Plan:
Use `mtiavm`.
Repro steps provided by cristianlume.
on window 1:
```
vm ssh --vm=0 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2
```
on window 2:
```
vm ssh --vm=1 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2 --rank=1 --store_host=172.16.1.1
```
without the fix:
```
==8766==ERROR: LeakSanitizer: detected memory leaks
```
With fix, no leak
Differential Revision: D68566104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145507
Approved by: https://github.com/XilunWu, https://github.com/d4l3k
Summary:
Explicitly catch c10 error and log the error message only.
The standard exception `e.what()` below ends up logging the stack trace that is confusing users.
See S477887 for details.
Test Plan:
tested locally.
```
buck test caffe2/test/cpp/c10d:TCPStoreTest
buck2 daemon constraint mismatch: Version mismatch; killing daemon...
Starting new buck2 daemon...
Connected to new buck2 daemon.
File changed: fbcode//caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp
File changed: fbsource//xplat/caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp
Watchman fresh instance: new mergebase, cleared graph state, cleared dep files
Soft Error: source_directory_includes_subpackage: Directory `v2.17.1-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.17.1-1/src/tests`.
Soft Error: source_directory_includes_subpackage: Directory `v2.18.3-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.18.3-1/src/tests`.
Soft Error: source_directory_includes_subpackage: Directory `v2.19.3-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.19.3-1/src/tests`.
Buck UI: https://www.internalfb.com/buck2/dbd34fa4-50ed-4eeb-800d-688f5a7bec68
Test UI: https://www.internalfb.com/intern/testinfra/testrun/281475375994918
Network: Up: 1.5GiB Down: 4.7GiB (reSessionID-d6b0568e-2347-4375-a2d9-2d03ca0c2161)
Loading targets. Remaining 0/3024 69199 dirs read, 687558 targets declared
Analyzing targets. Remaining 0/31483 1481904 actions, 1719048 artifacts declared
Executing actions. Remaining 0/250391 77:11:29.7s exec time total
Command: test. Finished 2031 local, 45445 remote, 51473 cache (52% hit) 20:16:36.9s exec time cached (26%)
Time elapsed: 7:32.7s
Tests finished: Pass 8. Fail 0. Fatal 0. Skip 0. Build failure 0
```
Differential Revision: D68516080
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145413
Approved by: https://github.com/fduwjj
Static variables in C++11 is guaranteed to be initialised exactly once, as mentioned [here](https://en.cppreference.com/w/cpp/language/storage_duration)
```
If multiple threads attempt to initialize the same static local variable concurrently,
the initialization occurs exactly once
(similar behavior can be obtained for arbitrary functions with std::call_once.
Usual implementations of this feature use variants
of the double-checked locking pattern,
which reduces runtime overhead for already-initialized local statics
to a single non-atomic boolean comparison.
```
Given that static c10::once_flag is used before, why not just use the associated function to initialised the related static variables? That is the motivation behind this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143255
Approved by: https://github.com/albanD
Reported in https://github.com/pytorch/pytorch/issues/143470, we have a dangling references in `CudaEventCache`. So we want to fix it.
1. We add a unit test to repro the issue mentioned in the issue.
2. Instead of converting variables to shared pointers as suggested in the issue, we then make the cache itself a shared pointer. So if the thread creates the cache dies before all events get recycled, the cache is still there until the last CudaEvent get deleted. (thanks for the suggestion from @kwen2501 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144496
Approved by: https://github.com/kwen2501
Summary:
LLVM-15 has a warning `-Wunused-variable` which we treat as an error because it's so often diagnostic of a code issue. Unused variables can compromise readability or, worse, performance.
This diff either (a) removes an unused variable and, possibly, it's associated code or (b) qualifies the variable with `[[maybe_unused]]`.
- If you approve of this diff, please use the "Accept & Ship" button :-)
Test Plan: Sandcastle
Reviewed By: palmje
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144371
Approved by: https://github.com/Skylion007
Summary:
Dump the active proxyOp status per rank and per communicator when WatchDog timeout or aborts.
Added
`#if defined(USE_ROCM) && defined(NCCL_COMM_DUMP)` guard in the print function, so only rcclexp users will see this dump in console.
This is the changes of the PTD.
Test Plan:
Job with A2A hang due to receiver failing to post receive operations https://fburl.com/mlhub/95vg12r3
{F1971449692}
Reviewed By: c-p-i-o
Differential Revision: D67036093
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143678
Approved by: https://github.com/c-p-i-o
# Summary:
This also makes updates to different repositories throughout FB code to roll any updates needed for this new release.
I was not able to get AsyncMM.cu to build (still trying) Yfiu suggested that I just skip it for now
Test Plan:
Have run various build commands to try and expose errors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143515
Approved by: https://github.com/eqy, https://github.com/Skylion007