Summary:
This pr add a _is_script_object method to differentiate scriptModule and scriptObject, where the formal inherits from ScriptObject in C++ so they both passes the isinstance(obj, torch.ScriptObject) check.
The qualified name of ScriptObject (i.e. custom class) would starts with "__torch__.torch.classes", this has been a widely used assumption for dealing with custom class across our code base.
Test Plan: Add new test.
Differential Revision: D69685316
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147399
Approved by: https://github.com/yushangdi
Summary: Previously we added support for `all_reduce` to non strict. This PR extends this support to other non-functional collectives that are remapped in Dynamo: `all_gather`, `all_gather_into_tensor`, `all_to_all_single`, `reduce_scatter_tensor`.
Test Plan: added unit tests
Differential Revision: D69813991
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147417
Approved by: https://github.com/angelayi
Summary:
Some distributed collectives like `all_reduce` have special handling in Dynamo, where they are mapped to functional collectives. Non-strict was previously blind to such mappings, which means using them would fail to trace. Here we show how intercepting them in non-strict's torch function mode can mimic this remapping logic. More ops to follow.
Side note: a recently added distributed test was in the wrong place, making the expected failures for non-strict not fire because we weren't actually generating those tests to begin with! Now fixed.
Test Plan: moved and updated test
Differential Revision: D69607140
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147133
Approved by: https://github.com/tugsbayasgalan
Summary:
Generate two helper functions for enum classes in generated_serialization_types.h
printEnum: will convert enum values into strings.
parseEnum: will convert strings into enum values.
Test Plan: CI
Differential Revision: D69604850
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147126
Approved by: https://github.com/yiming0416
Summary: Currently inf is serialized as Infinity in JSON which is not standard compliant. Instead we will tweak all special floating points into strings and handle them at json layer.
Test Plan:
see D69060784
CI
Differential Revision: D69186425
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146490
Approved by: https://github.com/yiming0416
Summary: Implement an oss version of modelrunner with clean dependencies. The new oss model runner only removes thrift and only use json header to load the model.
Test Plan: Test will be added in the next diff separately. (D69060784)
Differential Revision: D68846877
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146440
Approved by: https://github.com/SherlockNoMad
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).
This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.
Test Plan: added test
D68880766
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
Previously, in non-strict path, we always error when trying to inplace update a constant tensor because those constant tensors are not actually wrapped by functional tensors. This is correct behaviour in torch.compile, because dynamo makes all constant tensors into buffers and AOTDispatcher just lifts them and wraps them in functional tensors. However, in non-strict, there is no such step that registers constants as buffers so AOTDispatcher panics when it sees these dangling constant tensors when functioanalizing.
Due to recent change in the IR, this is no longer an issue in non-strict path because we don't call AOTDispatcher at training IR level, but now it is a problem for both strict and non-strict when we lower to inference. (lowering to inference is very similar to non-strict tracing) As a result, we have at least one external (https://github.com/pytorch/pytorch/issues/141336) and internal issues reported due to this difference.
To fix this, there are two ways:
1. Make functionalization be aware of constant tensors and map them to functional tensors on the fly. This makes functionalization invariant uglier and could potentially open up a gate for more nasty bugs.
2. Special handle this in export. This seems more aligned with what dynamo does today so i think we should do it this way. I think the current state could benefit from more refactors to make the run_deocmpositions to be more similar to strict export (because both of them now handle this constant registerinig logic) but it is bit complicated to do it now because strict export version of this logic is also not complete because it doesn't take into account of export graph renaming pass etc). I will follow up with more refactors after this PR (T213466691) to unblock users faster.
For future reference:
Why are we not doing "turning constants into non-persistent buffers and never de-register"? The reason is because in some internal models, they rely on module.to to reliably work to move params/buffers to correct device. As a result, buffers are moved while constants are not. In composibility meeting, we agreed that export won't do device agnostic tracing going forward (it will provide a way to specify FakeTensor in CPU that can be configured to be run on GPU), so after that is done, we can always turn constants into non-persistent buffers which will simplify export's constant handling.
Differential Revision: [D68610739](https://our.internmc.facebook.com/intern/diff/D68610739)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145593
Approved by: https://github.com/avikchaudhuri
This enables a check that which a class which only inherits from immutable classes like str, tuple, and NamedTuple, also defined `__slots__` so they don't allocate memory unnecessarily. This also ensure contributors think about how they define their classes with subclass NamedTuples and str, of which we have many in our codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146276
Approved by: https://github.com/aorenste
If a user passes in a namedtuple as an input, currently the input TreeSpec looks like: `TreeSpec(type=namedtuple, context=”class_fqn”, children_spec=[*, *])`
The user then saves the program containing this input TreeSpec. But what happens if they load it in a new environment where `class_fqn` now contains an additional field?
This means that the exported program is now expected to take in another input. But since those fields were not used in the original program, users should be able just drop those additional fields and the program will run successfully. This is needed/used in APS where they use unflattener's adapter to adapt the inputs based on the previously saved treespecs.
There are a couple of [solutions](https://docs.google.com/document/d/1V4ZSdy-8PUISWc8RqvGu3DU01BVegJhHHPWqa1Io7Eg/edit?tab=t.0) for how we can address this, but eventually we settled on saving a side table mapping namedtuple types to their list of field names, which can then be accessed by the adapter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145956
Approved by: https://github.com/zhxchen17
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).
This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.
Test Plan: added test
Differential Revision: D68880766
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
Summary:
Previously, aoti compile node is represented as a kernel-less custom op in the exported program. The node was not eager runnable, which is a common practice for numerical validation during lowering.
I introduce a new HOP to address this.
The schema is following
```
aoti_call_delegate(lower_moduel: AOTInductorEPModule, original_gm: fx.GraphModule, weights: List[Tensor], inputs: List[Tensor])
```
There are a few problems exposed by HOP
- AOTI expects a FX graph with weights as getattr nodes, aka stateful graph. HOP expect graph_module arguments to be stateless. Export serializer also expect a stateless graph. Currently, to make AOTI happy, I am making `original_gm` stateful, and bypassing the serialization for `original_gm`.
- As a result, the HOP is not re-traceable, as functionalization on stateful graph module argument will fail.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:cpu_lowering_utils_test
Reviewed By: zhxchen17
Differential Revision: D68359391
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145630
Approved by: https://github.com/zou3519
Instead of bumping symint counters when we process unbacked bindings during deserialization, it's better to bump them at the beginning based on what the symbols in the original shape env before serialization were. This allows symbols in unbacked bindings to have "gaps" that bumping alone would not be able to match.
Why is bumping counters important at all? It is because when the shape env coming out of deserialization is used later for propagating symints, say in run_decompositions, we don't want new names to clash with existing names (bad things happen).
Differential Revision: [D68798191](https://our.internmc.facebook.com/intern/diff/D68798191/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145882
Approved by: https://github.com/pianpwk
Adds unbacked bindings during deserialization. These are carried by a node's metadata, and map pending fresh unbacked symbols to paths to such symbols inside the corresponding example value carried by the node's metadata.
Since it is awkward to serialize paths, we only serialize the names of these symbols and reconstruct the paths on deserialization, using a shape env util. We also need to bump counters for unbacked symbols here, because the shape env util we use to create these symbols (when deserializing example values) don't do so, and not doing so makes later passes (like `run_decompositions`) crash because new unbacked symbols don't get new names.
This is enough for non-strict. For strict, the unbacked bindings and example values in node metadata can get out of sync, because of running AOTAutograd as an additional step after Dynamo. So we have to sync those back.
Differential Revision: [D68232274](https://our.internmc.facebook.com/intern/diff/D68232274/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144894
Approved by: https://github.com/pianpwk
As of python 3.9 annotated lists can be written as `list[T]` and `List[T]` has been deprecated. However schema_check was converting `list[T]` to simply be `list`. This change teaches it to handle `list[T]` the same as `List[T]`.
A couple small drive-by changes I noticed as well:
- Path concatenation should use `os.path.join`, not `+`
- Spelling in error message
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145154
Approved by: https://github.com/bobrenjc93
Summary:
Add experimental support for torch.nn.Module as input types.
Before this change, we don't support module inputs but recently we saw some interesting use cases like gpt-fast https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py#L68 where we directly pass in a module input for different variants of the same models.
Since we don't really care about non-param or non-buffer states in non strict mode, we don't care about those either and pretend they are like plain constants during tracing. We treat any module input like a nested container of tensor, and each time we will automatically register a pytree handler for these module types to flatten its state dict into a group of tensors. We will just inline any module method call during tracing like we did for `self` module in export_for_training. This will make input modules' behavior very similar to the training module in typical case, except that we don't record the inputs as parameter or buffers but rather just plain user inputs.
Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_module_input
Differential Revision: D67680827
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143925
Approved by: https://github.com/tugsbayasgalan
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element.
Test Plan:
```
buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond
buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2
```
Differential Revision: D66991624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227
Approved by: https://github.com/zhxchen17
Summary:
When there is a `torch._check()` that checks if a sym_int is equal to some constant, it will generate 3 nodes in the graph with target `operation.ge`, `operator.le` and `operator.eq`. These operators belong to `_SYM_BOOL_OPS` but the `meta_val` of these nodes are are `bool` instead of `torch.SymBool`.
Similar things can happen to `torch.SymInt`, where a `node.target` belongs to `_SYM_INT_OPS` but `node.meta["val"]` is an `int` instead of `torch.SymInt`.
Therefore, we need to check both `meta_val` type and `node.target` type during serialization.
Test Plan:
```
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_bool_torch_check_equal
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_int_torch_check_equal
```
Differential Revision: D67883754
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144295
Approved by: https://github.com/avikchaudhuri, https://github.com/angelayi